

Modulhandbuch Bauingenieurwesen SPO 2013 (B.Sc.)

Sommersemester 2021 Stand: 08.03.2021

Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Herausgeber:

Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften Karlsruher Institut für Technologie (KIT) 76128 Karlsruhe www.bgu.kit.edu

Fotograf: Martin Fenchel

Ansprechpartner: ulf.mohrlok@kit.edu

Vorwort

Das Modulhandbuch ist das Dokument, in dem wichtige, die Studien- und Prüfungsordnung ergänzende Informationen zum Studium dargestellt sind. Im Studienplan (Kap. 1) werden allgemeine Regelungen aus der Studien- und Prüfungsordnung und den verschiedenen Änderungssatzungen dazu (s. http://www.sle.kit.edu/vorstudium/bachelor-bauingenieurwesen.php) sowie die Struktur des Studiengangs spezifiziert. Auch wesentliche Aspekte bzgl. des Ablaufs des Studiums (Kap. 2) und Änderungen (Kap. 3) werden im Detail beschrieben. Die zentrale Funktion des Modulhandbuchs ist die Zusammenstellung der Modulbeschreibungen (Kap. 4). In Ergänzung zum Modulhandbuch sind Informationen zu den einzelnen Lehrveranstaltungen, Ablauf, Ziele, Inhalte, usw., im Vorlesungsverzeichnis (online) zusammengestellt. Die in den Modulen (Kap. 4) aufgelisteten Lehrveranstaltungen sind, dem Semester entsprechend, mit dem Vorlesungsverzeichnis des Sommersemesters 2021 bzw. des Wintersemesters 2020/21 verlinkt. Informationen zu den angebotenen Prüfungen sind im Studierendenportal hinterlegt. Diese Informationen sind auch über Aushänge bzw. Internetseiten der Institute bekannt gemacht.

Hinweise bzgl. Corona-Pandemie:

Die Beschreibungen in diesem Modulhandbuch sind nicht auf die aktuellen Regelungen bzgl. der Corona-Pandemie angepasst. Wesentliche Informationen zu den aktuellen Regelungen finden sich auf der Webseite des Corona-Krisenstabs, http://www.kit.edu/kit/25911.php, unter der Rubrik SStudium und Lehre". Diese wird über die Zeit der Pandemie regelmäßig aktualisiert.

Informationen zu der angebotenen Form der einzelnen Lehrveranstaltungen, in Präsenz bzw. online, finden sich im online Vorlesungsverzeichnis, https://campus.studium.kit.edu/events/catalog.php#!campus/all/field.asp?gguid=0x689045E2170642E3823B4C9E7334BE9A. In dem dort verlinkten ILIAS-Kurs werden weitere Informationen zum genaueren Ablauf und Inhalt der Veranstaltung bereit gestellt.

Inhaltsverzeichnis

1			6
	1.1		6
	1.2		6
	1.3	Wahl und Abschluss eines Moduls	0
	1.4	Wiederholung von Prüfungen, Fristen	
	1.5	Studierende mit Behinderung oder chronischer Erkrankung	0
	1.6	Anrechnung und Anerkennung extern erbrachter Leistungen	0
	1.7	Bachelorarbeit	1
	1.8	Schlüsselqualifikationen	1
	1.9	Zusatzleistungen, Mastervorzug	1
2	Nütz	zliches und Informatives 1	2
	2.1	Das Modulhandbuch	2
	2.2	Modulprüfungen, Prüfungsausschuss	2
	2.3	Änderungen im Modulangebot	
	2.4	Offizielle Informationen	
	2.5	Ansprechpartner	
	2.6	Verwendete Abkürzungen	
3	Δktı	uelle Änderungen 1	5
4	Mod		_
	4.1	Pflichtmodule Grundstudium	_
		Statik starrer Körper- bauiBGP01-TM1	
		Festigkeitslehre- bauiBGP02-TM2	
		Dynamik- bauiBGP03-TM3	
		Hydromechanik- bauiBGP04-HYDRO	
		Analysis und Lineare Algebra- bauiBGP05-HM1	
		Integralrechnung und Analysis mehrerer Veränderlicher- bauiBGP06-HM2	
		Angewandte Statistik- bauiBGP07-STATS	
		Differentialgleichungen- bauiBGP08-HM3	
		Baustoffe- bauiBGP09-BSTOF	
		Baukonstruktionen- bauiBGP10-BKONS	
		Planungsmethodik- bauiBGP11-PLANM	
		Projektmanagement- bauiBGP12-PMANG	
		Geologie im Bauwesen- bauiBGP13-GEOL	
		Bauinformatik I- bauiBGP14-BINF1	-
	4.2		
		Schlüsselqualifikationen- bauiBFW0-SQUAL	
		Bauchemie- bauiBGW1-BCHEM	•
		Umweltphysik / Energie- bauiBGW3-UPHYS	_
		Technisches Darstellen- bauiBGW5-TECDS	
		Laborpraktikum- bauiBGW6-LABOR	
		Bauinformatik II- BauiBGW7-BINF2	
	4.3	Pflichtmodule Grundfachstudium	
		Baustatik- bauiBFP1-BSTAT	
		Grundlagen des Stahlbetonbaus- bauiBFP2-KSTR.A	
		Grundlagen des Stahl- und Holzbaus- bauiBFP3-KSTR.B	
		Wasser und Umwelt- bauiBFP4-WASSER	
		Mobilität und Infrastruktur- bauiBFP5-MOBIN	
		Technologie und Management im Baubetrieb- bauiBFP6-TMB	
		Geotechnisches Ingenieurwesen- bauiBFP7-GEOING 6	
	4.4	Modul Bachelorarbeit	
		Bachelorarbeit- bauiBSC-THESIS	
	4.5	Wahlpflichtmodule Grundfachstudium	
		Partielle Differentialgleichungen- bauiBFW1-PDGL 6	
		Einführung in die Kontinuumsmechanik- bauiBFW2-EKM	7

INHALTSVERZEICHNIS INHALTSVERZEICHNIS

Wasserbauliches Versuchswesen- bauiBFW3-WASSVW	
Vermessungskunde- bauiBFW5-VERMK	
Projekt "Planen, Entwerfen, Konstruieren"- bauiBFW6-PPEK	
Lebenszyklusmanagement- bauiBFW7-LZMAN	
Ingenieurhydrologie- bauiBFW12-INGHYD	
Bauinformatik II- BauiBGW7-BINF2	
Computer Aided Design (CAD) - bauiBFW10-CAD	
Gewerke und Technik im schlüsselfertigen Hochbau- bauiBFW13-SFHB	
ichwortverzeichnis	

1 Studienplan

In diesem Abschnitt "Studienplan" sind ergänzende Regelungen zur Studien- und Prüfungsordnung (SPO) und deren wesentlichen Änderungssatzungen dargelegt. Diese finden sich unter den Links

http://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2009_077.pdf

(77. Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Bachelorstudiengang Bauingenieurwesen, vom 08.09.2009)

http://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2011_AB_010.pdf

(2011 KIT 010 Satzung zur Änderung der Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Bachelorstudiengang Bauingenieurwesen, vom 24.03.2011)

http://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2013_AB_028.pdf

(2013 KIT 028 Satzung des Karlsruher Instituts für Technologie (KIT) über die Änderung der Prüfungsordnungen für die am MINT-Kolleg Baden-Württemberg beteiligten Bachelorstudiengänge, vom 12.08.2013)

http://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2014_AB_003.pdf

(2014 KIT 003 Zweite Satzung zur Änderung der Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Bachelorstudiengang Bauingenieurwesen, vom 14.01.2014)

http://www.sle.kit.edu/downloads/AmtlicheBekanntmachungen/2014_AB_019.pdf

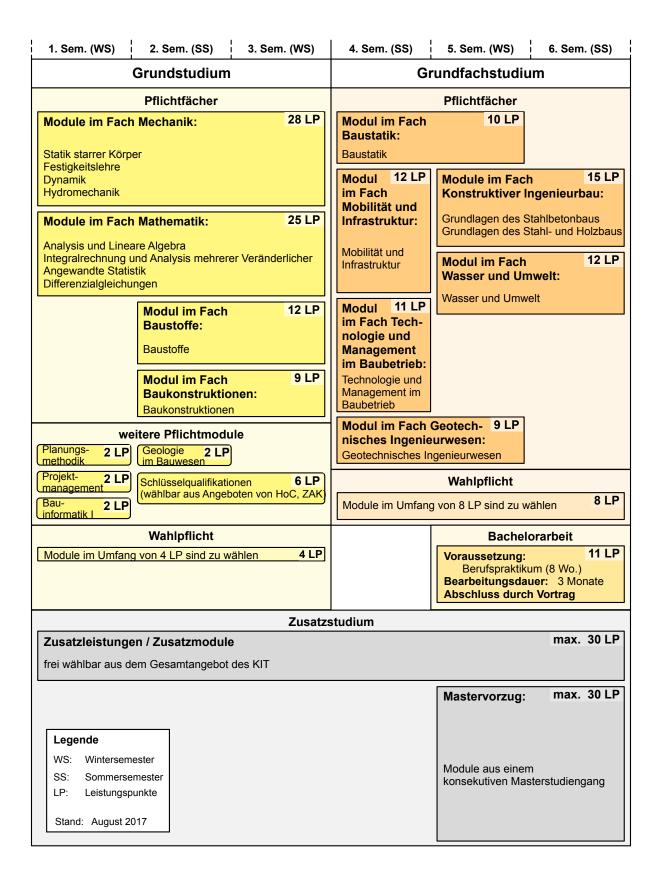
(2014 KIT 019 Satzung zur Umsetzung des Übereinkommens über die Anerkennung von Qualifikationen im Hochschulbereich der Europäischen Region vom 11. April 1997 gemäß §§ 32 Abs. 2, 4 und 36a LHG in den Studien- und Prüfungsordnungen am KIT, vom 28.03.2014)

Eine Synopse der Prüfungsordnung und ihrer Änderungen steht auf der Webseite des Prüfungsausschusses zur Verfügung (http://www.ifv.kit.edu/downloads/16-09-13_SPO_Gesamt.pdf).

1.1 Ziele des Bachelorstudiums

Der Bachelorstudiengang **Bauingenieurwesen** bietet eine grundlegende, forschungsorientierte Ausbildung in der gesamten Breite der typischen Berufsfelder des Bauingenieurwesens und gleichzeitig die wissenschaftliche Qualifikation für die Aufnahme eines Masterstudiums im Bauingenieurwesen oder einem verwandten Fachgebiet. Der Schwerpunkt der Ausbildung liegt auf den technisch-wissenschaftlichen Grundlagen und Methoden in allen Bereichen des Bauingenieurwesens. Weitere wesentliche Bestandteile der Ausbildung sind Kompetenzen in Teamarbeit und Kommunikation.

Die Absolventinnen und Absolventen besitzen die Fähigkeit, ihr erworbenes Grundlagenwissen und ihre Methodenkompetenzen sowie ihre zusätzlichen Grundkenntnisse in verwandten Ingenieur- und Naturwissenschaften durch zielorientierte und effektive Recherchen zu erweitern und diese bedarfsgerecht anzuwenden. Sie können sich so in jede Ausprägung des Berufsbilds eines Bauingenieurs vertiefen. Damit sind sie in der Lage, alle Arten von Bauwerken, Anlagen und Infrastruktur, die unsere Gesellschaft benötigt, zu entwerfen, zu planen, zu berechnen, zu bauen, zu verwalten und zu unterhalten. Wegen dieses sehr breiten Tätigkeitsspektrums werden Bauingenieure in den meisten anderen Ländern als Zivilingenieure (civil engineers) bezeichnet.


Die Absolventinnen und Absolventen arbeiten sich in fachliche Fragestellungen weitgehend selbstständig ein. Sie denken ganzheitlich und bringen so soziale, ökologische und ökonomische Aspekte in Einklang, um eine Lösung zu generieren. Ihre Stärke liegt in ihrem technischen Know-how, das dabei durch ihre erworbene Team- und Kommunikationsfähigkeit ergänzt wird.

1.2 Aufbau des Bachelorstudiums

Grundsätzlich gliedert sich das Studium in **Fächer**, **Module** und **Lehrveranstaltungen**. Jedes Fach (z.B. Mathematik oder Mechanik) ist in Module unterteilt. Jedes Modul besteht wiederum aus einer oder mehreren aufeinander bezogenen Lehrveranstaltungen und wird durch eine oder mehrere **Prüfungen** abgeschlossen. Der Umfang jedes Moduls ist durch Leistungspunkte gekennzeichnet, die nach erfolgreichem Absolvieren des Moduls gutgeschrieben werden.

Das Bachelorstudium Bauingenieurwesen umfasst 180 Leistungspunkte (LP) und ist in **Grundstudium** (Fachsemester 1-3) und **Grundfachstudium** (Fachsemester 4-6) untergliedert (s. Übersicht S. 7, vgl. SPO § 3 Abs. 2). Sowohl das Grundstudium als auch das Grundfachstudium sind in **Pflichtbereich** und **Wahlpflichtbereich** unterteilt, denen die Module des Studiengangs zugeordnet sind. Die Beschreibungen aller Module sind in diesem Modulhandbuch enthalten.

Im Folgenden sind die Bestandteile des Grundstudiums und Grundfachstudiums erläutert. Im Zusatzstudium ist die Belegung weiterer Module möglich. Im Studienablaufplan (Übersicht S. 9) ist die Abfolge der Module und der dazugehörenden Prüfungen dargestellt.

Grundstudium

Das **Grundstudium** definiert die Fachsemester 1 - 3 der Regelstudienzeit (vgl. SPO § 17). Es umfasst insgesamt 92 LP, 82 LP davon im Pflichtbereich und 10 LP im Wahlpflichtbereich. Der **Pflichtbereich** umfasst die Fächer Mechanik (28 LP, 4 Module), Mathematik (25 LP, 4 Module), Baustoffe (12 LP, 2 Module), Baukonstruktion (9 LP, 2 Module) sowie die Module Planungsmethodik, Projektmanagement, Geologie im Bauwesen und Bauinformatik I (je 2 LP). Die **Orientierungsprüfungen** in den Lehrveranstaltungen Statik starrer Körper (Fach Mechanik), Baustoffkunde (Fach Baustoffe) und Bauphysik (Fach Baukonstruktion) müssen bis zum Ende des 2. Fachsemesters abgelegt und bis zum Ende 3. Fachsemesters bestanden worden sein.

Der Wahlpflichtbereich umfasst das Modul Schlüsselqualifikationen (6 LP, Pflicht) sowie 5 weitere fachliche Module (je 2 LP, Wahl). Für das Modul Schlüsselqualifikationen sind im Umfang von insgesamt 6 LP Lehrveranstaltungen aus dem jeweiligen Veranstaltungskatalog Schlüsselqualifikationen des House of Competence (HoC) oder des Zentrums für Angewandte Kulturwissenschaften und Studium Generale (ZAK) zu wählen. Die Wahl von 2 der 5 weiteren fachlichen Modulen (insgesamt 4 LP) vervollständigt den Wahlpflichtbereich.

Grundfachstudium

Das **Grundfachstudium** definiert die Fachsemester 4-6 der Regelstudienzeit (vgl. SPO § 17). Es umfasst insgesamt 88 LP, 80 LP davon im Pflichtbereich und 8 LP im Wahlpflichtbereich. Der **Pflichtbereich** umfasst die Fächer Baustatik (10 LP), Konstruktiver Ingenieurbau (15 LP), Wasser und Umwelt (12 LP), Mobilität und Infrastruktur (12 LP), Technologie und Management im Baubetrieb (11 LP) sowie Geotechnisches Ingenieurwesen (9 LP) und die Bachelorarbeit (11 LP). Diese Fächer bestehen jeweils aus dem gleichnamigen Modul mit Ausnahme des Fachs Konstruktiver Ingenieurbau, das von den beiden Modulen Grundlagen des Stahlbetonbaus und Grundlagen des Stahl- und Holzbaus gebildet wird.

Die Zulassung zu den Prüfungen in den Fächern Konstruktiver Ingenieurbau, Wasser und Umwelt sowie Geotechnisches Ingenieurwesen setzt den Abschluss aller bis auf zwei Module in den Fächern Mechanik, Mathematik und Baukonstruktion voraus. Die Zulassung zur **Bachelorarbeit** setzt den Nachweis über eine mindestens achtwöchige baupraktische Tätigkeit voraus und, dass sich die/der Studierende in der Regel im 3. Studienjahr befindet und alle Module des Grundstudiums bestanden wurden.

Der Wahlpflichtbereich umfasst 11 weitere fachliche Module (je 2 LP), aus denen 4 Module (insgesamt 8 LP) auszuwählen sind.

Zusatzstudium

Darüber hinaus können noch freiwillige **Zusatzleistungen** im Umfang von max. 30 LP erbracht werden (vgl. SPO § 13). Es können Module aus dem Gesamtangebot des KIT gewählt werden. Zusätzlich können noch bis zu 5 Module (max. 30 LP) aus einem konsekutiven Masterstudium als **Mastervorzugsleistung** belegt werden (vgl. SPO § 13a), wenn die/der Studierende bereits Module im Umfang von mehr als 120 LP abgelegt hat. Diese können dann im späteren Masterstudium angerechnet werden. Damit ist es den Studierenden möglich, das interdisziplinäre Studium sowohl inhaltlich als auch zeitlich auf die persönlichen Bedürfnisse, Interessen und beruflichen Perspektiven zuzuschneiden.

STUDIENPLAN

Studienplan für den Bachelorstudiengang Bauingenieurwesen - gemäß amtlicher Satzungsänderung vom 14.01.2014 - Stand 08.10.2020

		Fach	Modul	Lehrveranstaltung	Modulcode	Art	1. FS SWS	2. FS SWS	3. FS SWS	4. FS SWS	5. FS SWS	6. FS SWS	Σ SWS	LN	LP
			Statik starrer Körper		bauiBGP01-TM1	V/Ü	3/2						5	sP, 100 min., OP	
			Festigkeitslehre		bauiBGP02-TM2	V/Ü		4/2					6		ļ
		Mechanik	Dynamik		bauiBGP03-TM3	V/Ü			2/2				4	sP, 100 min. (Vorleistung: 3 Hausübungen)	
			Hydromechanik		bauiBGP04-HYDRO	V/Ü			2/2				4	sP, 100 min.	
			*						2/2					(Vorleistung: 3 Hausübungen)	
			Analysis und lineare Alge	ebra alysis mehrerer Veränderlicher	bauiBGP05-HM1	V/Ü	4/2	4/0					6	sP, 90 min.	
		Mathematik	Angewandte Statistik	alysis menierer verandenicher	bauiBGP06-HM2 bauiBGP07-STATS	V/Ü V/Ü		4/2					6	sP, 90 min. sP, 60 min.	
	턍		Differentialgleichungen		bauiBGP08-HM3	V/Ü			2/1				3	sP, 60 min.	
	Pflicht	Baustoffe	1	Baustoffkunde	bauiBGP09-BSTOF	V/Ü		1/1					2	sP, 60 min., OP	
		Baustone		Konstruktionsbaustoffe	DauibGP09-B31OF	V/Ü			4/2				6	sP, 120 min.	
Ε		Baukonstruktio	nen	Bauphysik	bauiBGP10-BKONS	V/Ü		1/1					2	sP, 60 min., OP	ļ
Grundstudium			Planungsmethodik	Baukonstruktionslehre	bauiBGP11-PLANM	V/Ü	4/4		2/2	-			4		
ž			Projektmanagement		bauiBGP12-PMANG	V/Ü V/Ü	1/1	<u> </u>		-	-		2	sS, 30 min. sS, 45 min.	
g			Geologie im Bauwesen		bauiBGP13-GEOL	V/Ü		2					2	sS, 45 min.	1
Ē			Bauinformatik I			V/Ü	4/4						2	0.00	1
Ō			Baumormatik i		bauiBGP14-BINF1	V/U	1/1							(Vorleistung: test. Progr.aufg.)	
	SUMN	ME PFLICHT					17	20	21				58		8
			Schlüsselqualifikationen		bauiBGW0-SQUAL			2	2				4		
	Ħ		Bauchemie		bauiBGW1-BCHEM	V	2						2		ļ
	<u>:</u>		Umweltphysik/Energie		bauiBGW3-UPHYS		2						2	2 Housibungen	
	흗		Technisches Darstellen		bauiBGW5-TECDS	V/Ü	2						2	Gruppenübg. mit Präsent.	
	Wahlpflicht		Laborpraktikum		bauiBGW6-LABOR	Р	2						2	4 Versuche	
	_		Bauinformatik II		bauiBGW7-BINF2	V/Ü		1/1					2	sS, 30 min.	
					DauibGW7-DINI 2	٧/٥								(Vorleistung: test. Progr.aufg.)	
			HT (mindestens 4 LP aus	zuwählen + 6 LP Schlüsselqual.)			8	2					4+10		1
	SUMN	ME 1 3. FS					19-21	22-24	23				66		9
		Baustatik		Baustatik I	bauiBFP1-BSTAT	V/Ü				2/2			4		
		Dadotatik	IO	Baustatik II	badibi i i bo i/ti	V/Ü					2/2		4		
		Konstruktiver	Grundlagen des	Grundlagen des Stahlbetonbaus I	bauiBFP2-KSTR.A	V/Ü V/Ü				-	2/1	2	3 2	sP, 90 min.	
		Ingenieurbau	Stahlbetonbaus Grundlagen des Stahl-	Grundlagen des Stahlbetonbaus II Grundlagen des Stahlbaus	+	V/Ü					2/1		3	sP, 60 min. sP, 70 min.	4,
		Ingenicarbaa	und Holzbaus	Grundlagen des Holzbaus	bauiBFP3-KSTR.B	V/Ü					2/1		3	sP, 60 min.	4,
				Wasserbau und Wasserwirtschaft		V/Ü					2/1		3		
		Wasser und Ur	nwelt	Hydrologie	bauiBFP4-WASSER	V/Ü					2/1		3	sP, 180 min.	1
	Ħ			Siedlungswasserwirtschaft		V/Ü				- / /		2/1	3		<u> </u>
	Pflicht	Mobilität und Infrastruktur		Raumplanung und Planungsrecht Verkehrswesen	bauiBFP5-MOBIN	V/Ü V/Ü	-	-		2/1	-		3	sP, 150 min.	1
	ш.	WODIIItat uriu ir	III d SII UKIUI	Bemessungsgrundlagen im Straßenwesen	Dauidres-MOBIN	V/Ü				2/1			3	(Vorleistungen: 2 Studienarbeiten)	'
		Technologie und Management im		Baubetriebstechnik		V/Ü				3/1			4	,	—
Ε		Baubetrieb	u wanagement im	Baubetriebswirtschaft	bauiBFP6-TMB	V/Ü				2/1			3	sP, 150 min.	1
ξ		Daubetrieb		Facility- und Immobilienmanagement		V				1			1		
)ţ		Geotechnische	s Ingenieurwesen	Grundlagen der Bodenmechanik	bauiBFP7-GEOING	V/Ü				2/2	0/4		3		
Ë				Grundlagen des Grundbaus		V/Ü					2/1		3	schriftliche Arbeit mit	-
dfa			Bachelor-Arbeit		bauiBSC-THESIS							(7)	(7)	Vortrag, 3 Monate	1
Grundfachstudium	SUM	ME PFLICHT	·							25	22	5	52		8
ō	- 3.411			hungen	bauiBFW1-PDGL	V/Ü				1/1			2		
_			Partielle Differentialgleic					1		T		2	2	sS, 60 min.	
-			Partielle Differentialgleic Einführung in die Kontinu	iumšmechanik	bauiBFW2-EKM	V						2	2	test. Versuchsprotokolle	
-			Einführung in die Kontinu Wasserbauliches Versuc	iumšmechanik	bauiBFW2-EKM bauiBFW3-WASSVW	V									
-	ht		Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde	iumsmechanik chswesen	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK	V V/Ü						1/1	2	test. Vermessungsübung	
-	oflicht		Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfe	iumsmechanik hswesen en, Konstruieren"	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PPEK	V V/Ü Pj						1/1	2	Gruppenübung	
•	ahlpflicht		Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfe Lebenszyklusmanageme	iumsmechanik hswesen en, Konstruieren"	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PPEK bauiBFW7-LZMAN	V V/Ü Pj V/Ü						1/1 2 2	2	Gruppenübung sS, 60 min.	
	Wahlpflicht		Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfe Lebenszyklusmanageme Ingenieurhydrologie	iumsmechanik hswesen en, Konstruieren"	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PPEK bauiBFW7-LZMAN bauiBFW12-INGHYD	V V/Ü Pi V/Ü V/Ü				4/4		1/1	2 2 2 2	Gruppenübung sS, 60 min. sS	
	Wahlpflicht		Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfu- Lebenszyklusmanageme Ingenieurhydrologie Bauinformatik II	rumsmechanik rhswesen en, Konstruieren" nt	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PPEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü				1/1		1/1 2 2	2 2 2 2 2	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Progr.aufg.)	
	Wahlpflicht		Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfe Lebenszyklusmanageme Ingenieurhydrologie Bauinformatik II Computer Aided Design	rumsmechanik hswesen en, Konstruieren" nt (CAD)	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2 bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü				1/1	2	1/1 2 2	2 2 2 2 2 2	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Prograufg.) test. Übungsaufgabe	
			Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfi Lebenszyklusmanageme Ingenieurhydrologie Bauinformatik II Computer Aided Design Gewerke und Technik im	rumsmechanik hswesen en, Konstruieren" nt (CAD) schlüsselfertigen Hochbau	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PPEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü					2	1/1 2 2 2 2	2 2 2 2 2 2 2	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Progr.aufg.)	
	SUMI		Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfe Lebenszyklusmanageme Ingenieurhydrologie Bauinformatik II Computer Aided Design	rumsmechanik hswesen en, Konstruieren" nt (CAD) schlüsselfertigen Hochbau	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2 bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü				4	2 4	1/1 2 2 2 2	2 2 2 2 2 2 2 2 2 2	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Prograufg.) test. Übungsaufgabe sS, 45 min.	
	SUMI	ME WAHLPFLIC ME 4 6. FS	Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfi Lebenszyklusmanageme Ingenieurhydrologie Bauinformatik II Computer Aided Design Gewerke und Technik im	rumsmechanik hswesen en, Konstruieren" nt (CAD) schlüsselfertigen Hochbau	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2 bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü					2	1/1 2 2 2 2	2 2 2 2 2 2 2	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Prograufg.) test. Übungsaufgabe sS, 45 min.	
	SUMI	ME 4 6. FS	Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfi Lebenszyklusmanageme Ingenieurhydrologie Bauinformatik II Computer Aided Design Gewerke und Technik im	rumsmechanik hswesen en, Konstruieren" nt (CAD) schlüsselfertigen Hochbau	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2 bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü	19	22	23	4	2 4	1/1 2 2 2 2	2 2 2 2 2 2 2 2 2 2	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Prograufg.) test. Übungsaufgabe sS, 45 min.	8
	SUMIN	ME 4 6. FS	Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfi Lebenszyklusmanageme Ingenieurhydrologie Bauinformatik III Computer Aided Design Gewerke und Technik im HT (mindestens 8 LP sin	umsmechanik hswesen en, Konstruieren" nt (CAD) schlüsselfertigen Hochbau d auszuwählen)	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2 bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü	19	22	23	4 25-29	2 4 22-26	1/1 2 2 2 2 12 5-13	2 2 2 2 2 2 2 2 20 60	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Prograufg.) test. Übungsaufgabe sS, 45 min.	8 18
	SUMIN	ME 4 6. FS	Einführung in die Köntinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfi Lebenszyklusmanageme Ingenieurhydrologie Bauinformatik III Computer Aided Design Gewerke und Technik im HT (mindestens 8 LP sin	umsmechanik hswesen en, Konstruieren" nt (CAD) schlüsselfertigen Hochbau d auszuwählen) tangebot des KIT (max. 30 LP)	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2 bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü	19	22	23	4 25-29	2 4 22-26	1/1 2 2 2 2 12 5-13	2 2 2 2 2 2 2 2 2 2 60	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Prograufg.) test. Übungsaufgabe sS, 45 min.	8 18
	SUMI	ME 4 6. FS	Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfu- Lebenszyklusmanageme Ingenieurhydrologie Bauinformatik II Computer Aided Design Gewerke und Technik im HT (mindestens 8 LP sin ESAMT 1 6. FS Module aus dem Gesam bis zu 5 Module, vorgeze	umsmechanik hswesen en, Konstruieren" nt (CAD) schlüsselfertigen Hochbau d auszuwählen)	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2 bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü	19	22	23	4 25-29	2 4 22-26	1/1 2 2 2 2 12 5-13	2 2 2 2 2 2 2 2 20 60	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Prograufg.) test. Übungsaufgabe sS, 45 min.	8 18 0-3
Zusatz- studium	MIND Mahi	ME 4 6. FS	Einführung in die Kontinu Wasserbauliches Versuc Vermessungskunde Projekt "Planen, Entwerfubenszyklusmanageme Ingenieurhydrologie Bauinformatik II Computer Aided Design Gewerke und Technik im: HT (mindestens 8 LP sin: SAMT 1 6. FS Module aus dem Gesam bis zu 5 Module, vorgezo (max. 30 LP)	umsmechanik hswesen en, Konstruieren" nt (CAD) schlüsselfertigen Hochbau d auszuwählen) tangebot des KIT (max. 30 LP)	bauiBFW2-EKM bauiBFW3-WASSVW bauiBFW5-VERMK bauiBFW6-PEK bauiBFW7-LZMAN bauiBFW12-INGHYD bauiBGW7-BINF2 bauiBGW7-BINF2	V V/Ü Pi V/Ü V/Ü V/Ü	19	22	23	4 25-29	2 4 22-26	1/1 2 2 2 2 12 5-13	2 2 2 2 2 2 2 2 20 60 126	Gruppenübung sS, 60 min. sS sS, 30 min. (Vorleistung: test. Prograufg.) test. Übungsaufgabe sS, 45 min.	8 18 0-3

- LN = Leistungsnachweis LP = Leistungspunkt
- sP = schriftl. Prüfung
- sS = schriftl. Erfolgskontrolle unbenotet
- OP = Orientierungsprüfung
- V = Vorlesung Ü = Übung
- V/Ü = Vorlesung und Übung, separat oder integriert P = Praktikum Pj = Projekt

1.3 Wahl und Abschluss eines Moduls

Jedes Modul und jede Prüfung darf nur jeweils einmal belegt werden (vgl. SPO § 7 Abs. 5). Die verbindliche Entscheidung über die **Wahl** eines Wahlpflichtmoduls trifft die/der Studierende in dem Moment, in dem sie/er sich zur entsprechenden Prüfung anmeldet (vgl. SPO § 5 Abs. 2). Nach der Teilnahme an der Prüfung kann ein Modul nicht mehr abgewählt und durch ein anderes ersetzt werden.

Ein Modul ist abgeschlossen, wenn alle dem Modul zugeordneten Erfolgskontrollen bestanden sind, d.h. entweder als Prüfungsleistung mit mindestens der Note "4,0" oder als Studienleistung mit "bestanden" bewertet wurden.

1.4 Wiederholung von Prüfungen, Fristen

Wer eine Prüfung nicht besteht, kann diese grundsätzlich bis zum Ablauf des Prüfungszeitraums des übernächsten auf diese Prüfung folgenden Semesters einmal wiederholen (vgl. SPO § 8). Bei Nichtbestehen einer schriftlichen Wiederholungsprüfung kann eine mündliche Nachprüfung abgelegt werden. Diese ist Teil der Wiederholungsprüfung und wird nicht eigenständig bewertet. Nach der mündlichen Nachprüfung wird direkt die Gesamtnote für die Wiederholungsprüfung festgestellt, entweder Note 4,0 (bestanden) oder Note 5,0 (endgültig nicht bestanden).

Wer auch die **Wiederholungsprüfung** (inklusive evtl. vorgesehener mündlicher Nachprüfung) nicht besteht, hat seinen **Prüfungsanspruch** verloren. Ein möglicher Antrag auf **Zweitwiederholung** ist gleich nach Verlust des Prüfungsanspruches beim Prüfungsausschuss zu stellen. Anträge auf eine Zweitwiederholung einer Prüfung müssen vom Prüfungsausschuss genehmigt werden. Ein Beratungsgespräch beim Prüfungsausschuss wird dringend empfohlen.

Die **Orientierungsprüfungen** sind die Prüfungen im Modul Statik starrer Körper sowie in den Teilmodulen Baustoffkunde und Bauphysik (vgl. SPO § 8). Diese sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen. Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang Bauingenieurwesen. Die Zweitwiederholung einer Orientierungsprüfung ist ausgeschlossen.

Sollte es sich im Laufe des Studiums abzeichnen, dass eine in der Studien- und Prüfungsordnung (SPO, http://www.sle.kit.edu/vorstudium/bachelor-bauingenieurwesen.php) festgelegte Frist möglicherweise nicht eingehalten werden kann, ist eine Beratung durch den Prüfungsausschuss sehr zu empfehlen. Ein möglicher Antrag auf **Fristverlängerung** ist ebenfalls beim Prüfungsausschuss zu stellen. Auch diese Anträge müssen vom Prüfungsausschuss genehmigt werden.

Nähere Informationen dazu sind in der SPO, beim Prüfungsausschuss Bachelor Bauingenieurwesen oder der Fachschaft (s. S. 13) erhältlich.

1.5 Studierende mit Behinderung oder chronischer Erkrankung

Studierende mit Behinderung oder chronischer Erkrankung haben die Möglichkeit, bevorzugten Zugang zu teilnahmebegrenzten Lehrveranstaltungen zu erhalten, die Reihenfolge für das Absolvieren bestimmter Lehrveranstaltungen entsprechend ihrer Bedürfnisse anzupassen, oder Prüfungen in einzelnen Modulen in individuell gestalteter Form oder Frist abzulegen (Nachteilsausgleich). Die/der Studierende hat die entsprechenden Nachweise vorzulegen.

Die/der Studierende stellt dazu einen formlosen Antrag mit entsprechenden Nachweisen an den Prüfungsausschuss. Der Prüfungsausschuss legt in Abstimmung mit der/dem Prüfenden die Einzelheiten für die entsprechende Prüfung fest und informiert die/den Studierenden rechtzeitig.

1.6 Anrechnung und Anerkennung extern erbrachter Leistungen

Extern erbrachte Leistungen sind Leistungen, die nicht unmittelbar in diesem Modulhandbuch (Studienplan, Module) beschrieben sind. Diese können grundsätzlich unter den Rahmenbedingungen der SPO anerkannt werden (s. Änderungssatzung vom 28.03.2014 Artikel 3 § 16). Die Anerkennung extern erbrachter Leistungen erfolgt mit dem entsprechenden Anerkennungsformular des Bachelorprüfungsausschusses (http://www.ifv.kit.edu/pab.php).

Sind die Leistungen im Wesentlichen **deckungsgleich** mit Modulen aus dem Studienplan (Name, Ziele, Inhalte) bestätigt dies der jeweilige Fachprüfer (in der Regel der Professor) auf dem Formblatt.

Leistungen, die **nicht deckungsgleich** mit Modulen aus dem Studienplan sind, können angerechnet werden, sofern die erworbenen Kompetenzen zum Erreichen der Qualifikationsziele des Studiengangs beitragen. Die Anerkennung und die Festlegungen, welche Teile des Studiengangs damit ersetzt werden können, erfolgt durch den Bachelorprüfungsausschuss.

1 STUDIENPLAN 1.7 Bachelorarbeit

Die Anerkennung **außerhalb des Hochschulsystems** erbrachter Leistungen erfolgt mit dem entsprechenden Anerkennungsformular des Bachelorprüfungsausschusses (http://www.ifv.kit.edu/pab.php). Eine Anerkennung ist möglich, sofern die erworbenen Kompetenzen zum Erreichen der Qualifikationsziele des Studiengangs beitragen.

Der Prüfungsausschuss prüft, in welchem Umfang die erworbenen Kenntnisse und Fähigkeiten anerkannt werden können und welche Teile des Hochschulstudiums dadurch ersetzt werden können. Es dürfen höchstens 50 % des Hochschulstudiums ersetzt werden.

Das Anerkennungsformular ist dem Bachelorprüfungsausschuss vorzulegen, der dieses an den Studierendenservice zur Verbuchungen der Leistungen weiterleitet.

1.7 Bachelorarbeit

Die **Bachelorarbeit** ist in der Regel im 3. Studienjahr anzufertigen (S. 64, vgl. auch SPO § 11). Zur Bachelorarbeit kann zugelassen werden, wer alle Module des Grundstudiums bestanden hat und den Nachweis über die erfolgreich abgeleistete baupraktische Tätigkeit beim Praktikumsamt (http://iwk.iwg.kit.edu/Praktikumsamt.php) vorgelegt hat. Die **Zulassung** und **Anmeldung** zur Bachelorarbeit erfolgt im Studierendenservice durch Vorlage der entsprechenden, vollständig ausgefüllten Formulare des Bachelorprüfungsausschusses (http://www.ifv.kit.edu/pab.php).

Das Thema der Bachelorarbeit kann von einem **Hochschullehrer**, **habilitierten Mitglied** oder einer/m akademischen Mitarbeiter/in der KIT-Fakultät Bauingenieur-, Geo- und Umweltwissenschaften, der/dem die Prüfungsbefugnis übertragen wurde, vergeben werden. Soll das Thema von einer entsprechenden Person einer anderen KIT-Fakultät vergeben werden, bedarf dies der Genehmigung durch den Bachelorprüfungsausschusses (http://www.ifv.kit.edu/pab.php). Bei der Themenstellung können die Wünsche des Studierenden berücksichtigt werden. Soll die Bachelorarbeit außerhalb des KIT angefertigt werden, ist das Merkblatt - Externe Abschlussarbeiten (http://www.haa.kit.edu/downloads/KIT_ALLGEMEIN_Merkblatt_Externe_Abschlussarbeiten.pdf) zu beachten.

Die **Bearbeitungsdauer** beträgt drei Monate. Die Bachelorarbeit kann auch auf Englisch geschrieben werden. Sie ist innerhalb eines Monats nach Abgabe durch einen **Vortrag** abzuschließen, der in die Bewertung eingeht.

1.8 Schlüsselqualifikationen

Um die Leistungspunkte, 6 LP, für das Modul Schlüsselqualifikationen (S. 42, vgl. auch SPO § 13 Abs. 4) zu erhalten, sind in der Regel entsprechende Lehrveranstaltungen aus dem Angebot zu Schlüsselqualifikationen des House of Competence (HoC) und des Zentrums für Angewandte Kulturwissenschaft und Studium Generale (ZAK) auszuwählen. In Ausnahmefällen kann der Prüfungsausschuss weitere geeignete Veranstaltungen, die nicht in den oben genannten Angeboten des Hoc und ZAK enthalten sind, als Schlüsselqualifikation anerkennen.

Das Modul Schlüsselqualifikationen wird unbenotet abgeschlossen. Nach Rücksprache mit dem Dozenten kann eine Prüfungsnote ausgewiesen werden, die jedoch nicht in die Gesamtnote eingeht.

1.9 Zusatzleistungen, Mastervorzug

Eine **Zusatzleistung** ist eine freiwillige, zusätzliche Prüfung, deren Ergebnis nicht in die Berechnung der Gesamtnote eingeht (vgl. SPO § 13). Sie muss als solche beim Studierendenservice angemeldet werden. Sie kann nachträglich nicht als Pflicht- oder Wahlpflichtleistung verbucht werden. Zur Übermittlung der Note ist dem Prüfer vor der Prüfung der entsprechende Prüfungszettel auszuhändigen. Insgesamt dürfen Zusatzleistungen im Umfang von maximal 30 Leistungspunkten aus dem Gesamtangebot des KIT gewählt werden. Zusatzleistungen werden im Transcript of Records aufgeführt und können auf Antrag des Studierenden als solche ausgewiesen in das Bachelorzeugnis aufgenommen werden.

Darüber hinaus können als **Mastervorzug** (vgl. SPO § 13a) bis zu fünf Module, bzw. 30 Leistungspunkte, aus den Masterstudiengängen Bauingenieurwesen, Funktionaler und Konstruktiver Ingenieurbau, Mobilität und Infrastruktur oder Water Science and Engineering gewählt werden, sofern im Bachelorstudium bereits Module im Umfang von 120 Leistungspunkten abgelegt wurden. Damit soll ein einfacherer Übergang zum konsekutiven Masterstudium außerhalb der Regelstudienzeit ermöglicht werden. Die Anmeldung von Mastervorzugsleistungen erfolgt ebenfalls im Studierendenservice. Zur Übermittlung der Note ist dem Prüfer vor der Prüfung der entsprechende Prüfungszettel auszuhändigen.

Dabei ist zu beachten, dass diese Module nur auf Antrag und nicht automatisch in das Masterstudium übertragen werden. Die Vorlage für den Antrag kann von der Webseite http://www.sle.kit.edu/vorstudium/antraege-formulare.php heruntergeladen werden. Der Antrag muss zu Beginn des Masterstudiums, d.h. im ersten Semester, beim Studierendenservice abgegeben werden.

2 Nützliches und Informatives

2.1 Das Modulhandbuch

Das **Modulhandbuch** ist das maßgebliche Dokument, in dem die inhaltliche Struktur des Studiengangs dargestellt ist, und hilft somit bei der Orientierung im Studium. Es beschreibt die zum Studiengang gehörenden Module und enthält Informationen über:

- · die Zusammensetzung der Module,
- den Umfang der Module (LP, SWS der Lehrveranstaltungen),
- die Abhängigkeiten der Module untereinander, bzw. erforderliche Voraussetzungen,
- · die Qualifikationsziele der Module,
- · die Art der Erfolgskontrolle,
- · die Bildung der Note eines Moduls und
- die Einordnung des Moduls in den Studienablauf (Level).

Ergänzend zum Modulhandbuch informieren das **Vorlesungsverzeichnis** und die Aushänge der Institute aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z.B. Zeit und Ort der Lehrveranstaltung) sowie ggfs. über kurzfristige Änderungen.

2.2 Modulprüfungen, Prüfungsausschuss

Modulprüfungen können in einer Gesamtprüfung oder in Teilprüfungen abgelegt werden. Wird eine **Modulprüfung** als **Gesamtprüfung** angeboten, wird der gesamte Umfang der Modulprüfung an einem Termin geprüft. Ist eine **Modulprüfung in Teilprüfungen** gegliedert, z.B. in Einzelprüfungen zu den dazugehörigen Lehrveranstaltungen, kann die Modulprüfung über mehrere Semester hinweg abgelegt werden. Auch können unbenotete Studienleistungen, z.B. als Prüfungsvorleistung Teil einer Modulprüfung sein.

Die Anmeldung zu den Prüfungen und zu den Studienleistungen erfolgt in der Regel online über das Portal Campus Management für Studierende (Studierendenportal) https://campus.studium.kit.edu. Dort sind nach der Anmeldung folgende Funktionen möglich:

- Prüfung an-/abmelden
- · Prüfungsergebnisse abfragen
- · Notenauszüge erstellen

Eine erfolgreiche online Anmeldung beinhaltet die Zulassung zur Prüfung. Eine Bestätigung dafür wird über das Studierendenportal zur Verfügung gestellt (Übersicht über alle an- bzw. abgemeldeten Prüfungen) und kann in Zweifelsfällen als Nachweis für eine erfolgte Anmeldung dienen. Sollte beim Versuch einer online Anmeldung ein Problem auftreten, ist möglichst umgehend der Studiengangkoordinator, der Studierendenservice oder der SLE-Support zu informieren.

Für alle rechtlichen Fragen im Zusammenhang mit den Prüfungen ist der Bachelorprüfungsausschuss, http://www.ifv.kit.edu/pab.php, zuständig. An diesen sind z.B. die Anträge auf Zweitwiederholung, Fristverlängerung oder Anerkennung zu stellen. Er entscheidet über deren Genehmigung.

2.3 Änderungen im Modulangebot

Das Modulangebot ändert sich im Laufe der Semester. Es können Module wegfallen oder hinzukommen oder die Modulprüfung kann sich ändern. Solche Änderungen werden, sofern möglich, mit ausreichendem zeitlichen Vorlauf im Modulhandbuch bekannt gegeben, spätestens zu Beginn des Semesters, ab dem sie gelten.

In der Regel gilt, dass Studierende, die ein Modul begonnen haben (s. Wahl und Abschluss eines Moduls), dieses in der begonnen Form abschließen können. Die entsprechenden Prüfungen werden über einen gewissen Zeitraum, in der Regel mindestens ein Semester nach dem Zeitpunkt der Änderung, weiter angeboten. Grundsätzlich ist im Fall, dass eine Prüfung in einem nicht mehr angebotenen Modul abzulegen ist, eine Rücksprache mit dem Prüfer empfehlenswert.

2.4 Offizielle Informationen

Alle Informationen rund um die rechtlichen und amtlichen Rahmenbedingungen des Studiums finden sich in der Studien- und Prüfungsordnung des Studiengangs (vom 8.9.2009) und in den Satzungen zur Änderung der Studien- und Prüfungsordnung (vom 24.3.2011, 14.1.2014 und 28.3.2014 (Art. 3)): http://www.sle.kit.edu/vorstudium/bachelor-bauingenieurwesen.php.

2.5 Ansprechpartner

Studiendekan:

Prof. Dr. Peter Vortisch

Institut für Verkehrswesen, Geb. 10.30, Zi. 305

Sprechstunde: nach Vereinbarung

Tel.: 0721/608-42255

E-Mail: peter.vortisch@kit.edu

Studiengangkoordination:

PD Dr. Ulf Mohrlok

KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften, Geb. 10.81, Zi. 311

Sprechstunde: nach Vereinbarung

Tel.: 0721/608-46517 E-Mail: ulf.mohrlok@kit.edu

Prüfungsausschuss Bachelor:

Prof. Dr.-Ing. P. Vortisch (Vorsitzender) Anna Reiffer, M.Sc. (Sachbearbeiterin) Claude Weyland, M.Sc. (Sachbearbeiterin)

Institut für Verkehrswesen, Geb. 10.30, Zi. 304/308

Sprechstunde: Mo. 14.00 - 15.00 Uhr

E-Mail: pab@bgu.kit.edu

Internet: http://www.ifv.kit.edu/pab.php

Praktikumsamt:

Dr.-Ing. Andreas Kron

Institut für Wasser und Gewässerentwicklung, Geb. 10.89, Zi. 103 (1. OG)

Sprechstunde: Di. 9.30 – 11.30 Uhr, während Vorlesungszeit, außerhalb nach Absprache

Tel.: 0721/608-48421 E-Mail: Kron@kit.edu

Internet: http://iwk.iwg.kit.edu/Praktikumsamt.php

Fachstudienberatung:

Dr.-Ing. Harald Schneider

Institut für Technologie und Management im Baubetrieb, Geb. 50.31, Zi. 008 (EG)

Sprechstunde: nach Vereinbarung

Tel.: 0721/608-43881

E-Mail: harald.schneider@kit.edu

Fachschaft:

Studierende des Bauingenieurwesens

Geb. 10.81 (Altes Bauing.Geb.), Zi. 317.1 (3. OG) Sprechstunde: s. http://www.fs-bau.kit.edu

Telefon: 0721/608-43895 E-Mail: fsbau@lists.kit.edu

Internet: http://www.fs-bau.kit.edu

2.6 Verwendete Abkürzungen

LP Leistungspunkte LV Lehrveranstaltung

P Praktikum Pj Projekt

S Sommersemester

Sem. Semester

SPO Studien- und PrüfungsordnungSQ SchlüsselqualifikationenSWS Semesterwochenstunde

Ü ÜbungV VorlesungW Wintersemester

3 Aktuelle Änderungen

Im Folgenden sind die wesentlichen Änderungen ab dem Sommersemester 2021 zusammengestellt. Es besteht jedoch kein Anspruch auf Vollständigkeit.

keine Änderungen

4 Module

4.1 Pflichtmodule Grundstudium

Modul: Statik starrer Körper [bauiBGP01-TM1]

Verantwortliche: P. Betsch, T. Seelig

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 1. Semester

ECTS-Punkte	Level	Zyklus	Dauer
7	1	Jedes 2. Semester, Wintersemester	1

Qualifikationsziele

Die Studierenden können mit den Grundbegriffen des Tragverhaltens von Strukturen am Modell des starren Körpers umgehen. Aufbauend auf wenigen physikalischen Grundprinzipien können sie ausgehend vom einfachen Körper auch Systeme starrer Körper beschreiben und die Vorgehensweise in Ingenieurmethoden umsetzen. Sie können das prinzipielle methodische Vorgehen auf die Beschreibung technischer Tragwerke insbesondere des Bauwesens anwenden.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Statik starrer Körper	7	schriftlich (§ 4 Abs. 2 Nr. 1), Teil der Orien- tierungsprüfung (§ 8 Abs. 1)	100 min.	P. Betsch, T. Seelig

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200101	Statik starrer Körper (D)	V	3	W	T. Seelig
6200102	Übungen zu Statik starrer Körper (D)	Ü	2	W	Mitarbeiter/innen
6200103	Tutorien zu Statik starrer Körper (D)	Т	2	W	Mitarbeiter/innen

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung, Tutorium: 105 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen: 45 Std. Prüfungsvorbereitung: 60 Std. Summe: 210 Std.

Inhalt

- Einführung der Kraft Kräftegruppen -Schnittprinzip
- Kräftegleichgewicht: ebene/räumliche Probleme
- Kräftegruppen an Körpern Resultierende
- Kräftepaar Moment
- · Reduktion räumlicher Kräftesysteme
- · Gleichgewicht an starren Körpern
- Technische Aufgaben Lagerarten statisch bestimmte Lagerung, Gleichgewichtsbedingungen
- Der Schwerpunkt, Streckenlasten/Flächenlasten
- Ebene Systeme starrer Körper Technische Systeme
- · Innere Kräfte und Momente
- Ideale Fachwerke Aufbau/Abbauprinzip Ritter'sches Schnittverfahren
- Schnittgrößen im Balken Schnittgrößenverläufe Differentieller Zusammenhang
- Superpositionsprinzip
- Haftkräfte und Gleitreibungskräfte Seilreibung
- Potentialkraft, Potential, potentielle Energie
- · Stabiles und instabiles Gleichgewicht

Anmerkungen

Literatur:

Gross / Hauger / Schröder Wall - Technische Mechanik 1

Modul: Festigkeitslehre [bauiBGP02-TM2]

Verantwortliche: T. Seelig, P. Betsch

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 2. Semester

ECTS-Punkte Level Zyklus Dauer
9 1 Jedes 2. Semester, Sommersemester 1

Qualifikationsziele

Aufbauend auf den Kenntnissen der Statik starrer Körper können die Studierenden die Grundbegriffe der Festigkeitslehre und der Elastostatik benennen. Sie können Verzerrungs- und Spannungszustände beschreiben und mittels der Materialgesetze verknüpfen. Damit können Sie Verschiebungen unter allgemeiner Belastung zusammengesetzt aus den Grundbeanspruchungen Zug/Druck, Biegung, Schub und Torsion bestimmen. Sie sind somit in der Lage, auch statisch unbestimmte Systeme berechnen zu können. Sie sind in der Lage mit Hilfe von Energiemethoden allgemeine Systeme zu berechnen und die Stabilität elastischer Strukturen zu untersuchen. Die Herleitung und Anwendung der Methoden ist gezielt mit dem Blick auf Bauingenieurprobleme ausgerichtet.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Festigkeitslehre	9	schriftlich (§ 4 Abs. 2 Nr. 1)	100 min.	P. Betsch, T. Seelig

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

Das Modul Statik starrer Körper [bauiBGP01-TM1] sollte bereits belegt worden sein.

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200201	Festigkeitslehre (D)	V	4	S	T. Seelig
6200202	Übungen zu Festigkeitslehre (D)	Ü	2	S	Mitarbeiter/innen
6200203	Tutorien Technische Mechanik (D)	Т	2	S	Mitarbeiter/innen

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung, Tutorium: 120 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std. Prüfungsvorbereitung: 90 Std. Summe: 270 Std.

Inhalt

- Zug Druck in Stäben Spannung / Dehnung / Stoffgesetz
- · Differentialgleichung Stab
- · statisch bestimmte und unbestimmte Probleme
- · mehrachsiger Spannungszustand
- Hauptspannungen Mohr'scher Spannungskreis

- · Gleichgewichtsbedingungen
- · Verzerrungszustand, Elastizitätsgesetze
- · Festigkeitshypothesen
- Balkenbiegung
- · Flächenträgheitsmomente
- · Grundgleichungen der geraden Biegung
- · Normalspannungen infolge Biegung
- Differentialgleichungen der Biegelinie
- Einfeld- / Mehrfeldbalken / Superposition
- Schubspannungen
- · schiefe Biegung
- Torsion
- Arbeitssatz und Formänderungsenergie
- Prinzip der virtuellen Kräfte für Fachwerke und Biegebalken
- Einflusszahlen Vertauschungssätze
- Anwendung des Arbeitssatzes auf statisch unbestimmte Systeme
- Knicken

Anmerkungen

Literatur:

Gross / Hauger / Schröder Wall - Technische Mechanik 2

Modul: Dynamik [bauiBGP03-TM3]

Verantwortliche: P. Betsch, T. Seelig

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 3. Semester

ECTS-Punkte	Level	Zyklus	Dauer
6	2	Jedes 2. Semester, Wintersemester	1

Qualifikationsziele

Die Studierenden können mit den Begriffen, Grundgesetzen und Arbeitsmethoden der klassischen Kinetik umgehen. Sie sind in der Lage, Bewegungsgleichungen mittels der synthetischen und der analytischen Methode aufzustellen und das dynamische Verhalten technischer Systeme zu analysieren. Mit Hilfe der Schwingungslehre können Sie Schwingungserscheinungen beschreiben und diese mechanisch-mathematisch behandeln.

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Dynamik	6	schriftlich (§ 4 Abs. 2 Nr. 1)	100 min.	P. Betsch, T. Seelig

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Prüfungsvorleistung Dynamik	0	Hausarbeiten (§ 4 Abs. 2 Nr. 3)	3 Übungsaufgaben	P. Betsch

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

Statik starrer Körper [bauiBGP01-TM1]

Festigkeitslehre [bauiBGP02-TM2]

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200301	Dynamik (D)	V	2	W	P. Betsch
6200302	Übungen zu Dynamik (D)	Ü	2	W	Mitarbeiter/innen
6200303	Tutorien zu Dynamik (D)	T	2	W	Mitarbeiter/innen

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung, Tutorium: 90 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen: 30 Std.
Bearbeitung der Hausarbeiten: 15 Std.
Prüfungsvorbereitung: 45 Std.
Summe: 180 Std.

Inhalt

- · Kinematik des Massenpunktes
- Kinetik des Massenpunktes: Newton'sches Grundgesetz, Bewegungsgleichungen, Arbeitssatz, Energieerhaltungssatz
- · Kinetik von Massenpunktsystemen
- Impulssatz und Stoßprobleme
- Kinematik und Kinetik der ebenen Bewegung starrer K\u00f6rper: Massentr\u00e4gheitsmomente, Schwerpunktsatz und Drehimpulssatz
- Systeme starrer Körper: synthetische Vorgehensweise (Schnittprinzip) und analytische Methoden (Lagrangesche Gleichungen)
- Einführung in die Schwingungslehre: Modellbildung, freie, gedämpfte sowie erzwungene Schwingungen von Systemen mit bis zu zwei Freiheitsgraden
- Relativbewegung

Anmerkungen

ab Wintersemester 2020/21 ist die Bearbeitung von 3 Übungsaufgaben Prüfungsvorleistung

Literatur:

Gross / Hauger / Schröder Wall - Technische Mechanik 3

Modul: Hydromechanik [bauiBGP04-HYDRO]

Verantwortliche: O. Eiff

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 3. Semester

ECTS-Punkte	Level	Zyklus	Dauer
6	2	Jedes 2. Semester, Wintersemester	1

Qualifikationsziele

Die Studierenden sind in der Lage grundlegende strömungsmechanische Konzepte und Zusammenhänge benennen und erläutern zu können. Sie können diese auf einfache strömungsmechanische Probleme anwenden. Sie sind in der Lage, das im Kurs verwendete Grundlagenlehrbuch auf klassische Fragestellungen und Probleme effektiv anzuwenden und strömungsmechanische Fragen des beruflichen Alltags zu lösen.

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Hydromechanik	6	schriftlich (§ 4 Abs. 2 Nr. 1)	100 min.	O. Eiff

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Prüfungsvorleistung Hydrome- chanik	0	Hausarbeiten (§ 4 Abs. 2 Nr. 3)	3 Übungsaufgaben	O. Eiff

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

Folgende Module sollten bereits abgeschlossen worden sein:

Analysis und lineare Algebra [bauiBGP05-HM1]

Integralrechnung und Analysis mehrerer Veränderlicher [bauiBGP06-HM2]

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

Statik starrer Körper [bauiBGP01-TM1]

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200304	Hydromechanik (D)	V	2	W	O. Eiff
6200305	Übungen zu Hydromechanik (D)	Ü	2	W	V. Dupuis
6200306	Tutorien zu Hydromechanik (D)	Т	2	W	O. Eiff, V. Dupuis, Tutoren

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung, Tutorien: 90 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen: 45 Std.
Bearbeitung der Hausarbeiten: 15 Std.
Prüfungsvorbereitung: 30 Std.
Summe: 180 Std.

Inhalt

- · Eigenschaften von Fluiden
- · Hydrostatik: Druckverteilung in ruhendem Fluid, Auftrieb
- · Die Bernoulligleichung
- Kinematik: Geschwindigkeits- und Beschleunigungsfelder, Kontrollvolumen, Reynolds-Transport-Theorem
- · Analyse von finiten Kontrollvolumen: Kontinuitäts-, Impuls-, Energiegesetze
- Einführung in die differentielle Analyse von Strömungen
- · Dimensionsanalyse, Ähnlichkeitsgesetze und Modellierung
- Rohrströmungen
- Umströmung starrer Körper
- Gerinneströmungen

Anmerkungen

Literatur:

Munson, B.R., Okiishi, T.H. Huebsch, W. W., Rothmayer, A. P. (2010) Fluid Mechanics SI Version, 7th edition, Wiley. Elger, D.F., LeBret, B.A., Crowe, C.T., Roberson, J.A. (2016) Engineering Fluid Mechanics, 11th edition, International Student Version, Wiley

Modul: Analysis und Lineare Algebra [bauiBGP05-HM1]

Verantwortliche: M. Hochbruck, V. Grimm, M. Neher **Studiengang:** Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 1. Semester

ECTS-Punkte	Level	Zyklus	Dauer
9	1	Jedes 2. Semester, Wintersemester	1

Qualifikationsziele

Die Studierenden erwerben grundlegende Kenntnisse der Linearen Algebra und der Differentialrechnung einer Veränderlichen und können damit die mathematischen Grundlagen für das Verständnis von qualitativen und quantitativen Modellen aus der Ingenieurwissenschaft benennen und erläutern. Sie sind in der Lage, die behandelten Methoden bei der mathematischen Modellierung ingenieurwissenschaftlicher Probleme selbständig und sicher anzuwenden und das resultierende mathematische Problem mit den gewählten Hilfsmitteln zu lösen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Analysis und Lineare Algebra	9	schriftlich (§ 4 Abs. 2 Nr. 1)	90 min.	M. Hochbruck, V. Grimm, M. Neher

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
0131900	Höhere Mathematik I für die Fachrichtung Bauingenieurwesen (D)	V	4	W	V. Grimm
0132000	Übungen zu 0131900 (D)	Ü	2	W	V. Grimm
0190310	Tutorien zu Höhere Mathematik I für Bauingenieure (D)	Т	2	W	V. Grimm

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung, Tutorium: 120 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std. Prüfungsvorbereitung: 90 Std. Summe: 270 Std.

Inhalt

- · Grundlagen und Hilfsmittel
- · Aussagenlogik
- · Vektor- und Matrizenrechnung
- · Lineare Gleichungssysteme
- · Eigenwerte und Eigenvektoren von Matrizen

- Folgen und Reihen
- · Reellwertige Funktionen
- · Stetigkeit
- Differentialrechnung einer Veränderlichen
- Extremwerte
- Parameterdarstellung ebener Kurven
- · Approximation und Interpolation

Anmerkungen

Literatur:

T. Arens et al.: Mathematik. Spektrum-Verlag, 2008.

T. Westermann: Mathematik für Ingenieure. Springer, 5. Aufl. 2008.

Modul: Integralrechnung und Analysis mehrerer Veränderlicher [bauiBGP06-HM2]

Verantwortliche: M. Hochbruck, V. Grimm, M. Neher **Studiengang:** Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 2. Semester

ECTS-Punkte	Level	Zyklus	Dauer
9	1	Jedes 2. Semester, Sommersemester	1

Qualifikationsziele

Die Studierenden erwerben grundlegende Kenntnisse der Integralrechnung einer Veränderlichen sowie der Differential- und Integralrechnung mehrerer Veränderlichen und können damit die mathematischen Grundlagen für das Verständnis von qualitativen und quantitativen Modellen aus der Ingenieurwissenschaft benennen und erläutern. Sie sind in der Lage, die behandelten Methoden bei der mathematischen Modellierung ingenieurwissenschaftlicher Probleme selbständig und sicher anzuwenden und das resultierende mathematische Problem mit den gewählten Hilfsmitteln zu lösen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Integralrechnung und Analysis mehrerer Veränderlicher	9	schriftlich (§ 4 Abs. 2 Nr. 1)	90 min.	M. Hochbruck, V. Grimm, M. Neher

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

Das Modul Analysis und Lineare Algebra [bauiBGP05-HM1] sollte bereits belegt worden sein.

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
0181300	Integralrechnung und Analysis mehrerer Veränderlicher (D)	V	4	S	V. Grimm
0181400	Übungen zu 0181300 (D)	Ü	2	S	V. Grimm
0198135	Tutorium Höhere Mathematik (D)	Т	2	S	M. Neher, V. Grimm

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung, Tutorium: 120 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std. Prüfungsvorbereitung: 90 Std. Summe: 270 Std.

Inhalt

- · Integralrechnung einer Veränderlichen
- · Numerische Integration
- · Uneigentliche Integrale
- · Anwendungen der Integralrechnung
- Funktionen mehrerer Veränderlicher

- Differentialrechnung mehrerer Veränderlicher
- Extremwerte ohne und mit Nebenbedingungen
- · Satz von Taylor
- · Newton-Verfahren
- Kurvenintegrale
- Bereichsintegrale (auch mehrdimensional)
- Flächenintegrale 1. Art.

Anmerkungen

Literatur:

T. Arens et al.: Mathematik. Spektrum-Verlag, 2008.

T. Westermann: Mathematik für Ingenieure. Springer, 5. Aufl. 2008.

Modul: Angewandte Statistik [bauiBGP07-STATS]

Verantwortliche: F. Hase

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 2. Semester

ECTS-Punkte	Level	Zyklus	Dauer
3	2	Jedes 2. Semester, Sommersemester	1

Qualifikationsziele

Die Studierenden besitzen ein grundlegendes Verständnis über die allgemeinen Grundlagen und die Anwendung statistischer Methoden im Bereich des Bauingenieurwesens. Mit diesen Kenntnissen können sie für bestimmte fachliche Fragestellungen geeignete statistische Methoden auswählen und deren Anwendbarkeit beurteilen, eigene Berechnungen durchführen und die Ergebnisse interpretieren.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Angewandte Statistik	3	schriftlich (§ 4 Abs. 2 Nr. 1)	60 min.	F. Hase

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200204	Angewandte Statistik (D)	V/Ü	2	S	F. Hase

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen/Übungen: 15 Std. Prüfungsvorbereitung: 45 Std. Summe: 90 Std.

Inhalt

- Auswertung von Stichproben (statistische Kennwerte und Häufigkeitsverteilung)
- Beschreibung der Grundgesamtheit über Wahrscheinlichkeitsfunktionen
- · ausgewählte Wahrscheinlichkeitsfunktionen für diskrete und stetige Zufallsvariable
- Konfidenzintervalle und Hypothesentest
- · Zweidimensionale Wahrscheinlichkeitsverteilung und Regressionsanalyse

Anmerkungen

Literatur:

Kreyszig, E.: Statistische Methoden und ihre Anwendung; Verlag Vandenhoeck und Ruprecht

Plate, E. (1993): Statistik und angewandte Wahrscheinlichkeitslehre für Bauingenieure, Verlag Ernst und Sohn, Berlin

Sachs, L. (1969): Statistische Auswertemethoden; Springer-Verlag

Modul: Differentialgleichungen [bauiBGP08-HM3]

Verantwortliche: M. Hochbruck, V. Grimm, M. Neher **Studiengang:** Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 3. Semester

ECTS-Punkte Level Zyklus Dauer
4 2 Jedes 2. Semester, Wintersemester 1

Qualifikationsziele

Die Studierenden erwerben grundlegende Kenntnisse über gewöhnliche Differentialgleichungen sowie analytische und numerische Lösungsmethoden und sie können die Grundtypen partieller Differentialgleichungen zweiter Ordnung und damit die mathematischen Grundlagen für das Verständnis von qualitativen und quantitativen Modellen aus der Ingenieurwissenschaft benennen und erläutern. Sie sind in der Lage, die behandelten Methoden bei der mathematischen Modellierung ingenieurwissenschaftlicher Probleme selbständig und sicher anzuwenden und das resultierende mathematische Problem mit den gewählten Hilfsmitteln zu lösen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Differentialgleichungen	4	schriftlich (§ 4 Abs. 2 Nr. 1)	60 min.	M. Hochbruck, V. Grimm, M. Neher

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

Analysis und Lineare Algebra [bauiBGP05-HM1]

Integralrechnung und Funktionen mehrerer Veränderlicher [bauiBGP06-HM2]

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
0132200	Differentialgleichungen (D)	V	2	W	M. Neher
0132300	Übungen zu 0132200 (D)	Ü	1	W	M. Neher
0190350	Tutorien zu Differentialgleichungen (D)	Т	2	W	M. Neher, V. Grimm

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung: 45 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen: 30 Std. Prüfungsvorbereitung: 45 Std. Summe: 120 Std.

Inhalt

- · Gewöhnliche Differentialgleichungen
- · Lineare Differentialgleichungen
- · Systeme von Differentialgleichungen
- · Elementar lösbare Differentialgleichungen

- · Potenzreihenlösungen
- Numerische Behandlung gewöhnlicher Differentialgleichungen
- · Rand- und Eigenwertprobleme
- · Fourier-Reihen
- Grundtypen und Lösungsverfahren partieller Differentialgleichungen zweiter Ordnung

Anmerkungen

Literatur:

T. Arens et al.: Mathematik. Spektrum-Verlag, 2008.

T. Westermann: Mathematik für Ingenieure. Springer, 5. Aufl. 2008.

Modul: Baustoffe [bauiBGP09-BSTOF]

Verantwortliche: F. Dehn

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 2.+3. Semester

ECTS-Punkte Level Zyklus Dauer
12 2 Jedes 2. Semester, Sommersemester 2

Qualifikationsziele

Die Studierenden können die Grundbegriffe der wissenschaftlichen Werkstoffkunde sowie die spezifischen Eigenschaften zahlreicher Baustoffe benennen. Sie können damit das physikalische, chemische und mechanische Verhalten der Baustoffe beschreiben, das sich aus der Mikro- und Makrostruktur sowie aus zeit-, last- und temperaturabhängigen Veränderungen ergibt. Sie sind in der Lage, die Zusammenhänge zwischen Struktur und Eigenschaften von Baustoffen zu erläutern. Unter Anwendung der erlernten wissenschaftlichen Grundlagen können die Studierenden die Methoden zur Herstellung, Formgebung, Verarbeitung, Verfestigung und Sicherung der Dauerhaftigkeit von Baustoffen benennen und beschreiben. Des Weiteren können sie die Grundlagen zur Werkstoffauswahl für verschiedene konstruktionsspezifische Anforderungen unter Berücksichtigung der Aspekte Umwelt und Nachhaltigkeit sowie baustoffliche Phänomene anhand praktischer Beispiele angeben und begründen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Baustoffkunde	3	schriftlich (§ 4 Abs. 2 Nr. 1), Teil der Orien- tierungsprüfung (§ 8 Abs. 1)	60 min.	F. Dehn
Konstruktionsbaustoffe	9	schriftlich (§ 4 Abs. 2 Nr. 1)	120 min.	F. Dehn

Bildung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200206	Baustoffkunde (D)	V	1	S	F. Dehn
6200207	Übungen zu Baustoffkunde (D)	Ü	1	S	Assistenten
6200307	Konstruktionsbaustoffe (D)	V	4	W	F. Dehn
6200308	Übungen zu Konstruktionsbaustoffe (D)	Ü	2	W	Assistenten. F. Dehn

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Baustoffkunde Vorlesung, Übung: 30 Std. Konstruktionsbaustoffe Vorlesung, Übung: 90 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen Baustoffkunde:
Prüfungsvorbereitung Baustoffkunde:
45 Std.
Vor- und Nachbereitung Vorlesungen, Übungen Konstruktionsbaustoffe:
Prüfungsvorbereitung Konstruktionsbaustoffe:
15 Std.
45 Std.
45 Std.
120 Std.
Summe:

Inhalt

Es werden die Grundbegriffe, die Grundprinzipien des atomaren und strukturellen Aufbaus und die wesentlichen mechanischen und physikalischen Eigenschaften der Werkstoffe im Bauwesen (u. a. Stahl, Beton, keramische Werkstoffe, Gläser, Kunststoffe, Holz, bituminöse Baustoffe). Hierbei wird insbesondere auf die Herstellung und die hierzu benötigten Ausgangsstoffe sowie auf deren Einfluss auf die rheologischen, chemischphysikalischen und mechanischen Eigenschaften der Baustoffe eingegangen. Ferner werden die Schädigungsarten und -mechanismen in Verbindung mit der Dauerhaftigkeit der Baustoffe eingehend behandelt. In diesem Zusammenhang werden auch die normativen und gesetzlichen Bestimmungen bei der Prüfung, Überwachung und Zertifizierung der Baustoffe kurz vorgestellt.

Anmerkungen

Literatur:

Skriptum "Baustoffkunde und Konstruktionsbaustoffe" weitere Literaturhinweise im jeweiligen Skriptum enthalten

Modul: Baukonstruktionen [bauiBGP10-BKONS]

Verantwortliche: F. Dehn, H. Blaß

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 2.+3. Semester

ECTS-Punkte Level Zyklus Dauer
9 2 Jedes 2. Semester, Sommersemester 2

Qualifikationsziele

Die Studierenden können die normativen Anforderungen an die bauphysikalische Auslegung sowie die zugehörigen rechnerischen Nachweise der bauphysikalischen Eignung einer Baukonstruktion erläutern. Sie können bauphysikalische Problemstellungen im Wärme-, Feuchte-, Schall- und Brandschutz sowie die Anwendung der ingenieurmäßigen bauphysikalischen Beziehungen auf Bauteile bzw. Konstruktionselemente beschreiben. Sie können die Lastabtragung und den Kräftefluss in Gebäuden erläutern und sind damit in der Lage, Einwirkungen zu ermitteln und auf der Grundlage der Wahl der Lastelemente die Lasten rechnerisch bis zur Fundamentsohle zu verfolgen und einzelne einfache Bauteile nachzuweisen. Sie kennen die Art und die Funktionsweise von Tragelementen und sind in der Lage, einfache Tragwerke sinnvoll zu planen.

Erfolgskontrolle, gemäß SPO	Bauingenieurwesen SPO 2013 (B.S.	c.)
-----------------------------	----------------------------------	-----

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Bauphysik	3	schriftlich (§ 4 Abs. 2 Nr. 1), Teil der Orien- tierungsprüfung (§ 8 Abs. 1)	60 min.	F. Dehn
Baukonstruktionslehre	6	schriftlich (§ 4 Abs. 2 Nr. 1)	90 min.	H. Blaß

Bildung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200208	Bauphysik (D)	V	1	S	F. Dehn
6200209	Übungen zu Bauphysik (D)	Ü	1	S	S. Lamparter
6200310	Baukonstruktionslehre (D)	V	2	W	H. Blaß, M. Steilner
6200311	Übungen zu Baukonstruktionslehre (D)	Ü	2	W	Mitarbeiter, M. Steilner
6200312	Tutorien zu Baukonstruktionslehre (D)	Т	2	W	H. Blaß, M. Steilner

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Bauphysik Vorlesung, Übung: 30 Std. Baukonstruktionslehre Vorlesung, Übung, Tutorium: 90 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen Bauphysik: 15 Std.
Prüfungsvorbereitung Bauphysik: 45 Std.
Vor- und Nachbereitung Vorlesungen, Übungen Baukonstruktionslehre: 15 Std.
Prüfungsvorbereitung Baukonstruktionslehre: 75 Std.
Summe: 270 Std.

Inhalt

- Wärme- und Feuchtetransportmechanismen
- · winterlicher und sommerlicher Wärmeschutz
- · Schimmelpilzbildung, Tauwasserschutz
- Grundlagen des baulichen Schall- und Brandschutzes
- · Sicherheitskonzept und Grundlagen der Bemessung
- · Tragsysteme und Lastannahmen
- · Dach-, Decken- und Wandkonstruktionen
- · Gründungen und Fundamente

Anmerkungen

Literatur:

Skript "Bauphysik"

Lutz, Jenisch, Klopfer et. al: Lehrbuch der Bauphysik. Schall, Wärme, Feuchte, Licht, Brand, Klima. Teubner Verlag Hohmann, Setzer, Wehling: Bauphysikalische Formeln und Tabellen. Wärmeschutz, Feuchteschutz, Schallschutz. Werner Verlag

Gösele, Schüle, Künzel: Schall, Wärme, Feuchte. Grundlagen, neue Erkenntnisse und Ausführungshinweise für den Hochbau. Bauverlag

Skript "Baukonstruktionslehre"

Lehrbuch der Hochbaukonstruktionen (Hrsg.: Cziesielski, Erich)

Baukonstruktion im Planungsprozess (Hrsg.: Franke, Lutz)

Porenbetonhandbuch

Informationsdienst Holz, Holzbau Handbuch, Reihe 2, Teil 3 - Dachbauteile, Folge 1 - Berechnungsgrundlagen

Informationsdienst Holz, Holzbau Handbuch, Reihe 2, Teil 3 - Dachbauteile, Folge 2 - Hausdächer

Modul: Planungsmethodik [bauiBGP11-PLANM]

Verantwortliche: P. Vortisch

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 1. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	1	Jedes 2. Semester, Wintersemester	1

Qualifikationsziele

Die Studierenden können die grundlegenden Begriffe und Abläufe in Planungsprozessen am Beispiel der Raumund Verkehrsplanung erläutern. Sie können sich in planerische Verfahren als Fachexperten in die Diskussion einbringen und angemessen mit Nicht-Fachleuten kommunizieren. Sie können dabei mit Konflikten sachlich und moderierend umgehen und zwischen objektiven Sachverhalten und subjektiven Interessen trennen. Sie kennen die Grenzen der Fachplanung und akzeptieren die Entscheidungshoheit der politischen Gremien.

Erfolgskontrolle, gemaß SPO B	auingenieurwesen SPO 2013 (B.Sc.)
-------------------------------	-----------------------------------

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Planungsmethodik	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	30 min.	P. Vortisch

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200104	Planungsmethodik (D)	V/Ü	2	W	T. Soylu

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen/Übungen: 15 Std. Testatvorbereitung: 15 Std. Summe: 15 Std.

Inhalt

- Planungstypologie
- · Funktionen und Systeme gesellschaftlicher Planung
- · Handlungssequenzen und ihre Koordination
- · Ressourcenökonomie in der Planung
- · Prognosenotwendigkeit
- · Unsicherheit in der Planung

- Einfache Prognoseverfahren
- · Abgrenzung von Maßnahmen
- · Maßnahmenbewertung
- Mit/Ohne-Fall-Prinzip
- Sensitivitätsanalysen (Vorgehen und Anwendungsfälle)

Anmerkungen

Literatur:

Skriptum

Fürst, D.; Scholles, F. (Hrsg.) 2008: Handbuch Theorien und Methoden derraum-und Umweltplanung; Detmold: Dorothea Rohn

Modul: Projektmanagement [bauiBGP12-PMANG]

Verantwortliche: S. Haghsheno

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 1. Semester

ECTS-Punkte Level Zyklus Dauer
2 1 Jedes 2. Semester, Wintersemester 1

Qualifikationsziele

Die Studierenden können die Grundlagen des Projektmanagements insbesondere für den Bereich des Bauwesens erläutern.

erfolgskontrolle, gemais SPO B	auinge	meurwesen SPO 20	13 (B.SC.)	
unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Projektmanagement	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	45 min.	S. Haghsheno

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200106	Projektmanagement (D)	V/Ü	2	W	S. Haghsheno, H. Schneider

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen/Übungen: 10 Std. Testatvorbereitung: 20 Std. Summe: 60 Std.

Inhalt

In diesem Modul wird eine Einführung in das Wesen des Projektmanagements gegeben. Projektphasen, Projektorganisation und die wesentlichen Säulen des Projektmanagements nämlich Terminmanagement, Kostenmanagement und Qualitätsmanagement werden dabei vermittelt. Zudem wird auf die speziellen Gegebenheiten bei Bauprojekten eingegangen.

Anmerkungen

Literatur:

DIETHELM, G.: Projektmanagement, Band 1: Grundlagen, Verlag Neue Wirtschafts-Briefe, Herne, 2000

HAHN, R.: Projektmanagement für Ingenieure, Wiley-VCH Verlag, Weinheim, 2002

KERZNER, H.: Project Management – A Systems Approach to Planning, Scheduling and Controlling, Wiley & Sons,

2006

KOCHENDÖRFER, B., LIEBCHEN, J.: Bau-Projekt-Management, Verlag B. G. Teubner, Stuttgart, 2001

Modul: Geologie im Bauwesen [bauiBGP13-GEOL]

Verantwortliche: P. Blum

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 2. Semester

ECTS-Punkte Level Zyklus Dauer
2 1 Jedes 2. Semester, Sommersemester 1

Qualifikationsziele

Die Studierenden können grundlegende Begriffe aus der Geologie, die für das Bauwesen von Bedeutung sind, benennen. Sie können wesentliche geologische Abläufe, Zusammenhänge und Arbeitsweisen beschreiben.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)				
unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Geologie im Bauwesen	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	20 min.	J. Eckhardt

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6340101	Geologie im Bauwesen (D)	V/Ü	2	S	P. Blum, J. Eckhardt, K. Menberg

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen/Übungen: 15 Std. Testatvorbereitung: 15 Std. Summe: 60 Std.

Inhalt

- Aufbau und Dynamik der Erde
- · Kristalle, Minerale und Gesteinsarten
- · Entstehung und Klassifikation von Gesteinen
- · Baugrundeigenschaften
- · tektonische und hydrogeologische Grundlagen

Anmerkungen

Literatur:

Press, F. & Siever, R. (2003): Allgemeine Geologie, 3. Aufl., Spektrum

Fecker, E. & Reik, G. (1996): Baugeologie, 2. Aufl., F. Enke

Modul: Bauinformatik I [bauiBGP14-BINF1]

Verantwortliche: M. Uhlmann

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 1. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	1	Jedes 2. Semester, Wintersemester	1

Qualifikationsziele

Die Studierenden erhalten ein grundlegendes Verständnis für die digitale Datenverarbeitung. Sie sind in der Lage, Problemstellungen der Informationsverarbeitung selbständig zu bearbeiten, und sich in neue Computeranwendung einzuarbeiten. Sie sind befähigt, eigene Computerprogramme zu erstellen.

Enfolgeleantualle games CDO Berringenierung	CDO 0010 (D C-)
Erfolgskontrolle, gemäß SPO Bauingenieurwe	esen 5PU 2013 (B.5c.)
, ,	· · · · · · · · · · · · · · · · · · ·

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Prüfungsvorleistung Bauinformatik I	0	testierte Program- mieraufgaben (§ 4 Abs. 2 Nr. 3)	3 Aufgaben	M. Uhlmann
Bauinformatik I	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	30 min.	M. Uhlmann

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
	Bauinformatik I (D)	V	1	W	M. Uhlmann
6200115	Übungen zu Bauinformatik I (D)	Ü	1	W	M. Uhlmann

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung: 30 Std.

Selbststudium:

Ausarbeitung Programmieraufgaben: 15 Std. Testatvorbereitung: 15 Std. Summe: 60 Std.

Inhalt

- Grundlagen der digitalen Datenverarbeitung: Information und Kodierung, Datenstrukturen, Algorithmen, Rechneraufbau
- Einführung in das Programmieren: Grundlegende Elemente höherer Programmiersprachen, prozedurales Programmieren am Beispiel einer gängigen Programmiersprache
- Softwareanwendungen: Betriebssysteme, ausgewählte Computeranwendungen mit Relevanz für Ingenieure

Anmerkungen

Literatur/Lernmaterialien:

J.G. Brookshear, "Computer Science: An Overview", Pearson, 2009;

B.W. Kernighan and D.M. Ritchie, "The C Programming Language", Prentice Hall, 1988;

S. Prata, "C++ Primer Plus", Sams, 2005;

J. Liberty and B. Jones, "Teach yourself C++ in 21 days", Sams, 2005;

RRZN, "Die Programmiersprache C", 2008 (Skriptenverkauf am SCC)

RRZN, "C++ für C Programmierer", 2005 (Skriptenverkauf am SCC)

4.2 Wahlpflichtmodule Grundstudium

Modul: Schlüsselqualifikationen [bauiBFW0-SQUAL]

Verantwortliche: Studiendekan Bauingenieurwesen **Studiengang:** Bauingenieurwesen SPO 2013 (B.Sc.)

Fach:

ECTS-Punkte Level Zyklus Dauer 6 1 Jedes Semester

Qualifikationsziele

Lernziele lassen sich in drei Hauptkategorien einteilen, die sich wechselseitig ergänzen:

- 1. Orientierungswissen
 - Die Studierenden werden sich der kulturellen Prägung ihrer Position bewusst und sind in der Lage, die Sichtweisen und Interessen anderer (über Fach-, Kultur- und Sprachgrenzen hinweg) zu berücksichtigen.
 - Sie erweitern ihre Fähigkeiten, sich an wissenschaftlichen oder öffentlichen Diskussionen sachgerecht und angemessen zu beteiligen.

2. Praxisorientierung

- Die Studierenden erwerben Einsicht in die Routinen professionellen Handelns.
- · Sie entwickeln ihre Lernfähigkeit weiter.
- · Sie erweitern durch Ausbau ihrer Fremdsprachenkenntnisse ihre Handlungsfähigkeit.
- Sie können grundlegende betriebswirtschaftliche und rechtliche Sachverhalte mit ihrem Erfahrungsfeld verbinden.

3. Basiskompetenzen

- Die Studierenden können geplant und zielgerichtet sowie methodisch fundiert selbständig neues Wissen erwerben und dieses bei der Lösung von Aufgaben und Problemen einsetzen.
- Sie können die eigene Arbeit in Relation zum Stand des Wissens bewerten.
- Sie verfügen über effiziente Arbeitstechniken, können Prioritäten setzen, Entscheidungen treffen und Verantwortung übernehmen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

entsprechend den gewählten Lehrveranstaltungen, frei wählbar aus dem Angebot zu Schlüsselqualifikationen von HoC und ZAK

Bildung der Modulnote

entfällt

(nach Rücksprache mit dem Dozenten kann eine Prüfungsnote ausgewiesen werden, die jedoch nicht in die Gesamtnote eingeht)

Bedingungen

keine

Empfehlungen

keine

Arbeitsaufwand

vgl. Modulhandbuch des HoC, Veranstaltungsbeschreibungen des ZAK

Inhalt

Das House of Competence (HoC) sowie das Zentrum für Angewandte Kulturwissenschaft und Studium Generale (ZAK) bieten als Schlüsselqualifikationen eine breite Auswahl an Schwerpunkten an, in denen Veranstaltungen zur besseren Orientierung thematisch zusammengefasst sind. Die Inhalte werden in den Beschreibungen der Veranstaltungen auf den Internetseiten des HoC (http://www.hoc.kit.edu/lehrangebot.php) und des ZAK (http://www.zak.kit.edu/vorlesungsverzeichnis.php) detailliert erläutert.

Anmerkungen

Der Prüfungsausschuss kann weitere geeignete Veranstaltungen, die nicht in den oben genannten Angeboten des Hoc und ZAK enthalten sind, als Schlüsselqualifikation anerkennen. Die Sprachkurse des Sprachenzentrums (SPZ) werden in der Regel anerkannt. Weitere Informationen zur Wahl der Schlüsselqualifikationen siehe Kap. 1.8.

Modul: Bauchemie [bauiBGW1-BCHEM]

Verantwortliche: A. Bogner

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 1. Semester

ECTS-Punkte Level Zyklus Dauer
2 1 Jedes 2. Semester, Wintersemester 1

Qualifikationsziele

Die Studierenden können grundlegende Begriffe und Zusammenhänge aus der allgemeinen und anorganischen Chemie sowie spezielle Zusammenhänge, welche das Bauwesen betreffen, benennen und beschreiben.

Erfolgskontrolle, gemais SPO E	sauinge	nieurwesen SPO 20	13 (B.Sc.)	
unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Bauchemie	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	30 min.	A. Bogner

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200108	Bauchemie (D)	V	2	W	A. Bogner

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen: 15 Std. Testatvorbereitung: 15 Std. 15 Std. Summe: 60 Std.

Inhalt

- · Atombau und Periodensystem der Elemente
- · Chemische Bindungen
- Baubindemittel

Anmerkungen

Literatur:

Erwin Riedel: Allgemeine und Anorganische Chemie, Gruyter Verlag

Modul: Umweltphysik / Energie [bauiBGW3-UPHYS]

Verantwortliche: F. Nestmann

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 1. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	1	Jedes 2. Semester, Wintersemester	1

Qualifikationsziele

Die Studierenden sind in der Lage, Umweltphänomene zu beschreiben und deren Nutzung im Sinne von Energiegewinnung zu erläutern.

Erfolgskontrolle, gemäß SPO E	Bauinge	nieurwesen SPO 20	113 (B.Sc.)	
unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Umweltphysik / Energie	2	testiertes Übungsblatt (§ 4 Abs. 2 Nr. 3)	schriftliche Aus- arbeitung ca. 10 Seiten	F. Nestmann

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200112	Umweltphysik / Energie (D)	V	2	W	F. Nestmann

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen/Bearbeitung Übungsblätter: 30 Std. Summe: 60 Std.

Inhalt

- Energiebegriff
- Regenerative und nicht-regenerative Energieträger und natürliche Ressourcen
- Energiebilanzen
- Stromerzeugung: Wasserkraft, Windenergie, Solarenergie, Geothermische Kraftwerke, Konventionelle Kraftwerke
- Kontrolle, Regelung und Steuerung von Energieerzeugungsanlagen
- Transportphänomene in der Umwelt, Physik der Atmosphäre
- · Vorstellung aktueller Forschungsvorhaben am KIT

Modul: Technisches Darstellen [bauiBGW5-TECDS]

Verantwortliche: R. Roos

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 1. Semester

ECTS-Punkte Level Zyklus Dauer
2 1 Jedes 2. Semester, Wintersemester 1

Qualifikationsziele

Die Studierende können Darstellungstechniken für ingenieurrelevante Fragestellungen einsetzen und im Rahmen von schriftlichen Ausarbeitungen, beim Erstellen von Unterlagen für Öffentlichkeitsarbeit sowie für Präsentationen nutzen. Sie können selbstorganisiert arbeiten und verfügen über organisatorische und didaktische Kompetenzen bezogen auf Teamarbeit und Präsentationen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Technisches Darstellen	2	3 Hausübungen, 1 Gruppenübung mit Präsentation (§ 4 Abs. 2 Nr. 3)	Präsentation 10 min.	R. Roos

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200116	Technisches Darstellen (D)	V	2	W	R. Roos

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung: 5 Std. 3 Hausübungen (ohne Anteil aus Übung): 15 Std. Gruppenübung (Anteil pro Person): 15 Std. Summe: 65 Std.

Inhalt

In diesem Modul werden die theoretischen Grundlagen zur Zentralperspektive, zur 2-Tafel-Projektion und zur kotierten Projektion, Darstellungstechniken (Skizze, Freihandzeichnung, Modell u.a.), Darstellungsweisen (freihand, DV-gestützt) sowie Methoden der Präsentation vorgestellt und teilweise geübt.

Modul: Laborpraktikum [bauiBGW6-LABOR]

Verantwortliche: P. Vortisch

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 1. Semester

ECTS-Punkte Level Zyklus Dauer
2 1 Jedes 2. Semester, Wintersemester 1

Qualifikationsziele

Die Studierenden können Laborversuche durchführen und beachten dabei wissenschaftliche Grundsätze. Je nach den ausgewählten Versuchen können sie die dabei verwendeten Messmethoden einsetzen und sind in der Lage, Messergebnisse zu analysieren, zu beschreiben und kritisch zu hinterfragen.

rfolgskontrolle, gemäß SPO B				
unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Laborpraktikum	2	Versuchsausarbeitungen zu 4 Versuchen in 4 ausgewählten Instituten (§ 4 Abs. 2 Nr. 3)	ca. 2-4 Seiten je Ausarbeitung	Mitarbeiter der beteiligten Institute

Bildung der Modulnote

entfällt

Bedingungen

Für einige Versuche sind Gruppengrößen vorgegeben (Mindest- und Maximalteilnehmerzahl).

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200118	Laborpraktikum (D)	Р	2	W	P. Vortisch, Mitarbeiter der beteiligten Institute

Arbeitsaufwand

Präsenzzeit:

Laborarbeit (4 x 2 x 4 Std.): 32 Std.

Selbststudium:

Versuchsausarbeitung: 24 Std. Summe: 56 Std.

Inhalt

aus allen Schwerpunkten werden in mehreren Blöcken Laborpraktika angeboten:

- · Konstruktiver Ingenieurbau
- · Wasser und Umwelt
- · Mobilität- und Infrastruktur
- · Technologie und Management im Baubetrieb
- · Geotechnisches Ingenieurwesen

Modul: Bauinformatik II [BauiBGW7-BINF2]

Verantwortliche: M. Uhlmann

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 4. Semester, Wahlpflicht 2. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	2	Jedes 2. Semester, Sommersemester	1

Qualifikationsziele

Die Studierenden können die für die digitale Datenverarbeitung verwendeten Algorithmen beschreiben. Sie sind in der Lage, ihre Programmierkenntnisse über die objektorientierte Programmierung an praktischen Beispielen anzuwenden.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Prüfungsvorleistung Bauinformatik II (D)	0	testierte Program- mieraufgaben (§ 4 Abs. 2 Nr. 3)	3 Aufgaben	M. Uhlmann
Bauinformatik II (D)	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	30 min.	M. Uhlmann

Bildung der Modulnote

entfällt

Bedingungen

Teilnahme an "Bauinformatik I" [bauiBGP14-BINF1]

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
	Bauinformatik II Übungen zu Bauinformatik II	V Ü	1	S S	M. Uhlmann M. Uhlmann

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung: 30 Std.

Selbststudium:

Ausarbeitung Programmieraufgaben: 15 Std. 15 Std. 15 Std. Summe: 60 Std.

Inhalt

- Einführung in das objekt-orientierte Programmieren: grundlegende Elemente objekt-orientierter Programmiersprachen und deren Realisierung in einer weit verbreiteten höheren Programmiersprache
- Übungen zur Implementierung von gängigen Algorithmen, Anwendungen auf Probleme im Ingenieurswesen

Anmerkungen

Das Modul kann ab dem SoSe 2016 als Wahlpflichtmodul sowohl im Grundstudium als auch im Grundfachstudium

gewählt werden.

I ita water will a ware a tank ali a m

Literatur/Lernmaterialien:

- S. Prata, "C++ Primer Plus", Sams, 2005;
- J. Liberty and B. Jones, "Teach yourself C++ in 21 days", Sams, 2005;
- R. Lischner, "C++ in a Nutshell", O'Reilly, 2003;

RRZN, "C++ für C Programmierer", 2005 (Skriptenverkauf am SCC)

4.3 Pflichtmodule Grundfachstudium

Modul: Baustatik [bauiBFP1-BSTAT]

Verantwortliche: W. Wagner

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 4.+5. Semester

ECTS-Punkte	Level	Zyklus	Dauer
10	3	Jedes 2. Semester, Sommersemester	2

Qualifikationsziele

Die Studierenden können die wesentlichen Schritte zur Modellierung und Berechnung von 2D- und 3D- Stabtragwerken zuordnen und anwenden. Damit sind sie in der Lage, den Verschiebungszustand und die Verteilung der Schnittgrößen für die Bemessung und Konstruktion entsprechender Bauwerke zu berechnen und zu interpretieren. Die Studierenden praktizieren logisches und abstraktes Denken durch Herleitung und Anwendung der baustatischen Methoden. Sie transferieren dieses Wissen bei der Anwendung computergestützter Berechnungen und beurteilen deren Ergebnisse.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Baustatik I	5	schriftlich (§ 4 Abs. 2 Nr. 1)	120 min.	W. Wagner
Baustatik II	5	schriftlich (§ 4 Abs. 2 Nr. 1)	120 min.	W. Wagner

Bildung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Bedingungen

keine

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

Statik starrer Körper [bauiBGP01-TM1]

Festigkeitslehre [bauiBGP02-TM2]

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200401	Baustatik I (D)	V	2	S	W. Wagner
6200402	Übungen zu Baustatik I (D)	Ü	2	S	J. Geiger
6200403	Tutorien zu Baustatik I (D)	Т	1	S	J. Geiger
6200501	Baustatik II (D)	V	2	W	W. Wagner
6200502	Übungen zu Baustatik II (D)	Ü	2	W	L. Panther
6200503	Tutorien zu Baustatik II (D)	Т	1	W	L. Panther

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Baustatik I Vorlesung, Übung, Tutorium: 75 Std.
Baustatik II Vorlesung, Übung, Tutorium: 75 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen Baustatik I:
Prüfungsvorbereitung Baustatik I:
Vor- und Nachbereitung Vorlesungen, Übungen Baustatik II:
Prüfungsvorbereitung Baustatik II:

Summe:

15 Std.
60 Std.
15 Std.
60 Std.
300 Std.

Inhalt

Berechnung stat. best. und unbest. ebener und räumlicher Stabtragwerke:

- · Idealisierungen zur Modellbildung
- Tragverhalten
- Schnittgrößen
- Diskrete Verschiebungen
- Kontrollen
- Symmetrie
- · Anwendung von Statikprogrammen
- Kraftgrößenverfahren
- · Verschiebungsgrößenverfahren
- Einlusslinien
- Finite Elemente (FE) Methode am Beispiel des ebenen Fachwerkes
- Vorspannung

Ausblick: Flächentragwerke, FE-Modellierung, Nichtlinearitäten

Anmerkungen

Literatur:

Vorlesungsmanuskript Baustatik I

Vorlesungsmanuskript Baustatik II

Krätzig, W.B., Harte, R., Meskouris, K., Wittek, U. (1999): Tragwerke 1 - Theorie und Berechnungsmethoden statisch bestimmter Stabtragwerke, Springer.

Krätzig, W.B., Harte, R., Meskouris, K., Wittek, U. (2005): Tragwerke 2 - Theorie und Berechnungsmethoden statisch unbestimmter Stabtragwerke, Springer.

Wunderlich, W., Kiener, G. (2004): Statik der Stabtragwerke, Teubner.

Modul: Grundlagen des Stahlbetonbaus [bauiBFP2-KSTR.A]

Verantwortliche: L. Stempniewski

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 5.+6. Semester

ECTS-Punkte	Level	Zyklus	Dauer
6	3	Jedes 2. Semester, Wintersemester	2

Qualifikationsziele

Die Studierenden können das prinzipielle Tragverhalten des Verbundwerkstoffs Stahlbeton erläutern. Sie vermögen es die bereits erworbenen Kenntnisse aus den Modulen im Bereich der "Mechanik", "Baustatik", "Baustoffe" und "Baukonstruktionen" zu bündeln, auf den Werkstoff Stahlbeton zu übertragen und anzuwenden. Somit sind sie in der Lage, einfache Tragwerke für den Grenzzustand der Tragfähigkeit anhand der aktuellen Normung zu bemessen und Bauteile hinsichtlich der Bewehrungsführung zu konstruieren.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Grundlagen des Stahlbeton- baus I	4	schriftlich (§ 4 Abs. 2 Nr. 1)	90 min.	L. Stempniewski
Grundlagen des Stahlbetonbaus II	2	schriftlich (§ 4 Abs. 2 Nr. 1)	60 min.	L. Stempniewski

Bildung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Bedingungen

Fachprüfungen in Mechanik, Mathematik, Baukonstruktionen, bis auf maximal zwei Module

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

Baustoffe [bauiBGP09-BSTOF]

Baustatik [bauiBFP1-BSTAT]

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200509	Grundlagen des Stahlbetonbaus I (D)	V	2	W	L. Stempniewski
6200510	Übungen zu Grundlagen des Stahlbetonbaus I (D)	Ü	1	W	A. Manny, S. Labbé Romo
6200601	Grundlagen des Stahlbetonbaus II (D)	V/Ü	2	S	L. Stempniewski

Arbeitsaufwand

Präsenzzeit	1.SWS =	1 Std	x 15	Wo.	١.

Grundlagen des Stahlbetonbaus I Vorlesung, Übung:

Grundlagen des Stahlbetonbaus II Vorlesung/Ubung:	30 Std.
Selbststudium:	
Vor- und Nachbereitung Vorlesungen, Übungen Grundlagen des Stahlbetonbaus I:	15 Std.
Prüfungsvorbereitung Grundlagen des Stahlbetonbaus I:	45 Std.
Vor- und Nachbereitung Vorlesungen/Übungen Grundlagen des Stahlbetonbaus II:	15 Std.
Prüfungsvorbereitung Grundlagen des Stahlbetonbaus II:	30 Std.
Summe:	180 Std.

45 Std.

Inhalt

- Materialeigenschaften und Verbundverhalten von Beton und Stahl
- Bemessung typischer Stahlbetonquerschnitte für Biegung mit Längskraft sowie Querkraft

Modul: Grundlagen des Stahl- und Holzbaus [bauiBFP3-KSTR.B]

Verantwortliche: H. Blaß, T. Ummenhofer

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 5. Semester

ECTS-Punkte	Level	Zyklus	Dauer
9	3	Jedes 2. Semester, Wintersemester	1

Qualifikationsziele

Die Studierenden können die grundlegenden Eigenschaften der Konstruktionsbaustoffe Stahl und Holz beschreiben. Sie können die Systemtragwirkung von Konstruktionen aus Stahl und Holz analysieren und bewerten. Die Studierenden können grundlegende Bauteile und Verbindungen bemessen und konstruieren. Sie sind in der Lage stabilitätsgefährdende Bauteile zu bemessen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Grundlagen des Stahlbaus	4,5	schriftlich (§ 4 Abs. 2 Nr. 1)	70 min.	T. Ummenhofer
Grundlagen des Holzbaus	4,5	schriftlich (§ 4 Abs. 2 Nr. 1)	60 min.	H. Blaß

Bildung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Bedingungen

Fachprüfungen in Mechanik, Mathematik, Baukonstruktionen, bis auf maximal zwei Module

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200504	Grundlagen des Stahlbaus (D)	V	2	W	T. Ummenhofer, A. Kuon
6200505	Übungen zu Grundlagen des Stahl- baus (D)	Ü	1	W	A. Kuon
6200507	Grundlagen des Holzbaus (D)	V	2	W	H. Blaß
6200508	Übungen zu Grundlagen des Holz- baus (D)	Ü	1	W	Assistenten, H. Blaß

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):	
Grundlagen des Stahlbaus Vorlesung, Übung:	45 Std.
Grundlagen des Holzbaus Vorlesung, Übung:	45 Std.
Selbststudium:	
Vor- und Nachbereitung Vorlesungen, Übungen Grundlagen des Stahlbaus:	30 Std.
Prüfungsvorbereitung Grundlagen des Stahlbaus:	60 Std.
Vor- und Nachbereitung Vorlesungen, Übungen Grundlagen des Holzbaus:	30 Std.
Prüfungsvorbereitung Grundlagen des Holzbaus:	60 Std.
Summe:	270 Std.

Inhalt

Grundlagen des Stahlbaus:

- · Werkstoffe
- · Konstruktionselemente und Tragsysteme
- · zug- und biegebeanspruchte Bauteile
- Verbindungen im Stahlbau
- · Stabilitätsnachweise

Grundlagen des Holzbaus:

- Grundlagen: Beispiele von Holzbauten, Holz als Baustoff, Vollholz und BSH Festigkeitsklassen, Bemessung nach Grenzzuständen und Sicherheitsmethode, Einfluss des Volumens und der Spannungsverteilung auf die Festigkeit
- Bemessung von Bauteilen: Zug und Druck, Biegung, Schub und Torsion, Druckstäbe und Knicklängen, Pultdachträger, Gekrümmte Träger und Satteldachträger, Aussteifungsverbände
- Verbindungen: Mechanische Holzverbindungen Allgemeines, Verbindungen mit stiftförmigen Verbindungsmitteln Theorie, Nagelverbindungen, Bolzen- und Stabdübelverbindungen, Holzschraubenverbindungen

Anmerkungen

Literatur:

Skript "Grundlagen des Stahlbaus", Versuchsanstalt Stahl, Holz und Steine, KIT

DIN EN 1993-1-1, Dezember 2010: Eurocode 3: Bemessung und Konstruktion von Stahl-bauten – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau: Beuth Verlag GmbH, Berlin.

DIN EN 1993-1-5, Dezember 2010: Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-5: Plattenförmige Bauteile: Beuth Verlag GmbH, Berlin.

DIN EN 1993-1-8, Dezember 2010: Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-8: Bemessung von Anschlüssen: Beuth Verlag GmbH, Berlin.

Blaß, H.J.; Görlacher, R.; Steck, G. (Herausgeber) Holzbauwerke STEP 1 – Bemessung und Baustoffe. Fachverlag Holz, Düsseldorf, 1995 (ISSN-Nr. 04462114)

Modul: Wasser und Umwelt [bauiBFP4-WASSER]

Verantwortliche: F. Seidel, E. Zehe, S. Fuchs

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 5.+6. Semester

ECTS-Punkte	Level	Zyklus	Dauer
12	3	Jedes 2. Semester, Wintersemester	2

Qualifikationsziele

Die Studierenden können die wesentlichen Vorgänge, auf denen der Wasserkreislauf auf der Landoberfläche beruht, sowie die wasserwirtschaftlichen und siedlungswasserwirtschaftlichen Aufgaben eines planenden Ingenieurs beschreiben. Sie können erläutern, in welcher Weise insbesondere anthropogen bedingte Veränderungen auf hydrologische Prozesse einwirken, diese verändern und welche Anforderungen dies für die wasserwirtschaftlichen und siedlungswasserwirtschaftlichen Aufgaben bedeutet. Sie sind in der Lage, wasserwirtschaftliche Maßnahmen und siedlungswasserwirtschaftliche Anlagen für spezifische Einsatzbereiche und Funktionen zu planen und zu bemessen, indem sie Daten und Informationen bewerten und in den Kontext ihrer Aufgaben einordnen können.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Wasser und Umwelt	12	schriftlich (§ 4 Abs. 2 Nr. 1)	180 min.	F. Nestmann, E. Zehe, S. Fuchs

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

Fachprüfungen in Mechanik, Mathematik, Baukonstruktionen, bis auf maximal zwei Module

Empfehlungen

Das Modul Umweltphysik / Energie sollte bereits belegt worden sein.

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200511	Wasserbau und Wasserwirtschaft (D)	V	2	W	F. Nestmann
6200512	Übungen zu Wasserbau und Wasserwirtschaft (D)	Ü	1	W	F. Seidel
6200513	Hydrologie (D)	V	2	W	J. Wienhöfer, E. Zehe
6200514	Übungen zu Hydrologie (D)	Ü	1	W	J. Wienhöfer, E. Zehe
6200603	Siedlungswasserwirtschaft (D)	V/Ü	3	S	S. Fuchs

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):	
Wasserbau und Wasserwirtschaft Vorlesung, Übung:	45 Std.
Hydrologie Vorlesung, Übung:	45 Std.
Siedlungswasserwirtschaft Vorlesung, Übung:	45 Std.
Selbststudium:	
Vor- und Nachbereitung Vorlesungen, Übungen Wasserbau und Wasserwirtschaft:	45 Std.
Vor- und Nachbereitung Vorlesungen, Übungen Hydrologie:	45 Std.
Vor- und Nachbereitung Vorlesungen, Übungen Siedlungswasserwirtschaft:	45 Std.
Prüfungsvorbereitung:	90 Std.
Summe:	360 Std.

Inhalt

Das Modul vermittelt die für das Bauingenieurwesen relevanten Grundlagen im Bereich Wasser. Dabei werden sowohl die zugrundeliegenden natürlichen Prozesse als auch die technischen Aspekte behandelt. Wichtige Themen sind:

- Prozesse des Wasserkreislaufs und der Wasserbilanz
- · Abfluss und Abflussbildung
- · Bodenhydrologie
- · Modellkonzepte für Einzugsgebietshydrologie
- · Grundlagen und Anwendungen der Gerinnehydraulik
- · Feststofftransport in Fließgewässern
- Anlagen zur Abflussregelung / Wasserbauwerke
- · Prozesse in der Siedlungswasserwirtschaft
- Siedlungsentwässerung
- · Regenwasserbehandlung
- · Abwasserreinigung

Anmerkungen

Ab dem Sommersemester 2017 ist die Prüfungsdauer für die schriftliche Prüfung 180 min.

Modul: Mobilität und Infrastruktur [bauiBFP5-MOBIN]

Verantwortliche: R. Roos

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 4. Semester

ECTS-Punkte	Level	Zyklus	Dauer
12	3	Jedes 2. Semester, Sommersemester	1

Qualifikationsziele

Die Studierenden können die grundlegenden Methoden und Verfahren zur Bearbeitung allgemeiner Fragestellungen in der Raumplanung, im Verkehrswesen und im Straßenwesen benennen und erläutern. Sie sind in der Lage, bezogen auf die genannten Fachgebiete grundlegende Berechnungen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen. Weiterhin können sie fachbezogen argumentieren, Lösungen finden, entwickeln und bewerten.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Mobilität und Infrastruktur	12	schriftlich (§ 4 Abs. 2 Nr. 1)	150 min.	R. Roos, P. Vortisch
The sale of the sa		A .1	De college	Ol dividable
unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Studienarbeiten in Verkehrswesen, Prüfungsvorleistung	0	Studienarbeiten (§ 4 Abs. 2 Nr. 3)	3 schriftliche Aus- arbeitungen je ca. 5-8 Seiten	P. Vortisch
Studienarbeiten in Straßenwesen, Prüfungsvorleistung	0	Studienarbeiten (§ 4 Abs. 2 Nr. 3)	4 schriftliche Ausarbeitungen (inkl. Planunterlagen) je ca. 5-8 Seiten	R. Roos

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200404	Raumplanung und Planungsrecht (D)	V	2	S	S. Wilske
6200405	Übungen zu Raumplanung und Pla- nungsrecht (D)	Ü	1	S	Mitarbeiter/innen, S. Wilske, Mitarbeiter/innen
6200406	Verkehrswesen (D)	V	2	S	P. Vortisch
6200407	Übungen zu Verkehrswesen (D)	Ü	1	S	Mitarbeiter/innen, P. Vortisch
6200408	Bemessungsgrundlagen im Straßenwesen (D)	V	2	S	R. Roos, M. Zimmer- mann
6200409	Übungen zu Bemessungsgrundlagen im Straßenwesen (D)	Ü	1	S	P. Plachkova-Dzhurova, M. Zimmermann

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):	
Raumplanung und Planungsrecht Vorlesung, Übung:	45 Std.
Verkehrswesen Vorlesung, Übung:	45 Std.
Bemessungsgrundlagen im Straßenwesen Vorlesung, Übung:	45 Std.
Selbststudium:	
Vor- und Nachbereitung Vorlesung, Übung Raumplanung und Planungsrecht:	30 Std.
Vor- und Nachbereitung Vorlesung, Übung Verkehrswesen:	15 Std.
Vor- und Nachbereitung Vorlesung, Übung Bemessungsgrundlagen im Straßenwesen:	15 Std.
Anfertigung von Studienarbeiten:	80 Std.
Prüfungsvorbereitung:	80 Std.
Summe:	355 Std.

Inhalt

Das Modul gliedert sich inhaltlich in 3 Teile:

Der Modulteil Raumplanung und Planungsrecht beinhaltet grundlegende Aufgaben und Fragestellungen unterschiedlicher Planungsebenen wie Flächennutzungen und -konflikte, Erschließung und Infrastrukturen einschließlich deren Kosten, Bauleit-, Regional- und Landesplanung sowie Planung auf europäischer Ebene.

Die Grundlagen der Verkehrsplanung (Analysekonventionen, Erhebungen, Algorithmen) sowie die Grundlagen des Verkehrsingenieurwesens werden im Modulteil Verkehrswesen behandelt.

Der Modulteil Bemessungsgrundlagen im Straßenwesen umfasst die Straßennetzgestaltung, die Trassierung von Straßen einschließlich der fahrdynamischen Grundlagen, den Erdbau sowie Fahrbahnkonstruktionen und deren Bemessung.

Modul: Technologie und Management im Baubetrieb [bauiBFP6-TMB]

Verantwortliche: S. Haghsheno

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 4. Semester

ECTS-Punkte Level Zyklus Dauer
11 3 Jedes 2. Semester, Sommersemester 1

Qualifikationsziele

Nach dem erfolgreichen Bestehen des Moduls Technologie und Management im Baubetrieb sind die Studierenden in der Lage gängige wirtschaftliche und technische Problemstellungen aus dem Baubetrieb zu bearbeiten. Sie können verschiedene Bauverfahren hinsichtlich des Einsatzes von Baumaschinen und Arbeitsweisen beschreiben, vergleichen und bewerten. Des Weiteren sind sie in der Lage, mit gängigen Bemessungshilfen grundlegende Leistungsberechnungen aus den verschiedenen Fachbereichen des Baubetriebs durchzuführen und die Vorgänge bei der Kalkulation von Bauvorhaben zu erläutern. Überdies können die Studierenden wesentliche Berechnungen des Rechnungswesens durchführen und Investitionsalternativen anhand geeigneter Verfahren der Investitionsrechnung auswählen. Ferner verstehen sie die grundlegenden wirtschaftlichen und vertraglichen Aspekte von Immobilien und deren Betriebskonzepte und können diese beschreiben.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Technologie und Management im Baubetrieb	11	schriftlich (§ 4 Abs. 2 Nr. 1)	150 min.	S. Haghsheno, S. Gentes, K. Lennerts

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200410	Baubetriebstechnik (D) (D)	V	3	S	S. Gentes, S. Haghshe- no, H. Schneider
6200411	Übungen zu Baubetriebstechnik (D)	Ü	1	S	S. Gentes, S. Haghs- heno, H. Schneider, D. Waleczko
6200412	Baubetriebswirtschaft (D)	V	2	S	K. Lennerts, H. Schmidt- Bäumler
6200413	Übungen zu Baubetriebswirtschaft (D)	Ü	1	S	K. Lennerts, H. Schmidt- Bäumler
6200414	Facility- und Immobilienmanagement (D)	V	1	S	K. Lennerts, H. Schmidt- Bäumler

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):	
Baubetriebstechnik Vorlesung, Übung:	60 Std.
Baubetriebswirtschaft Vorlesung, Übung:	45 Std.
Facility- und Immobilienmanagement Vorlesung:	15 Std.
Selbststudium:	
Vor- und Nachbereitung Vorlesungen, Übungen Baubetriebstechnik:	45 Std.
Vor- und Nachbereitung Vorlesungen, Übungen Baubetriebswirtschaft:	30 Std.
Vor- und Nachbereitung Vorlesungen Facility- und Immobilienmanagement:	10 Std.
Prüfungsvorbereitung:	125 Std.
Summe:	330 Std.

Inhalt

- Projektphasen vor Baubeginn und Baukalkulation
- · Arbeitsvorbereitung und Bauausführung
- Bauverfahren im Hoch-, Tief-, und Erdbau
- Grundlagen der Maschinen- und Baumaschinentechnik
- · Rechnungswesen und Bilanzierung
- Finanzierung und Investition
- Bauvertragsrecht HOAI / VOB
- Grundlagen des Immobilien- und Facility Management

Modul: Geotechnisches Ingenieurwesen [bauiBFP7-GEOING]

Verantwortliche: N. N.

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 4.+5. Semester

ECTS-Punkte	Level	Zyklus	Dauer
9	3	Jedes 2. Semester, Sommersemester	2

Qualifikationsziele

Die Studierenden haben ein wissenschaftlich fundiertes Verständnis des Werkstoffes Boden hinsichtlich seiner Erscheinungsformen und des mechanischen Verhaltens. Sie sind in der Lage, letzteres auf der Basis von bodenmechanischen und bodenhydraulischen Modellen zu beschreiben, zu kategorisieren und entsprechende Feld- und Laborversuche zielgerichtet auszuwerten.

Aufgrund ihrer Kenntnis gebräuchlicher geotechnischer Bauweisen können sie für Standardaufgaben wie Gebäudegründungen, Baugrubenverbauten und Tunnel an die jeweiligen Baugrund- und Grundwasserverhältnisse angepasste geotechnische Konstruktionen eigenständig auswählen, bemessen und deren Bauablauf beschreiben. Sie sind weiter in der Lage, für diese geotechnischen Konstruktionen sowie für natürliche Böschungen Standsicherheits- und Gebrauchstauglichkeitsuntersuchungen selbständig durchzuführen und die Ergebnisse kritisch zu bewerten.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

benotete Prüfungsleistung	LP	Art	Dauer / Umfang	Prüfungsverantwortliche
Geotechnisches Ingenieurwesen	9	schriftlich (§ 4 Abs. 2 Nr. 1)	150 min.	N. N.

Bildung der Modulnote

Modulnote ist Note der Prüfung

Bedingungen

Fachprüfungen in Mechanik, Mathematik, Baukonstruktionen, bis auf maximal zwei Module

Empfehlungen

Das Modul Geologie im Bauwesen [bauiBGP13-GEOL] sollte bereits abgeschlossen sein.

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200415	Grundlagen der Bodenmechanik (D)	V	2	S	A. Niemunis
6200416	Übungen zu Grundlagen der Boden- mechanik (D)	Ü	2	S	A. Niemunis, N. N.
6200417	Tutorien zu Grundlagen der Bodenme- chanik (D)	Т	2	S	Mitarbeiter/innen
6200515	Grundlagen des Grundbaus (D)	V	2	W	P. Kudella
6200516	Übungen zu Grundlagen des Grundbaus (D)	Ü	1	W	P. Kudella
6200517	Tutorien zu Grundlagen des Grundbaus (D)	Т	2	W	N. N.

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Grundlagen der Bodenmechanik Vorlesung, Übung, Tutorium: 90 Std. Grundlagen des Grundbaus Vorlesung, Übung, Tutorium: 75 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesung, Übung Grundlagen der Bodenmechanik:
Vor- und Nachbereitung Vorlesung, Übung Grundlagen des Grundbaus:
Prüfungsvorbereitung:

10 Std.
10 Std.
100 Std.
285 Std.

Inhalt

Das Modul vermittelt theoretisches Grundwissen zum Bodenverhalten und demonstriert dessen praktische Anwendung bei der Bemessung der gängigsten geotechnischen Konstruktionen. Behandelt werden:

- · Normen, Richtlinien und Sicherheitsnachweise im Erd- und Grundbau
- Baugrunderkundung, Bodenklassifizierung, Bodeneigenschaften und Bodenkenngrößen
- Durchlässigkeit, Sickerströmung und Grundwasserhaltungen
- Spannungsausbreitung im Baugrund, Kompressionsverhalten und Konsolidierung
- · Scherfestigkeit der Erdstoffe, Standsicherheit von Böschungen und Gründungen
- Bemessung und Setzungsberechnung von Flachgründungen
- Erddruck und Erdwiderstand, Bemessung von Stützbauwerken und Baugrubenverbauten
- · Pfahlgründungen, Tiefgründungen und Gründungen im offenen Wasser
- · Verfahren zur Baugrundverbesserung
- · Einführung in den bergmännischen Tunnelbau

Anmerkungen

Die beiden Lehrveranstaltungen verstehen sich als thematische Einheit. Teilprüfungen sind daher nicht möglich. Vorlesungsbegleitend werden Tutorien zu "Grundlagen der Bodenmechanik" (6200418) und zu "Grundlagen des Grundbaus" (6200517) angeboten, deren Besuch empfohlen wird. Literatur:

Triantafyllidis, Th. (2014): Arbeitsblätter und Übungsblätter Bodenmechanik

Triantafyllidis, Th. (2011): Arbeitsblätter und Übungsblätter Grundbau

Gudehus, G (1981): Bodenmechanik, F. Enke

Grundwissen "Der Ingenieurbau" (1995) Bd. 2: Hydrotechnik – Geotechnik, Ernst u. Sohn

4 MODULE 4.4 Modul Bachelorarbeit

4.4 Modul Bachelorarbeit

Modul: Bachelorarbeit [bauiBSC-THESIS]

Verantwortliche: Studiendekan Bauingenieurwesen **Studiengang:** Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Pflicht 6. Semester

ECTS-Punkte Level Zyklus Dauer
11 3 Einmalig

Qualifikationsziele

Die/Der Studierende ist in der Lage, eine Problemstellung aus ihrem/seinem Fach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten. Hierzu kann sie/er Literatur selbstständig auswählen, eigene Lösungswege finden, die Ergebnisse diskutieren und diese mit dem Stand der Forschung vergleichen. Sie/Er ist weiterhin in der Lage, die wesentlichen Inhalte und Ergebnisse übersichtlich und klar strukturiert in einer schriftlichen Arbeit zusammenzufassen und in einem kurzen Vortrag vorzustellen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

Schriftliche Arbeit mit 3 Monaten Bearbeitungsdauer und abschließendem Vortrag, gemäß SPO § 11

Bildung der Modulnote

Die Note ergibt sich aus der Bewertung der Bachelorarbeit und des abschließenden Vortrags, der in die Bewertung eingeht.

Bedingungen

Bescheinigung über erfolgreich abgeleistete praktische Tätigkeit nach SPO § 12, erfolgreiche Ablegung aller Module des Grundstudiums nach SPO § 17 Abs. 2

Empfehlungen

keine

Arbeitsaufwand

ca. 2 Monate Nettobearbeitungszeit innerhalb 3 Monaten Bearbeitungszeitraum

Inhalt

Die Bachelorarbeit ist eine erste größere schriftliche Arbeit und beinhaltet die theoretische oder experimentelle Bearbeitung einer Problemstellung aus einem Teilbereich des Bauwesens nach wissenschaftlichen Methoden. Der thematische Inhalt der Bachelorarbeit ergibt sich durch die Wahl des Fachgebiets, in dem die Arbeit angefertigt wird. Die/Der Studierende darf Vorschläge für die Themenstellung einbringen.

Anmerkungen

Informationen zum Vorgehen bzgl. Zulassung und Anmeldung der Masterarbeit siehe Kap. 1.7

4.5 Wahlpflichtmodule Grundfachstudium

Modul: Partielle Differentialgleichungen [bauiBFW1-PDGL]

Verantwortliche: M. Hochbruck, V. Grimm, M. Neher **Studiengang:** Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 4. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	3	Jedes 2. Semester, Sommersemester	1

Qualifikationsziele

Die Studierenden erwerben grundlegende Kenntnisse über Vektoranalysis und partielle Differentialgleichungen sowie analytische und numerische Lösungsmethoden und können damit die mathematischen Grundlagen für das Verständnis von qualitativen und quantitativen Modellen aus der Ingenieurwissenschaft benennen und erläutern. Sie sind in der Lage, die behandelten Methoden bei der mathematischen Modellierung ingenieurwissenschaftlicher Probleme selbständig und sicher anzuwenden und das resultierende mathematische Problem mit den gewählten Hilfsmitteln zu lösen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Partielle Differentialgleichungen	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	60 min.	M. Neher

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

Das Modul Differentialgleichungen [bauiBGP08-HM3] sollte bereits belegt worden sein.

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
	Partielle Differentialgleichungen (D) Übungen zu 0181600 (D)	V Ü	1	S S	M. Neher M. Neher

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen: 10 Std. Testatvorbereitung: 20 Std. Summe: 60 Std.

Inhalt

- · Vektorfelder
- Kurven- und Flächenintegrale 2. Art
- Integralsätze der Vektoranalysis

- Differenzenverfahren für parabolische Differentialgleichungen
- Numerische Behandlung hyperbolischer Probleme
- Methode der Finiten Elemente

Modul: Einführung in die Kontinuumsmechanik [bauiBFW2-EKM]

Verantwortliche: T. Seelig

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 6. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	3	Jedes 2. Semester, Sommersemester	1

Qualifikationsziele

Unter Verwendung der Grundlagen zur Analyse mehrachsiger Belastungs- und Verformungszustände in elastischen Festkörpern können die Studierenden technische Fragestellungen als Randwertaufgaben formulieren sowie deren Lösungen ingenieurmäßig interpretieren – beispielsweise in Bezug auf Lasteinleitungsfragen oder Spannungskonzentrationen. Sie können dafür neben analytischen Lösungsmethoden für ebene Probleme insbesondere Variations- und Energiemethoden verwenden, die die Grundlagen numerischer Berechnungsverfahren wie der Finite-Elemente-Methode bilden.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Einführung in die Kontinuums- mechanik	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	60 min.	T. Seelig

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

Folgende Fächer und Module sollten bereits abgelegt sein:

Mechanik, Mathematik, Partielle Differentialgleichungen [bauiBFW1-PDGL]

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200421	Einführung in die Kontinuumsmecha- nik (D)	V	2	S	M. Franke

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen: 15 Std. Testatvorbereitung: 15 Std. 15 Std. Summe: 60 Std.

Inhalt

- · Vektor- und Tensorrechnung, Indexnotation
- · Spannungen und Gleichgewicht
- Verschiebungen und Verzerrungen
- · Linear-elastisches Stoffgesetz

- · Randwertaufgaben der Elastizitätstheorie
- · Ebene Probleme
- · Airy'sche Spannungsfunktion
- Lokale Spannungskonzentrationen
- · Arbeits- und Energieprinzipien der Elastizitätstheorie
- Näherungsmethoden

Anmerkungen

Literatur:

Gross, D., Hauger, W., Wriggers, P.: Technische Mechanik IV. Springer, 2007

Fung, Y.C.: A First Course in Continuum Mechanics. Rentice Hall, 1969

Lai, M., Krempl, E., Rubin, D.: Introduction to Continuum Mechanics. Elsevier, 2010

Reddy, J.N.: An Introduction to Continuum Mechanics - with Applications. Cambridge, 2008

Prager, W.: Einführung in die Kontinuumsmechanik. Birkhäuser, 1961

Becker, W., Gross, D.: Mechanik elastischer Körper und Strukturen. Springer, 2002

Seelig, Th.: Einführung in die Kontinuumsmechanik. Skript zur Vorlesung

Chou, P.C., Pagano, N.J.: Elasticity. Van Nostrand, 1967

Modul: Wasserbauliches Versuchswesen [bauiBFW3-WASSVW]

Verantwortliche: F. Seidel

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 6. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	3	Jedes 2. Semester, Sommersemester	1

Qualifikationsziele

Die Studierenden können die Einsatzmöglichkeiten und Anwendungsgrenzen wasserbaulicher Versuche im Kontext von wasserwirtschaftlichen Problemstellungen erläutern. Sie sind in der Lage Modellplanungen durchzuführen und die Belastbarkeit erarbeiteter Ergebnisse zu bewerten.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Wasserbauliches Versuchswesen	2	testierte Versuchs- auswertungen (§ 4 Abs. 2 Nr. 3)	2 Versuchsaus- wertungen je ca. 5 Seiten	F. Seidel

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

Folgende Module und Lehrveranstaltungen sollten bereits belegt worden sein:

Hydromechanik [bauiBGP04-HYDRO]

Wasserbau und Wasserwirtschaft (6200511)

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200609	Wasserbauliches Versuchswesen (D)	V	2	S	F. Seidel

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Erstellen der Versuchsprotokolle: 30 Std.

Summe: 60 Std.

Inhalt

Der Kurs gibt einen umfassenden Überblick über die Verwendung von Modellen zur Optimierung hydrodynamischer Prozesse. Dabei werden folgende Inhalte behandelt:

- · Definition des Modellbegriffes
- · Modellähnlichkeit und Modellgesetze
- · Grenzen der Ergebnisübertragbarkeit
- · Modellplanung und -aufbau
- · Hydrometrie und Datenauswertung
- · Anwendung wasserbaulicher Modelle in der Praxis

Anmerkungen

Materialien:

Kursbegleitendes Skriptum,

Folienabzüge und weiterführendes Lernmaterial auf der Homepage des IWG

Modul: Vermessungskunde [bauiBFW5-VERMK]

Verantwortliche: N. Rösch

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 6. Semester

ECTS-Punkte Level Zyklus Dauer
2 Jedes 2. Semester, Sommersemester 1

Qualifikationsziele

Die Studierenden können die wichtigsten geodätischen Verfahren und die am häufigsten eingesetzten Instrumente benennen und beschreiben. Sie sind in der Lage, diese bei einer Detailvermessung anzuwenden.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)						
unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche		
Vermessungskunde	2	testierte Ver- messungsübung (§ 4 Abs. 2 Nr. 3)	Betreuung einer Vermessungs- übung	N. Rösch		

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6071202	Vermessungskunde (D)	V	1	S	N. Rösch
6071203	Übungen zu Vermessungskunde (D)	Ü	1	S	Assistenten, N. Rösch

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesungen, Übungen: 20 Std. Anleitung einer Vermessungsübung: 10 Std. Summe: 60 Std.

Inhalt

Es werden die folgenden Inhalte behandelt:

- · Organisation des Vermessungswesens
- Referenzrahmen (lokale und internationale)
- Koordinatensysteme (z. B. UTM, Gauß-Krüger)
- Höhenbestimmung
- Lagebestimmung
- Grundlegende geodätische Berechnungen

Modul: Projekt "Planen, Entwerfen, Konstruieren" [bauiBFW6-PPEK]

Verantwortliche: R. Roos

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 6. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	3	Jedes 2. Semester, Sommersemester	1

Qualifikationsziele

Die Studierenden können die planerischen Anforderungen der verschiedenen Fachgebiete des Schwerpunktes Mobilität und Infrastruktur verstehen und bezogen auf ein konkretes Beispiel diskutieren. Unter fachlicher Anleitung finden sie umsetzbare Lösungen und verstehen in groben Zügen die planerischen multidisziplinären Abwägungsprozesse. Darüber hinaus können sie selbstorganisiert arbeiten und verfügen über organisatorische und didaktische Kompetenzen bezogen auf Teamarbeit und Präsentationen.

			. ,	
unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Projekt "Planen, Entwerfen, Konstruieren"	2	Gruppenübung mit Zwischen- und Schluss-	Präsentation (in- klusive 4 Plan- unterlagen) je 10	R. Roos, B. Chlond

min.

präsentation

(§ 4 Abs. 2 Nr. 3)

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

Das Modul Planungsmethodik [bauiBGP11-PLANM] sollte bereits belegt worden sein.

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200613	Projekt "Planen, Entwerfen, Konstruieren" (D)	Pj	2	S	R. Roos, B. Chlond

Arbeitsaufwand

Präsenzzeit:

Vor-Ort-Termin, Projekt- und Fachgruppensitzzungen, Präsentationen: 16 Std.

Selbststudium:

Vor- und Nachbereitung: 6 Std.
Gruppenübung (Anteil pro Person): 35 Std.
Summe: 57 Std.

Inhalt

Es wird eine typische Aufgabe aus der Planungspraxis der Raum- und Infrastrukturplanung bearbeitet (z.B. städtebaulicher Ideenwettbewerb). Die Studierenden übernehmen dabei innerhalb von Gruppen bestimmte Planungsaufgaben aus den Fachgebieten Städtebau, Verkehrswesen, Straßenwesen und spurgeführte Transportsysteme, wobei Mentoren den fachlichen Hintergrund liefern. Während des Planspiels werden konkrete Lösungen in unterschiedlicher Detaillierung erarbeitet und präsentiert.

Modul: Lebenszyklusmanagement [bauiBFW7-LZMAN]

Verantwortliche: K. Lennerts, F. Dehn

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 6. Semester

ECTS-Punkte Level Zyklus Dauer
2 3 Jedes 2. Semester, Sommersemester 1

Qualifikationsziele

Die Studierenden können die Lebenszyklusphasen von Gebäuden, deren spezifische Besonderheiten sowie deren Einfluss auf die Umwelt erläutern. Sie können die Einflussfaktoren, die Auswirkungen auf die Bauteillebensdauer haben, die Methoden der Dauerhaftigkeitsprognose sowie die Maßnahmen der Instandhaltung (Wartung, Inspektion, Instandsetzung und Verbesserung) beschreiben. Sie kennen geeignete Berechnungsverfahren sowie deren erforderliche Eingangsgrößen und können einfache Lebenszykluskostenberechnungen vornehmen.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Lebenszyklusmanagement	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	60 min.	K. Lennerts, F. Dehn

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

Angewandte Statistik [bauiBGP07-STATS]

Baustoffe [bauiBGP09-BSTOF]

Technologie und Management im Baubetrieb [bauiBFP6-TMB]

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200615	Lebenszyklusmanagement (D)	V/Ü	2	S	K. Lennerts, M. Vogel, E. Kotan, F. Dehn

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesung/Übung: 10 Std. Testatvorbereitung: 20 Std. Summe: 60 Std.

Inhalt

In diesem Modul werden Einführungen in die Konzepte des Lebenszyklusmanagements gegeben. Insbesondere sollen die unterschiedlichen Methoden zur Berechnung und Optimierung von Lebenszykluskosten erlernt werden. Ein weiterer Schwerpunkt des Moduls ist die Einführung in die Methodik der Schadenserfassung und Schadens-

modellierung, die zur zielsicheren Beurteilung des Schädigungsgrads und zur Durchführung von Lebensdauerprognosen bei Bauwerken aus Beton notwendig sind.

Die Beurteilung der Bauwerksdauerhaftigkeit wird anhand von Zuverlässigkeitsbetrachtungen bewerkstelligt. Daher ist es notwendig, im Rahmen dieses Moduls die Grundzüge der Zuverlässigkeitstheorie kennenzulernen. Hierdurch erst ist es möglich, eine probabilistische Lebensdauerbemessung bei Baukonstruktionen, die umweltbedingten Beanspruchungen (Frost, Salze, Kohlendioxid usw.) ausgesetzt sind, durchzuführen.

Weiterhin umfasst die Lehrveranstaltung auch eine Einführung in die Methodik der Instandhaltungsplanung und -durchführung bei Betonkonstruktionen, die unterschiedliche dauerhaftigkeitsrelevante Schädigungen erfahren haben.

Anmerkungen

Literatur:

Vorlesungsskript / entsprechende Literatur wird in der Lehrveranstaltung vorgestellt

Modul: Ingenieurhydrologie [bauiBFW12-INGHYD]

Verantwortliche: U. Ehret

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 6. Semester

ECTS-Punkte Level Zyklus Dauer
2 3 Jedes 2. Semester, Sommersemester 1

Qualifikationsziele

Die Studierenden können die wesentlichen Grundlagen der ingenieurhydrologischen Modelle beschreiben. Sie sind in der Lage, die Modelle für die Bemessung wasserwirtschaftlicher/wasserbaulicher Anlagen und Maßnahmen anzuwenden und können die Anwendungsgrenzen und die vorhanden Unsicherheiten beschreiben. Sie können die maßgebenden Vorschriften erläutern, die insbesondere für sicherheitsrelevante Nachweise von Stauanlagen zu beachten und einzuhalten sind.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Ingenieurhydrologie	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	60 min.	U. Ehret

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

Folgende Module und Lehrveranstaltungen sollten bereits belegt worden sein:

Umweltphysik / Energie [bauiBGW3-UPHYS]

Hydrologie (6200513), Inhalte werden als bekannt vorausgesetzt!

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200617	Ingenieurhydrologie (D)	V/Ü	2	S	U. Ehret

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesung/Übung: 10 Std. Testatvorbereitung: 20 Std. Summe: 60 Std.

Inhalt

- Niederschlag-Abfluss-Modelle für Bemessung und Betrieb wasserwirtschaftlicher/wasserbaulicher Anlagen für den Hochwasserschutz
- Bemessung von Hochwasserrückhaltebecken als Anwendungsbeispiel
- · Einführung in das Softwarepaket "Hochwasseranalyse und -berechnung"

Modul: Bauinformatik II [BauiBGW7-BINF2]

Verantwortliche: M. Uhlmann

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 4. Semester, Wahlpflicht 2. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	2	Jedes 2. Semester, Sommersemester	1

Qualifikationsziele

Die Studierenden können die für die digitale Datenverarbeitung verwendeten Algorithmen beschreiben. Sie sind in der Lage, ihre Programmierkenntnisse über die objektorientierte Programmierung an praktischen Beispielen anzuwenden.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Prüfungsvorleistung Bauinformatik II (D)	0	testierte Program- mieraufgaben (§ 4 Abs. 2 Nr. 3)	3 Aufgaben	M. Uhlmann
Bauinformatik II (D)	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	30 min.	M. Uhlmann

Bildung der Modulnote

entfällt

Bedingungen

Teilnahme an "Bauinformatik I" [bauiBGP14-BINF1]

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
	Bauinformatik II Übungen zu Bauinformatik II	V Ü	1	S S	M. Uhlmann M. Uhlmann

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung, Übung: 30 Std.

Selbststudium:

Ausarbeitung Programmieraufgaben: 15 Std. Testatvorbereitung: 15 Std. Summe: 60 Std.

Inhalt

- Einführung in das objekt-orientierte Programmieren: grundlegende Elemente objekt-orientierter Programmiersprachen und deren Realisierung in einer weit verbreiteten höheren Programmiersprache
- Übungen zur Implementierung von gängigen Algorithmen, Anwendungen auf Probleme im Ingenieurswesen

Anmerkungen

Das Modul kann ab dem SoSe 2016 als Wahlpflichtmodul sowohl im Grundstudium als auch im Grundfachstudium

gewählt werden.

Literatur/Lernmaterialien:

S. Prata, "C++ Primer Plus", Sams, 2005;

J. Liberty and B. Jones, "Teach yourself C++ in 21 days", Sams, 2005;

R. Lischner, "C++ in a Nutshell", O'Reilly, 2003;

RRZN, "C++ für C Programmierer", 2005 (Skriptenverkauf am SCC)

Modul: Computer Aided Design (CAD) [bauiBFW10-CAD]

Verantwortliche: S. Haghsheno

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 5. Semester

ECTS-Punkte Level Zyklus Dauer
2 Jedes 2. Semester, Wintersemester 1

Qualifikationsziele

Die Studierenden haben ein tiefer gehendes Verständnis für die Anwendung von CAD im Bauwesen und können die zugehörigen Grundlagen erläutern. Darüber hinaus sind sie in der Lage, Rohbau und Ausbau einfacher Gebäude eigenständig zu modellieren, Schnitte, Ansichten und Visualisierungen zu generieren und in Planform zu präsentieren.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)

unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche
Computer Aided Design (CAD)	2	testierte Übungsarbeit (§ 4 Abs. 2 Nr. 3)	CAD-Pläne	S. Haghsheno

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200520	Computer Aided Design (CAD) (D)	V/Ü	2	W	S. Haghsheno

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 30 Std.

Selbststudium:

Anfertigen der Übungsarbeit: 30 Std. Summe: 60 Std.

Inhalt

Das Modul behandelt die historische Entwicklung des computergestützten Zeichnens und Entwerfens und vermittelt die theoretischen Grundlagen, die zum Verständnis und für eine Anwendung von CAD notwendig sind. Darüber hinaus werden CAD-Übungen zur praktischen Anwendung angeboten um damit die Grundlage für ein späteres Arbeiten nach der Methode Building Information Modeling (BIM) zu schaffen. Im Rahmen einer Übungsarbeit ist ein Gebäude eigenständig in Revit zu modellieren.

Anmerkungen

Die Teilnehmerzahl ist auf 60 Personen begrenzt. Anmeldungsmodalitäten werden rechtzeitig auf der Institutshomepage veröffentlicht.

Die Teilnahme erfordert die Möglichkeit, auf einen PC oder Notebook mit Windows Betriebssystem (möglichst 64bit) zugreifen zu können.

Modul: Gewerke und Technik im schlüsselfertigen Hochbau [bauiBFW13-SFHB]

Verantwortliche: S. Haghsheno

Studiengang: Bauingenieurwesen SPO 2013 (B.Sc.)

Fach: Wahlpflicht 5. Semester

ECTS-Punkte	Level	Zyklus	Dauer
2	3	Jedes 2. Semester, Wintersemester	1

Qualifikationsziele

Die Studierenden können die grundlegenden Verfahrens- und Ausführungstechniken im Roh- und Ausbau sowie der technischen Gebäudeausrüstung beschreiben.

Erfolgskontrolle, gemäß SPO Bauingenieurwesen SPO 2013 (B.Sc.)							
unbenotete Studienleistung	LP	Art	Dauer / Umfang	Studienleistungs- verantwortliche			
Gewerke und Technik im schlüsselfertigen Hochbau	2	schriftliche Er- folgskontrol- le anderer Art (§ 4 Abs. 2 Nr. 3)	45 min.	S. Haghsheno			

Bildung der Modulnote

entfällt

Bedingungen

keine

Empfehlungen

keine

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	LV-Typ	SWS	Sem.	Lehrveranstaltungs- verantwortliche
6200521	Gewerke und Technik im schlüsselfertigen Hochbau (D)	V/Ü	2	W	M. Denzer, H. Schneider

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

Vorlesung/Übung: 30 Std.

Selbststudium:

Vor- und Nachbereitung Vorlesung/Übung: 15 Std. 15 Std. Summe: 60 Std.

Inhalt

Es werden Ausführungsplanung für Rohbau, Ausbau und Haustechnik sowie Grundlagen und Bauausführung für diverse Bau-Gewerke (z.B. Trockenbau-, Estrich- oder Fassadenarbeiten) vermittelt. Auch der technische Ausbau (Technische Gebäudeausrüstung) gehört mit Grundlagen und Bauausführung für Bereiche wie beispielsweise Heizungs- und Brauchwassererwärmungsanlagen, Lüftungs- und Klimaanlagen oder Elektroinstallationen zum Lehrstoff.

Anmerkungen

wird ab dem Wintersemester 2020/21 neu angeboten

Stichwortverzeichnis

Α	P
Analysis und Lineare Algebra (M)	Partielle Differentialgleichungen (M)
В	Projektmanagement (M)
Bachelorarbeit (M)	S
Bauinformatik I (M)	Schlüsselqualifikationen (M)
Baukonstruktionen (M) 33 Baustatik (M) 50 Baustoffe (M) 31	Т
C	Technisches Darstellen (M)
Computer Aided Design (CAD) (M)	U
D	Umweltphysik / Energie (M)
Differentialgleichungen (M)	V
	Vermessungskunde (M)
E	W
Einführung in die Kontinuumsmechanik (M)67 F	Wasser und Umwelt (M)
	()
Festigkeitslehre (M)	
G	
Geologie im Bauwesen (M)	
Grundlagen des Stahl- und Holzbaus (M)	
н	
Hydromechanik (M)22	
I	
Ingenieurhydrologie (M)	
L	
Laborpraktikum (M) 47 Lebenszyklusmanagement (M) 73	
M	
Mobilität und Infrastruktur (M)	