I.1 (4 Punkte)

Es sei (G,\cdot) eine Gruppe, in der für jedes Element $x\in G$ genau ein Element $y\in G$ existiert, sodass

$$y \cdot y = x$$

gilt. Dadurch wird eine Abbildung $\varphi\,:\,G\to G\,,\,x\mapsto y\,,$ definiert.

Zeigen Sie:

- a) Die Abbildung φ ist bijektiv.
- b) Wenn G abelsch ist, dann ist φ ein Gruppenhomomorphismus von G nach G.
- c) Wenn φ ein Gruppenhomomorphismus von G nach G ist, dann ist G abelsch.

Lösung:

a) Die Abbildung φ ist injektiv, denn für $x_1, x_2 \in G$ folgt aus $\varphi(x_1) = \varphi(x_2)$ die Gleichung

$$x_1 = \varphi(x_1) \cdot \varphi(x_1) = \varphi(x_2) \cdot \varphi(x_2) = x_2.$$

Die Abbildung φ ist auch surjektiv, denn für $y \in G$ und $x := y \cdot y$ folgt $y = \varphi(x)$ aus der Definition von φ .

b) Zu zeigen ist: Wenn G abelsch ist, dann gilt für alle $x_1, x_2 \in G$ die Gleichung

$$\varphi(x_1 \cdot x_2) = \varphi(x_1) \cdot \varphi(x_2).$$

Um dies zu zeigen, setzen wir $z := \varphi(x_1) \cdot \varphi(x_2)$ und rechnen nach:

$$z \cdot z = \varphi(x_1) \cdot \varphi(x_2) \cdot \varphi(x_1) \cdot \varphi(x_2) \stackrel{(*)}{=} \varphi(x_1) \cdot \varphi(x_1) \cdot \varphi(x_2) \cdot \varphi(x_2) = x_1 \cdot x_2,$$

also $z = \varphi(x_1 \cdot x_2)$ nach Definition von φ .

Bei (*) wird hier die Kommutativität von G benutzt.

c) Nun sei φ ein Gruppenhomomorphismus, das heißt

$$\forall x_1, x_2 \in G : \varphi(x_1 \cdot x_2) = \varphi(x_1) \cdot \varphi(x_2).$$

Damit folgt

$$\varphi(x_1) \cdot \varphi(x_1 \cdot x_2) \cdot \varphi(x_2) = \varphi(x_1) \cdot \varphi(x_1) \cdot \varphi(x_2) \cdot \varphi(x_2)$$

$$= x_1 \cdot x_2$$

$$= \varphi(x_1 \cdot x_2) \cdot \varphi(x_1 \cdot x_2)$$

$$= \varphi(x_1) \cdot \varphi(x_2) \cdot \varphi(x_1) \cdot \varphi(x_2)$$

$$= \varphi(x_1) \cdot \varphi(x_2 \cdot x_1) \cdot \varphi(x_2).$$

Multiplikation dieser Gleichung von links mit $(\varphi(x_1))^{-1}$ und von rechts mit $(\varphi(x_2))^{-1}$ ergibt

$$\forall x_1, x_2 \in G: \ \varphi(x_1 \cdot x_2) = \varphi(x_2 \cdot x_1).$$

Da φ nach Teil a) insbesondere injektiv ist, folgt

$$\forall x_1, x_2 \in G: x_1 \cdot x_2 = x_2 \cdot x_1.$$

Also ist G abelsch.

I.2 (4 Punkte)

Gegeben sei eine lineare Abbildung $\Phi: \mathbb{R}^4 \to \mathbb{R}^3$, die bezüglich der Standardbasis im \mathbb{R}^4 und der Standardbasis im \mathbb{R}^3 die Abbildungsmatrix

$$A := \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 3 & -1 & 1 \\ -2 & 0 & -5 & 3 \end{pmatrix}$$

habe.

Bestimmen Sie eine geordnete Basis B des \mathbb{R}^4 und eine geordnete Basis C des \mathbb{R}^3 derart, dass Φ bezüglich B und C die folgende Abbildungsmatrix besitzt:

$$\tilde{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Lösung:

Wegen

Bild
$$\Phi = \begin{bmatrix} \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \end{bmatrix} = \mathbb{R}^3$$

wählen wir die neue Basis $C = \{c_1, c_2, c_3\}$ des \mathbb{R}^3 durch

$$c_1 := \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}, c_2 := \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix}, c_3 := \begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}.$$

Wir bezeichnen mit $\{e_1, e_2, e_3, e_4\}$ die Standardbasis des \mathbb{R}^4 . Für die gesuchte Basis $B = \{b_1, b_2, b_3, b_4\}$ des \mathbb{R}^4 muss dann wegen der Form von \tilde{A} gelten

Für
$$i=1,2,3$$
: $\Phi(b_i)=c_i$ d. h. $A\cdot b_i=c_i$ also z. B. $b_i=e_i$
Für $i=4$: $\Phi(b_4)=0$ d. h. $A\cdot b_4=0$

Zur Bestimmung von b_4 lösen wir das homogene LGS $A \cdot x = 0$, indem wir den Gaussalgorithmus auf A anwenden.

$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 3 & -1 & 1 \\ -2 & 0 & -5 & 3 \end{pmatrix} \xleftarrow{-2}_{+}^{2} \xrightarrow{} \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 3 & -5 & 3 \\ 0 & 0 & -1 & 1 \end{pmatrix} \xleftarrow{+}_{-5}^{+} \begin{vmatrix} \cdot \frac{1}{3} \\ -5 \end{vmatrix} \xrightarrow{}_{2} \begin{vmatrix} (-1) \end{vmatrix} \xrightarrow{}_{1}^{+} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

Daraus lesen wir $b_4 = \begin{pmatrix} -1 \\ \frac{2}{3} \\ 1 \\ 1 \end{pmatrix}$ als mögliche Wahl für b_4 ab.

Zeigen Sie, dass es genau eine lineare Abbildung $\Phi: \mathbb{R}^4 \to \mathbb{R}^4$ gibt, für die gilt:

$$\Phi(\begin{pmatrix} 2\\1\\0\\-1 \end{pmatrix}) = \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}, \ \Phi(\begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}) = \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \ \Phi(\begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}) = \begin{pmatrix} 2\\-7\\2\\3 \end{pmatrix}, \ \Phi(\begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix}) = \begin{pmatrix} 3\\1\\3\\1 \end{pmatrix}, \ \Phi(\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}) = \begin{pmatrix} 0\\-3\\0\\1 \end{pmatrix}.$$

Lösung:

Zuerst zeigen wir, dass

$$B := \left\{ \begin{pmatrix} 2\\1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \right\}$$

eine Basis von \mathbb{R}^4 ist. Das können wir beispielsweise tun, indem wir die vier Vektoren als Zeilen in eine Matrix schreiben und zeigen, dass diese Rang 4 hat. Dazu verwenden wir den Gaußalgorithmus:

$$\begin{pmatrix} 2 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \stackrel{+}{\longleftrightarrow} \stackrel{+}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \stackrel{+}{\longleftrightarrow} \stackrel{+}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \stackrel{+}{\longleftrightarrow} \stackrel{+}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

B ist also eine Basis von \mathbb{R}^4 . Nach dem Satz über die lineare Fortsetzung gibt es dann genau einen Endomorphismus $\Phi \in \operatorname{End}(\mathbb{R}^4)$, der auf den vier Basisvektoren die vorgeschriebenen Werte annimmt. Wir müssen nun nur noch überprüfen, ob auch gilt:

$$\Phi\begin{pmatrix} -1\\0\\1\\2 \end{pmatrix} = \begin{pmatrix} 2\\-7\\2\\3 \end{pmatrix}.$$

Dazu schreiben wir den abzubildenden Vektor als Linearkombination der Basisvektoren aus B und benutzen die Linearität von Φ :

$$\Phi(\begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}) = \Phi((-1) \cdot \begin{pmatrix} 2\\1\\0\\-1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix})$$

$$= (-1) \cdot \Phi(\begin{pmatrix} 2\\1\\0\\-1 \end{pmatrix}) + 0 \cdot \Phi(\begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}) + 1 \cdot \Phi(\begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix}) + 2 \cdot \Phi(\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix})$$

$$= (-1) \cdot \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 3\\1\\3\\1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0\\-3\\0\\1 \end{pmatrix}) = \begin{pmatrix} 2\\-7\\2\\3 \end{pmatrix}. \quad \checkmark$$

I.4 (4 Punkte)

Es seien V ein n-dimensionaler reeller Vektorraum und $\psi \in V^*$ eine von der Nullabbildung verschiedene Linearform. Weiter sei $\Phi: V \to V$ ein Endomorphismus von V mit der Eigenschaft

$$\psi \circ \Phi = \psi$$
.

Zeigen Sie:

- a) Φ besitzt den Eigenwert 1.
- b) Ist W ein Untervektorraum von V mit $V = \operatorname{Kern}(\psi) \oplus W$ und $\Phi(W) \subset W$, so wird W von einem Eigenvektor zum Eigenwert 1 erzeugt.

Lösung:

a) Es gilt

1 ist Eigenwert von $\Phi \iff \operatorname{Kern}(\Phi - \operatorname{id}) \neq \{0\} \iff \Phi - \operatorname{id} \text{ ist } \mathbf{nicht} \text{ injektiv}$

Wegen $\dim V = n$ ist dies äquivalent dazu, dass Φ – id nicht bijektiv ist.

Aus der Beziehung

$$\psi \circ \Phi = \psi = \psi \circ id$$

folgern wir

$$\psi \circ (\Phi - \mathrm{id}) = 0.$$

Wäre Φ – id bijektiv, so folgte $\psi = 0$, ein Widerspruch zur Voraussetzung. Die Abbildung Φ – id ist somit nicht injektiv und 1 ist dann ein Eigenwert von Φ

b) Sei W ein Φ -invarianter Komplementärraum zu $U := \operatorname{Kern}(\psi)$. Wegen $\dim U = n-1$ folgt aus dem Dimensionssatz dim W = 1. Sei $W = [w], w \neq 0$. Wegen $\Phi(W) \subset W$ gilt dann $\Phi(w) = c \cdot w$. Es bleibt zu zeigen, dass w ein Eigenvektor zum Eigenwert 1 ist, d.h. c = 1.

Es gilt aber einerseits

$$\psi \circ \Phi(w) = c\psi(w)$$

und andererseits

$$\psi \circ \Phi(w) = \psi(w),$$

also

$$\psi(w) = c \, \psi(w) \, .$$

Da w nicht in Kern(ψ) enthalten ist, gilt $\psi(w) \neq 0$ und wir erhalten c = 1.

I.5 (4 Punkte)

Es seien $V=\{(x_k)_{k\in\mathbb{N}}:\ x_k\in\mathbb{R}\}$ der reelle Vektorraum der reellen Folgen und $\Phi:V\longrightarrow V$ der durch

$$(x_k)_{k\in\mathbb{N}} \longmapsto (x_{k+1})_{k\in\mathbb{N}}$$

definierte Endomorphismus von V.

Bestimmen Sie die Eigenwerte und die Eigenräume von Φ .

Lösung:

 $c \in \mathbb{R}$ ist ein Eigenwert von Φ , falls eine von der Nullfolge verschiedene Folge $(x_k)_{k \in \mathbb{N}}$ existiert mit

$$\Phi((x_k)_{k\in\mathbb{N}}) = c(x_k)_{k\in\mathbb{N}}.$$

Nach Definition von Φ ist dies genau dann der Fall, wenn

$$x_{k+1} = cx_k$$

für alle $k \in \mathbb{N}$ gilt. Durch Induktion ergibt sich daraus

$$x_{k+1} = c^k x_1 \qquad (*)$$

für alle $k \in \mathbb{N}$. Setzen wir speziell $x_1 = 1$, so folgt zunächst, dass jede Zahl $c \in \mathbb{R}$ Eigenwert von Φ ist.

Ein zum Eigenwert $c \in \mathbb{R}$ gehörender Eigenvektor ist die Folge $(1, c, c^2, c^3, \ldots)$.

Andererseits folgt aus (*), dass jeder Eigenvektor zum Eigenwert c die Form $(a\,c^{k-1})_{k\in\mathbb{N}}, a\in\mathbb{R}$ hat. Damit folgt für den zugehörigen Eigenraum

$$E_c = [(c^{k-1})_{k \in \mathbb{N}}] = [(1, c, c^2, c^3, \ldots)]$$

I.6 (4 Punkte)

Es seien V ein reeller endlichdimensionaler Vektorraum mit dim $V = n \geq 2$ und $\{b_1, \ldots, b_n\}$ eine Basis von V. Weiter sei durch

$$\Phi(b_i) := \sum_{\substack{k=1\\k \neq i}}^{n} b_k, \quad (i = 1, \dots, n)$$

ein Endomorphismus Φ von V definiert.

- a) Berechnen Sie das charakteristische Polynom von Φ .
- b) Zeigen Sie, dass Φ diagonalisierbar ist und geben Sie eine Abbildungsmatrix von Φ in Diagonalform an.

Lösung:

a) Die Abbildungsmatrix von Φ bezüglich der Basis $\{b_1, \dots b_n\}$ ist gegeben durch

$$A = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & 0 \end{pmatrix}.$$

Für das charakteristische Polynom von Φ ergibt sich nach Subtraktion der ersten Zeile von allen anderen Zeilen und anschließender Addition aller anderen Spalten zur ersten:

$$\begin{vmatrix} -x & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \dots & 1 & -x \end{vmatrix} = \begin{vmatrix} -x & 1 & \dots & \dots & 1 \\ 1+x & -1-x & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1+x & 0 & \dots & 0 & -1-x \end{vmatrix} = \begin{vmatrix} (n-1)-x & 1 & \dots & \dots & 1 \\ 0 & -1-x & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & -1-x \end{vmatrix}$$
$$= (-1)^n (x - (n-1))(x+1)^{(n-1)}$$

b) Wie man leicht nachrechnet, ist für die Abbildungsmatrix A der Vektor $(1, ..., 1)^{\top}$ Eigenvektor zum Eigenwert (n-1); damit ist $b_1 + ... + b_n$ Eigenvektor von Φ zum Eigenwert n-1. Da der zugehörige Eigenraum E_{n-1} eindimensional ist, gilt $E_{n-1} = [b_1 + ... + b_n]$.

Für den Eigenwert -1 ergibt sich der zugehörige Eigenraum E_{-1} als Kern $(\Phi + id)$. Wir lösen das homogene LGS (A + E)x = 0 und erhalten

$$\begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & \dots & 1 \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

Damit gilt $E_{-1} = [b_1 - b_2, b_1 - b_3, \dots, b_1 - b_n]$

Es gilt also $\dim E_{-1} = n - 1$, woraus sich wegen $\dim E_{-1} + \dim E_{n-1} = n$ die Diagonalisierbarkeit von Φ ergibt. Φ hat bezüglich der aus den angegebenen Eigenvektoren zusammengesetzten Basis die Abbildungsmatrix

$$\begin{pmatrix} (n-1) & 0 & \dots & 0 \\ 0 & -1 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & -1 \end{pmatrix}.$$

II.1 (4 Punkte)

Gegeben sei die reelle Matrix

$$A := \begin{pmatrix} -1 & 0 & -1 & 0 \\ 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}.$$

- (a) Berechnen Sie die Jordan'sche Normalform der Matrix A.
- (b) Zeigen Sie, dass es keine Matrix B mit folgenden Eigenschaften gibt:
 - (i) Die Matrizen A und B sind ähnlich.
 - (ii) Es gilt

$$B^2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Lösung:
a)
$$p(x) = \begin{vmatrix} -1-x & 0 & -1 & 0 \\ 1 & -1-x & 1 & 2 \\ 1 & 0 & 1-x & 1 \\ 0 & 0 & 1 & -1-x \end{vmatrix} = (-1-x) \begin{vmatrix} -1-x & -1 & 0 \\ 1 & 1-x & 1 \\ 0 & 1 & -1-x \end{vmatrix} \stackrel{+}{=} = (-1-x)^2 \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1-x & 1 \\ 0 & 1 & -1-x \end{vmatrix} \stackrel{-1}{=} = (-1-x)^3 (1-x)$$

Damit hat A den dreifachen Eigenwert $\lambda_1 = -1$ und den einfachen Eingenwert $\lambda_2 = 1$. Weiter gilt

$$\operatorname{Rang}(A - \lambda_1 E) = \operatorname{Rang}(A + E) = \operatorname{Rang}\begin{pmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 1 & 2 \\ 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = 3 .$$

Damit existiert ein Jordankästchen zum Eigenwert $\lambda_1 = -1$ und A hat die Jordan'sche Normalform

$$\tilde{A} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

b) Wenn eine solche Matrix B existiert, so gilt

$$A \sim B \implies \tilde{A}^2 \sim B^2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \implies \text{JNF}(\tilde{A}^2) = \text{JNF}(B^2) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$\tilde{A}^2=\begin{pmatrix}1&0&0&0\\-2&1&0&0\\1&-2&1&0\\0&0&0&1\end{pmatrix}$$
 hat den algebraisch vierfachen Eigenwert $\lambda=1.$ Mit $\mathrm{Rang}(\tilde{A}^2-E)=$

$$\operatorname{Rang}\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = 2 \text{ folgt, dass es in der Jordan'schen Normalform von } \tilde{A}^2 \text{ genau } \underline{\text{zwei}} \text{ Jordankästchen gibt. Da die JNF von } B^2 \underline{\text{drei}} \text{ Jordankästchen enthalten müsste, kann es so eine Matrix } B \text{ nicht geben.}$$

Auf dem Vektorraum $V = \mathbb{R}^3$ sei mit der symmetrischen Matrix

$$A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 2 & -3 \\ -2 & -3 & 5 \end{pmatrix}$$

eine symmetrische Bilinearform F durch $F(x,y) := x^{\top}Ay$ definiert.

a) Sei $\{e_1,e_2,e_3\}$ die Standardbasis von V. Zeigen Sie, dass zwar die Einschränkung von F auf die 2-dimensionalen Unterräume

$$[e_1, e_2], [e_1, e_3], [e_2, e_3]$$

ein Skalarprodukt ist, aber F selbst nicht.

b) Sei $U := \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \subset V$. Zeigen Sie, dass durch

$$\tilde{F}(x+U,y+U) := F(x,y)$$

ein Skalarprodukt auf dem Faktorraum V/U definiert wird. Vergessen Sie nicht, die Wohldefiniertheit zu überprüfen!

Lösung:

a) Die Symmetrie und Bilinearität von $F|_{[e_i,e_j]}$ folgt, da diese Eigenschaften für A gelten. Die Fundamentalmatrix von $F|_{[e_1,e_2]}$ bezüglich der Basis $\{e_1,e_2\}$ ist

$$G_{12} = \begin{pmatrix} F(e_1, e_1) & F(e_1, e_2) \\ F(e_2, e_1) & F(e_2, e_2) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

Diese Matrix ist nach dem Hurwitz-Kriterium positiv definit, d.h. $F|_{[e_1,e_2]}$ ist ein Skalarprodukt. Analog gilt die positive Definitheit für die Fundamentalmatrizen

$$G_{13} = \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix}$$
 und $G_{23} = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix}$ für $F|_{[e_1,e_3]}$ und $F|_{[e_2,e_3]}$.

F ist kein Skalarprodukt, denn für $x = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^{\top} \neq 0$ gilt F(x, x) = 0.

b) \tilde{F} ist wohldefiniert:

Für x, x', y, y' gelte x+U=x'+U, y+U=x'+U, d.h. es existeren $u_x, u_y \in U$ sodass $x'=x+u_x,$ $y'=y+u_y.$ Da U=KernA, gilt für beliebiges $u \in U$

$$u^{\top} A = (A^{\top} u)^{\top} = (A u)^{\top} = 0$$
, also

$$\tilde{F}(x'+U,y'+U) = F(x',y') = (x')^{\top} A y' = (x+u_x)^{\top} A (y+u_y)
= x^{\top} A y + u_x^{\top} A y + x^{\top} A u_y + u_x^{\top} A u_y
= x^{\top} A y = \tilde{F}(x+U,y+U).$$

Die **Symmetrie** und **Bilinearität** von \tilde{F} folgt aus der von F.

 \tilde{F} ist **positiv definit**, denn bzgl. der Basis $\{e_1 + U, e_2 + U\}$ ist $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ die Fundamentalmatrix von \tilde{F} , die nach Teil a) positiv definit ist.

II.3 (4 Punkte)

Es seien V ein endlichdimensionaler euklidischer Vektorraum und $\Phi:V\to V$ ein selbstadjungierter Endomorphismus.

Zeigen Sie, dass es einen selbstadjungierten Endomorphismus $\Psi: V \to V$ gibt, so dass gilt:

$$\Psi^3 = \Phi$$
.

Lösung:

Da Φ selbstadjungiert ist, existiert eine Orthonormalbasis $B = \{b_1, \dots b_n\}$ aus Eigenvektoren von Φ. Bezüglich B hat Φ dann eine Abbildungsmatrix A der Gestalt

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

wobei $n=\dim V$ und $\lambda_1,\lambda_2,\ldots,\lambda_n\in\mathbb{R}$ die Eigenwerte von Φ sind. Wir setzen für $1\leq i\leq n$

$$\mu_i = \sqrt[3]{\lambda_i}$$

und definieren eine Abbildung $\Psi_1:V\to V$ durch die lineare Fortsetzung der auf B definierten Bilder

$$\Psi_1(b_i) = \mu_i \cdot b_i \quad (1 \le i \le n).$$

 Ψ_1 hat bezüglich der Basis B die Abbildungsmatrix

$$C = \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \mu_n \end{pmatrix}$$

Da A und C Abbildungsmatrizen von Φ und Ψ_1 bezüglich derselben Orthonormalbasis B sind, folgt aus der Matrizenidentität $C^3 = A$ sofort

$$\Psi_1^3 = \Phi$$
.

Also existiert $\Psi := \Psi_1$ mit der vorgegebenen Eigenschaft. Insbesondere ist dieses Ψ sogar selbstadjungiert, da C, die Abbildungsmatrix von Ψ bezüglich der ONB B, Diagonalgestalt und reelle Diagonaleinträge hat.

II.4 (4 Punkte)

Im euklidischen Standardvektorraum \mathbb{R}^4 sei bezüglich der Standardbasis eine Isometrie durch ihre Abbildungsmatrix

$$A = \frac{1}{4} \begin{pmatrix} 3 & -\sqrt{3} & -1 & \sqrt{3} \\ \sqrt{3} & 3 & \sqrt{3} & 1 \\ -1 & -\sqrt{3} & 3 & \sqrt{3} \\ -\sqrt{3} & 1 & -\sqrt{3} & 3 \end{pmatrix}$$

gegeben.

Bestimmen Sie die Normalform \tilde{A} dieser Isometrie und eine orthogonale Matrix S, die $\tilde{A} = S^{T}AS$ erfüllt.

Lösung: Zur Bestimmung der Normalform betrachten wir die symmetrische Matrix

$$B := A + A^T = \frac{1}{2} \begin{pmatrix} 3 & 0 & -1 & 0 \\ 0 & 3 & 0 & 1 \\ -1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 3 \end{pmatrix}.$$

Die Eigenwerte dieser Matrix sind $\lambda_1=2$ (2-fach) und $\lambda_2=1$ (ebenfalls 2-fach). Mit $\cos\omega:=\frac{\lambda_2}{2}$ erhalten wir folgende Normalform:

$$\widetilde{A} = \begin{pmatrix} \frac{\lambda_1}{2} & 0 & 0 & 0\\ 0 & \frac{\lambda_1}{2} & 0 & 0\\ 0 & 0 & \cos \omega & -\sin \omega\\ 0 & 0 & \sin \omega & \cos \omega \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2}\\ 0 & 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Bestimmung einer zugehörigen Transformationsmatrix: Wir bestimmen die zu λ_1 und λ_2 gehörigen Eigenräume E_{λ_1} und E_{λ_2} von B und erhalten

$$E_{\lambda_1} = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}] =: [c_1, c_2] \text{ und } E_{\lambda_2} = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}] =: [c_3, c_4].$$

Eine ONB $\{b_1, b_2\}$ in E_{λ_1} erhält man durch $b_1 := \frac{1}{\sqrt{2}}c_1$ und $b_2 := \frac{1}{\sqrt{2}}c_2$.

In E_{λ_2} bestimmen wir analog eine ONB $\{b_3, b_4\}$ durch $b_3 := \frac{1}{\sqrt{2}}c_3$ und $b_4 := \frac{1}{\sqrt{2}}c_4$.

Wegen

$$A \cdot b_3 = \frac{1}{4\sqrt{2}} \begin{pmatrix} 2\\2\sqrt{3}\\2\\-2\sqrt{3} \end{pmatrix} = \frac{1}{2} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + \frac{\sqrt{3}}{2} \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} = \frac{1}{2}b_3 + \frac{\sqrt{3}}{2}b_4$$

harmoniert das Vorzeichen in der Normalform mit der Reihenfolge der Vektoren b_3 und b_4 . Damit hat A bezüglich der Basis $\{b_1, b_2, b_3, b_4\}$ die Normalform \widetilde{A} und

$$S = \frac{1}{\sqrt{2}} \left(\begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{array} \right)$$

ist eine Matrix der gewünschten Art.

II.5 (4 Punkte)

Es seien $V=\mathbb{C}^3$ und $\Phi\in \mathrm{End}(V)$ derjenige Endomorphismus, der bezüglich der Standardbasis von V durch die Abbildungsmatrix

$$\begin{pmatrix} 1 & 1 & 1 \\ -2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

gegeben ist.

- a) Zeigen Sie, dass Φ diagonalisierbar ist und bestimmen Sie eine Basis aus Eigenvektoren von Φ .
- b) Geben Sie alle Skalarprodukte von V an, bezüglich derer Φ normal ist.
- c) Überprüfen Sie, ob es ein Skalarprodukt gibt, bezüglich dessen Φ selbstadjungiert ist.

Lösung:

a) Das charakteristische Polynom von Φ ist

$$\det \begin{pmatrix} 1-x & 1 & 1 \\ -2 & -1-x & 0 \\ 1 & 0 & -x \end{pmatrix} = (-x)^3 + x + (x+1) - 2x = -x^3 + 1.$$

Daran sieht man die Eigenwerte 1, ζ und ζ^2 von Φ , wobei $\zeta = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ i eine dritte Einheitswurzel ist. Da es drei verschiedene Eigenwerte gibt, ist Φ diagonalisierbar.

Nun bestimmen wir Eigenvektoren zu den Eigenwerten. Die Eigenräume werden von den folgenden Vektoren aufgespannt:

$$\lambda = 1 : b_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad \lambda = \zeta : b_2 = \begin{pmatrix} \zeta \\ 2\zeta^2 \\ 1 \end{pmatrix}, \quad \lambda = \zeta^2 : b_3 = \begin{pmatrix} \zeta^2 \\ 2\zeta \\ 1 \end{pmatrix}.$$

Hierbei ist es hilfreich, die Gleichung

$$\zeta^2 + \zeta + 1 = \frac{\zeta^3 - 1}{\zeta - 1} = 0$$

zu benutzen.

b) Nach dem Spektralsatz ist Φ genau dann normal, wenn es eine Orthogonalbasis aus Eigenvektoren gibt.

Die gesuchten Skalarprodukte sind genau diejenigen, die $B := \{b_1, b_2, b_3\}$ als Orthogonalbasis besitzen, deren Fundamentalmatrix bezüglich B also diagonal ist.

Anders gesagt: Wenn $a_1, a_2, a_3 > 0$ reelle Zahlen sind, so wird ein Skalarprodukt $\langle \cdot, \cdot \rangle$ auf \mathbb{C}^3 definiert durch

$$\forall x, y \in \mathbb{C}^3 : x = x_1b_1 + x_2b_2 + x_3b_3, \quad y = y_1b_1 + y_2b_2 + y_3b_3, \quad \langle x, y \rangle := \sum_{i=1}^3 a_i x_i \overline{y_i}.$$

Genau bezüglich Skalarprodukten dieser Art ist Φ normal.

c) Insbesondere sind nach Teil a) nicht alle Eigenwerte reell, und Φ kann bezüglich keines Skalarprodukts selbstadjungiert sein, denn der Spektralsatz sagt ja auch, dass selbstadjungierte Endomorphismen nur reelle Eigenwerte haben.

II.6 (4 Punkte)

In einem n-dimensionalen affinen Raum A ($n \ge 2$) sei eine von der identischen Abbildung verschiedene Affinität φ gegeben mit folgender Eigenschaft:

Für je zwei Punkte P und Q mit $P \neq \varphi(P)$ und $Q \neq \varphi(Q)$ sind die Verbindungsgeraden von P mit $\varphi(P)$ sowie von Q und $\varphi(Q)$ parallel.

Zeigen Sie:

Besitzt φ einen Fixpunkt, so ist die Menge der Fixpunkte von φ eine Hyperebene.

Lösung:

Wählen wir den Fixpunkt von φ als Ursprung, so können wir A mit dem zugehörigen Vektorraum V identifizieren und φ hat die Gestalt:

$$\varphi(x) = \Phi(x)$$
, $\Phi: V \to V$ linear und bijektiv.

Dann gilt

$$\varphi(x) = x \iff (\Phi - \mathrm{id}_V)(x) = 0 \iff x \in \mathrm{Kern}\,(\Phi - \mathrm{id}_V) =: H$$

Zu zeigen: $\dim H = n - 1$.

1. Möglichkeit: Indirekt: Annahme: $\dim H =: k < n-1$

Wir ergänzen eine Basis $\{b_1, \ldots, b_k\}$ von H zu einer Basis $\{b_1, \ldots, b_k, c_1, \ldots, c_{n-k}\}$ von V.

Gilt
$$c_1 \notin H \implies \varphi(c_1) \neq c_1 \implies g = c_1 + [(\Phi(c_1) - c_1)]$$
 ist Gerade durch c_1 und $\varphi(c_1)$.

Analog gilt für $c_2 \notin H$, dass $h = c_2 + [(\Phi(c_2) - c_2)]$ die Gerade durch c_2 und $\varphi(c_2)$ ist.

Aus
$$g \parallel h$$
 folgt $\Phi(c_2) - c_2 = t(\Phi(c_1) - c_1)$ bzw. $(\Phi - id_V)(c_2 - tc_1) = 0$.

Daraus folgt, dass $c_2 - tc_1 \in \text{Kern}(\Phi - \text{id}_V)$ gilt, womit $\{b_1, \dots b_k, c_1, c_2\}$ linear abhängig wäre. Also muss dim $H \ge n - 1$ sein. Wegen $\varphi \ne \text{id}$ folgt letztendlich dim H = n - 1.

2. Möglichkeit: Nach Voraussetzung gilt

$$\forall c_1, c_2 \in V \setminus H : [(\Phi - \mathrm{id}_V)(c_1)] = [(\Phi - \mathrm{id}_V)(c_2)]$$

Da $\Phi \neq id_V$ folgt

$$\operatorname{Rang}(\Phi - \mathrm{id}_V) = 1$$

Daraus folgt, dass $H = \text{Kern} (\Phi - id_V)$ die Dimension n-1 hat.