

# Modulhandbuch Mathematik Bachelor 2016 (Bachelor of Science (B.Sc.))

SPO 2016 Sommersemester 2021 Stand 24.02.2021

KIT-FAKULTÄT FÜR MATHEMATIK



# Inhaltsverzeichnis

| 1. | Aufbau des Studiengangs                                              | 7  |
|----|----------------------------------------------------------------------|----|
|    | 1.1. Bachelorarbeit                                                  |    |
|    | 1.2. Mathematische Grundstrukturen ab 1.01.2019                      |    |
|    | 1.3. Grundlagen Angewandte Mathematik                                |    |
|    | 1.4. Mathematisches Seminar                                          | 8  |
|    | 1.5. Anwendungsfach                                                  | 9  |
|    | 1.5.1. Informatik                                                    |    |
|    | 1.5.2. Physik                                                        | 9  |
|    | 1.5.3. Wirtschaftswissenschaften                                     | 10 |
|    | 1.5.4. Maschinenbau                                                  | 10 |
|    | 1.5.5. Elektrotechnik und Informationstechnik                        | 11 |
|    | 1.6. Mathematische Vertiefung                                        | 12 |
|    | 1.7. Überfachliche Qualifikationen                                   | 12 |
|    | 1.8. Zusatzleistungen                                                | 13 |
| 2. | Module                                                               | 14 |
|    | 2.1. Algebra - M-MATH-101315                                         |    |
|    | 2.2. Algebraische Topologie - M-MATH-102948                          |    |
|    | 2.3. Algorithmen I - M-INFO-100030                                   |    |
|    | 2.4. Algorithmen II - M-INFO-101173                                  |    |
|    | 2.5. Analysis 1 und 2 - M-MATH-101306                                |    |
|    | 2.6. Analysis 3 - M-MATH-101318                                      |    |
|    | 2.7. Analysis 4 - M-MATH-103164                                      |    |
|    | 2.8. Angewandte Mikroökonomik - M-WIWI-101499                        |    |
|    | 2.9. Anwendungen des Operations Research - M-WIWI-101413             |    |
|    | 2.10. Bauökologie - M-WIWI-101467                                    | 28 |
|    | 2.11. Betriebssysteme - M-INFO-103454                                | 29 |
|    | 2.12. Compressive Sensing - M-MATH-102935                            | 30 |
|    | 2.13. Controlling (Management Accounting) - M-WIWI-101498            | 31 |
|    | 2.14. Differentialgeometrie - M-MATH-101317                          | 32 |
|    | 2.15. Digitaltechnik - M-ETIT-102102                                 | 34 |
|    | 2.16. eBusiness und Service Management - M-WIWI-101434               | 35 |
|    | 2.17. eFinance - M-WIWI-101402                                       | 37 |
|    | 2.18. Einführung in das Wissenschaftliche Rechnen - M-MATH-102889    | 38 |
|    | 2.19. Einführung in die Algebra und Zahlentheorie - M-MATH-101314    | 39 |
|    | 2.20. Einführung in die Stochastik - M-MATH-101321                   |    |
|    | 2.21. Einführung in die Volkswirtschaftslehre - M-WIWI-101398        |    |
|    | 2.22. Einführung in die Volkswirtschaftslehre: VWL I - M-WIWI-103396 | 43 |
|    | 2.23. Einführung in Rechnernetze - M-INFO-103455                     | 44 |
|    | 2.24. Elektromagnetische Felder - M-ETIT-104428                      | 45 |
|    | 2.25. Elektromagnetische Wellen - M-ETIT-104515                      | 46 |
|    | 2.26. Elektronische Schaltungen - M-ETIT-102164                      |    |
|    | 2.27. Elementare Geometrie - M-MATH-103152                           |    |
|    | 2.28. Energiewirtschaft - M-WIWI-101464                              |    |
|    | 2.29. Essentials of Finance - M-WIWI-101435                          |    |
|    | 2.30. Extremale Graphentheorie - M-MATH-102957                       |    |
|    | 2.31. Finanzmathematik in diskreter Zeit - M-MATH-102919             | 54 |
|    | 2.32. Finanzwissenschaft - M-WIWI-101403                             |    |
|    | 2.33. Fundamentals of Digital Service Systems - M-WIWI-102752        |    |
|    | 2.34. Funktionalanalysis - M-MATH-101320                             |    |
|    | 2.35. Geometrische Analysis - M-MATH-102923                          |    |
|    | 2.36. Geometrische Gruppentheorie - M-MATH-102867                    |    |
|    | 2.37. Graphentheorie - M-MATH-101336                                 |    |
|    | 2.38. Grundbegriffe der Informatik - M-INFO-103456                   |    |
|    | 2.39. Grundlagen BWL 1 - M-WIWI-101494                               |    |
|    | 2.40. Grundlagen BWL 2 - M-WIWI-101578                               |    |
|    | 2.41. Grundlagen des Marketing - M-WIWI-101424                       |    |
|    | 2.42. Hyperbolische Geometrie - M-MATH-103464                        | 66 |

| 2.43. Industrielle Produktion I - M-WIWI-101437                                        | 67  |
|----------------------------------------------------------------------------------------|-----|
| 2.44. Integralgleichungen - M-MATH-102874                                              | 69  |
| 2.45. Inverse Probleme - M-MATH-102890                                                 |     |
| 2.46. Klassische Experimentalphysik I, Mechanik - M-PHYS-103423                        | 71  |
| 2.47. Klassische Experimentalphysik II, Elektrodynamik - M-PHYS-103424                 | 72  |
| 2.48. Klassische Experimentalphysik III, Optik und Thermodynamik - M-PHYS-103425       |     |
| 2.49. Klassische Methoden für partielle Differentialgleichungen - M-MATH-102870        |     |
| 2.50. Klassische Theoretische Physik I, Einführung - M-PHYS-103426                     |     |
| 2.51. Klassische Theoretische Physik II, Mechanik - M-PHYS-103427                      |     |
| 2.52. Klassische Theoretische Physik III, Elektrodynamik - M-PHYS-103428               |     |
| 2.53. Kombinatorik - M-MATH-102950                                                     |     |
| 2.54. Kommunikation und Datenhaltung - M-INFO-101178                                   |     |
| 2.55. Lie Gruppen und Lie Algebren - M-MATH-104261                                     |     |
| 2.56. Lineare Algebra 1 und 2 - M-MATH-101309                                          |     |
| 2.57. Lineare Elektrische Netze - M-ETIT-101845                                        |     |
| 2.58. Markovsche Ketten - M-MATH-101323                                                |     |
| 2.59. Maschinenkonstruktionslehre - M-MACH-101299                                      |     |
|                                                                                        |     |
| 2.60. Mess- und Regelungstechnik - M-MACH-102564                                       |     |
| 2.61. Methodische Grundlagen des OR - M-WIWI-101414                                    |     |
| 2.62. Modelle der mathematischen Biologie - M-MATH-105652                              |     |
| 2.63. Moderne Experimentalphysik I, Atome und Kerne - M-PHYS-101704                    |     |
| 2.64. Moderne Experimentalphysik II, Moleküle und Festkörper - M-PHYS-101705           | 96  |
| 2.65. Moderne Experimentalphysik III, Teilchen und Hadronen - M-PHYS-101706            |     |
| 2.66. Moderne Theoretische Physik I, Quantenmechanik I - M-PHYS-103180                 |     |
| 2.67. Moderne Theoretische Physik II, Quantenmechanik II - M-PHYS-101708               |     |
| 2.68. Moderne Theoretische Physik III, Statistische Physik - M-PHYS-101709             |     |
| 2.69. Modul Bachelorarbeit - M-MATH-103701                                             | 102 |
| 2.70. Numerische Mathematik 1+2 - M-MATH-103214                                        | 103 |
| 2.71. Numerische Methoden für Differentialgleichungen - M-MATH-102888                  | 105 |
| 2.72. Optimierung unter Unsicherheit - M-WIWI-103278                                   | 106 |
| 2.73. Optimierungstheorie - M-MATH-103219                                              |     |
| 2.74. Personal und Organisation - M-WIWI-101513                                        |     |
| 2.75. Programmieren: Einstieg in die Informatik und algorithmische Mathematik - M-MATH |     |
| 2.76. Proseminar - M-MATH-101803                                                       |     |
| 2.77. Rand- und Eigenwertprobleme - M-MATH-102871                                      |     |
| 2.78. Real Estate Management - M-WIWI-101466                                           |     |
| 2.79. Schlüsselqualifikationen - M-MATH-103998                                         |     |
| 2.80. Seminar - M-MATH-103465                                                          |     |
| 2.81. Seminar - M-MATH-103467                                                          |     |
| 2.82. Seminar - M-MATH-103462                                                          |     |
| 2.83. Signale und Systeme - M-ETIT-102123                                              |     |
| · ·                                                                                    |     |
| 2.84. Softwaretechnik I - M-INFO-103453                                                |     |
| 2.85. Spektraltheorie - M-MATH-101768                                                  |     |
| 2.86. Statistik - M-MATH-103220                                                        |     |
| 2.87. Strategie und Organisation - M-WIWI-101425                                       |     |
| 2.88. Strömungslehre - M-MACH-102565                                                   |     |
| 2.89. Supply Chain Management - M-WIWI-101421                                          |     |
| 2.90. Systemdynamik und Regelungstechnik - M-ETIT-102181                               |     |
| 2.91. Technische Mechanik I - M-MACH-100279                                            |     |
| 2.92. Technische Mechanik II - M-MACH-100284                                           |     |
| 2.93. Technische Mechanik III und IV - M-MACH-102382                                   |     |
| 2.94. Theoretische Grundlagen der Informatik - M-INFO-101172                           | 132 |
| 2.95. Topics in Finance I - M-WIWI-101465                                              |     |
| 2.96. Topics in Finance II - M-WIWI-101423                                             |     |
| 2.97. Vertiefung Informatik - M-WIWI-101399                                            |     |
| 2.98. Wahrscheinlichkeitstheorie - M-MATH-101322                                       |     |
| 2.99. Weitere Leistungen - M-MATH-103943                                               |     |
| 2.100. Wirtschaftspolitik I - M-WIWI-101668                                            |     |
| 2.101. Wirtschaftstheorie - M-WIWI-101501                                              |     |
| 3. Teilleistungen                                                                      |     |
| o. 101101964115611                                                                     |     |

| 3.1. Advanced Topics in Economic Theory - T-WIWI-102609                                        | 144 |
|------------------------------------------------------------------------------------------------|-----|
| 3.2. Algebra - T-MATH-102253                                                                   |     |
| 3.3. Algebraische Topologie - T-MATH-105915                                                    | 146 |
| 3.4. Algorithmen I - T-INFO-100001                                                             |     |
| 3.5. Algorithmen II - T-INFO-102020                                                            |     |
| 3.6. Analysis 1 - Klausur - T-MATH-106335                                                      |     |
| 3.7. Analysis 1 Übungsschein - T-MATH-102235                                                   |     |
| 3.8. Analysis 2 - Klausur - T-MATH-106336                                                      |     |
| 3.9. Analysis 2 Übungsschein - T-MATH-102236                                                   |     |
| 3.10. Analysis 3 - Klausur - T-MATH-102245                                                     | 153 |
| 3.11. Analysis 4 - Prüfung - T-MATH-106286                                                     |     |
| 3.12. Angewandte Informatik I - Modellierung - T-WIWI-102652                                   | 155 |
| 3.13. Angewandte Informatik II – Internet Computing - T-WIWI-109445                            | 156 |
| 3.14. Anwendungen der Künstlichen Intelligenz - T-WIWI-109263                                  | 157 |
| 3.15. Auction & Mechanism Design - T-WIWI-102876                                               | 158 |
| 3.16. Bachelorarbeit - T-MATH-107476                                                           | 159 |
| 3.17. Bauökologie I - T-WIWI-102742                                                            | 160 |
| 3.18. Bauökologie II - T-WIWI-102743                                                           | 161 |
| 3.19. Betriebssysteme - T-INFO-101969                                                          | 162 |
| 3.20. Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen - T-WIWI-102819            | 163 |
| 3.21. Betriebswirtschaftslehre: Produktionswirtschaft und Marketing - T-WIWI-102818            | 164 |
| 3.22. Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft - T-WIWI-102817 | 165 |
| 3.23. Compressive Sensing - T-MATH-105894                                                      | 166 |
| 3.24. Datenbanksysteme - T-INFO-101497                                                         | 167 |
| 3.25. Datenbanksysteme - T-WIWI-102660                                                         | 168 |
| 3.26. Derivate - T-WIWI-102643                                                                 | 169 |
| 3.27. Dienstleistungs- und B2B Marketing - T-WIWI-102806                                       | 170 |
| 3.28. Differentialgeometrie - T-MATH-102275                                                    | 171 |
| 3.29. Digital Services - T-WIWI-109938                                                         | 172 |
| 3.30. Digitaltechnik - T-ETIT-101918                                                           | 173 |
| 3.31. Economics and Behavior - T-WIWI-102892                                                   | 174 |
| 3.32. eFinance: Informationssysteme für den Wertpapierhandel - T-WIWI-110797                   |     |
| 3.33. Einführung in Algebra und Zahlentheorie - T-MATH-102251                                  | 176 |
| 3.34. Einführung in das Wissenschaftliche Rechnen - T-MATH-105837                              |     |
| 3.35. Einführung in die Energiewirtschaft - T-WIWI-102746                                      | 178 |
| 3.36. Einführung in die Finanzwissenschaft - T-WIWI-102877                                     | 179 |
| 3.37. Einführung in die Spieltheorie - T-WIWI-102850                                           | 180 |
| 3.38. Einführung in die Stochastik - T-MATH-102256                                             | 181 |
| 3.39. Einführung in die Stochastische Optimierung - T-WIWI-106546                              | 182 |
| 3.40. Einführung in die Wirtschaftspolitik - T-WIWI-103213                                     | 183 |
| 3.41. Einführung in Python - T-MATH-106119                                                     | 185 |
| 3.42. Einführung in Rechnernetze - T-INFO-102015                                               | 186 |
| 3.43. Elektromagnetische Felder - T-ETIT-109078                                                | 187 |
| 3.44. Elektromagnetische Wellen - T-ETIT-109245                                                | 188 |
| 3.45. Elektronische Schaltungen - T-ETIT-101919                                                | 189 |
| 3.46. Elementare Geometrie - Prüfung - T-MATH-103464                                           |     |
| 3.47. Energiepolitik - T-WIWI-102607                                                           | 191 |
| 3.48. Entscheidungstheorie - T-WIWI-102792                                                     | 192 |
| 3.49. Ergänzung Angewandte Informatik - T-WIWI-110711                                          | 193 |
| 3.50. Extremale Graphentheorie - T-MATH-105931                                                 | 194 |
| 3.51. Financial Accounting for Global Firms - T-WIWI-107505                                    | 195 |
| 3.52. Financial Management - T-WIWI-102605                                                     | 196 |
| 3.53. Finanzintermediation - T-WIWI-102623                                                     | 197 |
| 3.54. Finanzmathematik in diskreter Zeit - T-MATH-105839                                       |     |
| 3.55. Foundations of Interactive Systems - T-WIWI-109816                                       |     |
| 3.56. Funktionalanalysis - T-MATH-102255                                                       |     |
| 3.57. Geometrische Analysis - T-MATH-105892                                                    |     |
| 3.58. Geometrische Gruppentheorie - T-MATH-105842                                              |     |
| 3.59. Geschäftspolitik der Kreditinstitute - T-WIWI-102626                                     |     |
| 3.60. Globale Optimierung I - T-WIWI-102726                                                    |     |

| a state of the control of the Taylor and the Taylor                              | 205 |
|----------------------------------------------------------------------------------|-----|
| 3.61. Globale Optimierung I und II - T-WIWI-103638                               |     |
| 3.62. Globale Optimierung II - T-WIWI-102727                                     |     |
| 3.63. Graphentheorie - T-MATH-102273                                             |     |
| 3.65. Grundlagen der Mess- und Regelungstechnik - T-MACH-104745                  |     |
| 3.66. Grundlagen der Mess- und Regelungstechnik - T-MACH-104/45                  |     |
| 3.67. Grundlagen der Produktionswirtschaft - 1-wiwi-102606                       |     |
| 3.68. Grundlagen für mobile Business - T-WIWI-104679                             | ۲۱۱ |
| 3.69. Hyperbolische Geometrie - Prüfung - T-MATH-106881                          |     |
| 3.70. Industrieökonomie - T-WIWI-102844                                          |     |
| 3.71. Informationssicherheit - T-WIWI-102844                                     |     |
| 3.71. Informationssicherheit - 1-wwi-10838/                                      |     |
| 3.73. Integralgieichungen - 1-MATH-103834                                        |     |
| 3.74. International Marketing - 1-WIWI-102607                                    |     |
| 3.75. Inverse Probleme - T-MATH-105835                                           |     |
| 3.76. Investments - T-WIWI-102604                                                |     |
| 3.77. Klassische Experimentalphysik I, Mechanik - T-PHYS-102283                  |     |
| 3.78. Klassische Experimentalphysik II, Elektrodynamik - T-PHYS-102284           |     |
| 3.79. Klassische Experimentalphysik III, Optik und Thermodynamik - T-PHYS-102285 |     |
| 3.80. Klassische Methoden für partielle Differentialgleichungen - T-MATH-105832  |     |
| 3.81. Klassische Theoretische Physik I, Einführung - T-PHYS-102286               |     |
| 3.82. Klassische Theoretische Physik II, Mechanik - T-PHYS-102287                |     |
| 3.83. Klassische Theoretische Physik III, Elektrodynamik - T-PHYS-102288         |     |
| 3.84. Kombinatorik - T-MATH-105916                                               |     |
| 3.85. Lie Gruppen und Lie Algebren - T-MATH-108799                               |     |
| 3.86. Lineare Algebra 1 - Klausur - T-MATH-106338                                |     |
| 3.87. Lineare Algebra 1 - Übungsschein - T-MATH-102249                           |     |
| 3.88. Lineare Algebra 2 - Klausur - T-MATH-106339                                |     |
| 3.89. Lineare Algebra 2 - Übungsschein - T-MATH-102259                           |     |
| 3.90. Lineare Elektrische Netze - T-ETIT-101917                                  |     |
| 3.91. Logistics and Supply Chain Management - T-WIWI-102870                      |     |
| 3.92. Macroeconomic Theory - T-WIWI-109121                                       |     |
| 3.93. Management Accounting 1 - T-WIWI-102800                                    |     |
| 3.94. Management Accounting 2 - T-WIWI-102801                                    |     |
| 3.95. Marketing Mix - T-WIWI-102805                                              |     |
| 3.96. Markovsche Ketten - T-MATH-102258                                          |     |
| 3.97. Maschinenkonstruktionslehre Grundlagen I und II - T-MACH-110363            |     |
| 3.98. Maschinenkonstruktionslehre Grundlagen I, Vorleistung - T-MACH-110364      |     |
| 3.99. Maschinenkonstruktionslehre Grundlagen II, Vorleistung - T-MACH-110365     |     |
| 3.100. Modelle der mathematischen Biologie - T-MATH-111291                       |     |
| 3.101. Modellieren und OR-Software: Einführung - T-WIWI-106199                   |     |
| 3.102. Moderne Experimentalphysik I, Atome und Kerne - T-PHYS-105132             |     |
| 3.103. Moderne Experimentalphysik II, Moleküle und Festkörper - T-PHYS-105133    |     |
| 3.104. Moderne Experimentalphysik III, Teilchen und Hadronen - T-PHYS-106804     |     |
| 3.105. Moderne Theoretische Physik I, Quantenmechanik 1 - T-PHYS-105134          |     |
| 3.106. Moderne Theoretische Physik II, Quantenmechanik 2 - T-PHYS-106095         |     |
| 3.107. Moderne Theoretische Physik III, Statistische Physik - T-PHYS-106096      |     |
| 3.108. Nichtlineare Optimierung I - T-WIWI-102724                                |     |
| 3.109. Nichtlineare Optimierung I und II - T-WIWI-103637                         |     |
| 3.110. Nichtlineare Optimierung II - T-WIWI-102725                               |     |
| 3.111. Numerische Mathematik 1 - Klausur - T-MATH-106391                         |     |
| 3.112. Numerische Mathematik 2 - Klausur - T-MATH-106394                         |     |
| 3.113. Numerische Methoden für Differentialgleichungen - T-MATH-105836           |     |
| 3.114. Öffentliche Einnahmen - T-WIWI-102739                                     |     |
| 3.115. Öffentliches Finanzwesen - T-WIWI-109590                                  |     |
| 3.116. Optimierungsansätze unter Unsicherheit - T-WIWI-106545                    |     |
| 3.117. Optimierungstheorie - Klausur - T-MATH-106401                             |     |
| 3.118. Organisationsmanagement - T-WIWI-102630                                   |     |
| 3.119. Personalmanagement - T-WIWI-102909                                        |     |
| 3.120. Personalpolitik und Arbeitsmarktinstitutionen - T-WIWI-102908             |     |
|                                                                                  |     |

|    | 3.121. Platform Economy - T-WIWI-109936                                                                    | 265   |
|----|------------------------------------------------------------------------------------------------------------|-------|
|    | 3.122. Platzhalter Schlüsselqualifikation 1 - T-MATH-108198                                                | 266   |
|    | 3.123. Practical Seminar: Digital Services - T-WIWI-110888                                                 |       |
|    | 3.124. Problemlösung, Kommunikation und Leadership - T-WIWI-102871                                         | 268   |
|    | 3.125. Produktion und Nachhaltigkeit - T-WIWI-102820                                                       | 269   |
|    | 3.126. Programmieren: Einstieg in die Informatik und algorithmische Mathematik - Klausur - T-MATH-106418   | 270   |
|    | 3.127. Programmieren: Einstieg in die Informatik und algorithmische Mathematik - Praktikum - T-MATH-106419 | 271   |
|    | 3.128. Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java - T-WIWI-102747               | 272   |
|    | 3.129. Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware - T-WIWI-102748       |       |
|    | 3.130. Proseminar Mathematik - T-MATH-103404                                                               |       |
|    | 3.131. Rand- und Eigenwertprobleme - T-MATH-105833                                                         |       |
|    | 3.132. Real Estate Management I - T-WIWI-102744                                                            |       |
|    | 3.133. Real Estate Management II - T-WIWI-102745                                                           |       |
|    | 3.134. Rechnungswesen - T-WIWI-102816                                                                      |       |
|    | 3.135. Renewable Energy-Resources, Technologies and Economics - T-WIWI-100806                              |       |
|    | 3.136. Seminar Bachelor - T-MATH-106879                                                                    |       |
|    | 3.137. Seminar Bachelor 1 - T-MATH-106882                                                                  |       |
|    | 3.138. Seminar Bachelor 2 - T-MATH-106883                                                                  |       |
|    | 3.139. Signale und Systeme - T-ETIT-101922                                                                 |       |
|    | 3.140. Software Engineering - T-WIWI-100809                                                                |       |
|    | 3.141. Softwaretechnik I - T-INFO-101968                                                                   |       |
|    | 3.142. Spektraltheorie - Prüfung - T-MATH-103414                                                           |       |
|    | 3.143. Spezialveranstaltung Wirtschaftsinformatik - T-WIWI-109940                                          |       |
|    | 3.144. Standortplanung und strategisches Supply Chain Management - T-WIWI-102704                           |       |
|    | 3.145. Statistik - Klausur - T-MATH-106415                                                                 |       |
|    | 3.146. Statistik - Praktikum - T-MATH-106416                                                               |       |
|    | 3.147. Strategic Finance and Technoloy Change - T-WIWI-110511                                              |       |
|    | 3.148. Strömungslehre 1&2 - T-MACH-105207                                                                  |       |
|    | 3.149. Systemdynamik und Regelungstechnik - T-ETIT-101921                                                  |       |
|    | 3.150. Taktisches und operatives Supply Chain Management - T-WIWI-102714                                   |       |
|    | 3.151. Technische Mechanik I - T-MACH-100282<br>3.152. Technische Mechanik II - T-MACH-100283              |       |
|    | 3.153. Technische Mechanik II - I-MACH-100283                                                              |       |
|    | 3.154. Theoretische Grundlagen der Informatik - T-INFO-103235                                              |       |
|    | 3.155. Übungen zu Technische Mechanik I - T-MACH-100528                                                    |       |
|    | 3.156. Übungen zu Technische Mechanik II - T-MACH-100284                                                   |       |
|    | 3.157. Übungen zu Technische Mechanik III - T-MACH-100264                                                  |       |
|    | 3.158. Übungen zu Technische Mechanik IV - T-MACH-105203                                                   |       |
|    | 3.159. Unternehmensführung und Strategisches Management - T-WIWI-102629                                    |       |
|    | 3.160. Visual Computing - T-WIWI-110108                                                                    |       |
|    | 3.161. Volkswirtschaftslehre I: Mikroökonomie - T-WIWI-102708                                              |       |
|    | 3.162. Volkswirtschaftslehre II: Makroökonomie - T-WIWI-102708                                             |       |
|    | 3.163. Volkswirtschaftslehre III: Einführung in die Ökonometrie - T-WIWI-102736                            |       |
|    | 3.164. Wahrscheinlichkeitstheorie - T-MATH-102257                                                          |       |
|    | 3.165. Wettbewerb in Netzen - T-WIWI-100005                                                                |       |
|    | 3.166. Wohlfahrtstheorie - T-WIWI-102610                                                                   |       |
| 4  | Studienplan                                                                                                |       |
| ~. | Juui5iiplaii                                                                                               | J I I |

# 1 Aufbau des Studiengangs

| Pflichtbestandteile                                                                      |          |
|------------------------------------------------------------------------------------------|----------|
| Bachelorarbeit                                                                           | 12 LP    |
| Mathematische Grundstrukturen ab 1.01.2019 Die Erstverwendung ist ab 01.01.2019 möglich. | 51 LP    |
| Grundlagen Angewandte Mathematik                                                         | 24 LP    |
| Mathematisches Seminar                                                                   | 6 LP     |
| Anwendungsfach                                                                           | 23-31 LP |
| Mathematische Vertiefung                                                                 | 50-58 LP |
| Überfachliche Qualifikationen                                                            | 6 LP     |
| Freiwillige Bestandteile                                                                 |          |
| Zusatzleistungen                                                                         |          |

| 1.1 Bachelorarbeit  | Leistungspunkte |
|---------------------|-----------------|
| 1.1 Dacifetolarbeit | 12              |

| Pflichtbestandteil | e                    |       |
|--------------------|----------------------|-------|
| M-MATH-103701      | Modul Bachelorarbeit | 12 LP |

## 1.2 Mathematische Grundstrukturen ab 1.01.2019

Leistungspunkte

51

**Hinweise zur Verwendung** Die Erstverwendung ist ab 01.01.2019 möglich.

| Pflichtbestandteile |                                                                         |       |
|---------------------|-------------------------------------------------------------------------|-------|
| M-MATH-101309       | Lineare Algebra 1 und 2                                                 | 18 LP |
| M-MATH-101306       | Analysis 1 und 2                                                        | 18 LP |
| M-MATH-101318       | Analysis 3                                                              | 9 LP  |
| M-MATH-103228       | Programmieren: Einstieg in die Informatik und algorithmische Mathematik | 6 LP  |

# 1.3 Grundlagen Angewandte Mathematik

Leistungspunkte

24

| Pflichtbestandteile                                                                 |                              |       |
|-------------------------------------------------------------------------------------|------------------------------|-------|
| M-MATH-101321                                                                       | Einführung in die Stochastik | 6 LP  |
| M-MATH-103214                                                                       | Numerische Mathematik 1+2    | 12 LP |
| Wahlpflichtblock: Wahlpflichtmodul Grundlagen Angewandte Mathematik (1 Bestandteil) |                              |       |
| M-MATH-101322                                                                       | Wahrscheinlichkeitstheorie   | 6 LP  |
| M-MATH-101323                                                                       | Markovsche Ketten            | 6 LP  |

1 AUFBAU DES STUDIENGANGS Mathematisches Seminar

# 1.4 Mathematisches Seminar Leistungspunkte 6

| Pflichtbestandteile |            |      |
|---------------------|------------|------|
| M-MATH-101803       | Proseminar | 3 LP |
| M-MATH-103462       | Seminar    | 3 LP |

1 AUFBAU DES STUDIENGANGS Anwendungsfach

# 1.5 Anwendungsfach

| Wahlpflichtblock: Anwendungsfach (1 Bestandteil) |          |
|--------------------------------------------------|----------|
| Informatik                                       | 23-31 LP |
| Physik                                           | 23-31 LP |
| Wirtschaftswissenschaften                        | 23-31 LP |
| Maschinenbau                                     | 23-31 LP |
| Elektrotechnik und Informationstechnik           | 23-31 LP |

## 1.5.1 Informatik

Bestandteil von: Anwendungsfach

| Wahlpflichtblock: Pflichtbereich Informatik (2 Bestandteile) |                                        |      |
|--------------------------------------------------------------|----------------------------------------|------|
| M-INFO-100030                                                | Algorithmen I                          | 6 LP |
| M-INFO-103456                                                | Grundbegriffe der Informatik           | 6 LP |
| Wahlpflichtblock: Wahlbereich Informatik (mind. 11 LP)       |                                        |      |
| M-INFO-101172                                                | Theoretische Grundlagen der Informatik | 6 LP |
| M-INFO-101173                                                | Algorithmen II                         | 6 LP |
| M-INFO-101178                                                | Kommunikation und Datenhaltung         | 8 LP |
| M-INFO-103453                                                | Softwaretechnik I                      | 6 LP |
| M-INFO-103454                                                | Betriebssysteme                        | 6 LP |
| M-INFO-103455                                                | Einführung in Rechnernetze             | 4 LP |

## 1.5.2 Physik

Bestandteil von: Anwendungsfach

| Wahlpflichtblock: | Theoretische Physik (mindestens 1 Bestandteil)             |      |  |
|-------------------|------------------------------------------------------------|------|--|
| M-PHYS-103180     | Moderne Theoretische Physik I, Quantenmechanik I           | 8 LP |  |
| M-PHYS-101708     | Moderne Theoretische Physik II, Quantenmechanik II         | 6 LP |  |
| M-PHYS-101709     | Moderne Theoretische Physik III, Statistische Physik       | 8 LP |  |
| M-PHYS-103427     | Klassische Theoretische Physik II, Mechanik                | 6 LP |  |
| M-PHYS-103428     | Klassische Theoretische Physik III, Elektrodynamik         | 8 LP |  |
| Wahlpflichtblock: | Experimentalphysik (mindestens 1 Bestandteil)              |      |  |
| M-PHYS-101704     | Moderne Experimentalphysik I, Atome und Kerne              | 8 LP |  |
| M-PHYS-101705     | Moderne Experimentalphysik II, Moleküle und Festkörper     | 8 LP |  |
| M-PHYS-101706     | Moderne Experimentalphysik III, Teilchen und Hadronen      | 6 LP |  |
| M-PHYS-103423     | Klassische Experimentalphysik I, Mechanik                  | 8 LP |  |
| M-PHYS-103424     | Klassische Experimentalphysik II, Elektrodynamik           | 7 LP |  |
| M-PHYS-103425     | Klassische Experimentalphysik III, Optik und Thermodynamik | 9 LP |  |
| Wahlpflichtblock: | Wahlpflichtblock: Wahlmodul Theoretische Physik ()         |      |  |
| M-PHYS-103426     | Klassische Theoretische Physik I, Einführung               | 6 LP |  |

1 AUFBAU DES STUDIENGANGS Anwendungsfach

## 1.5.3 Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach

| Wahlpflichtblock | Betriebswirtschaftslehre/Volkswirtschaftslehre (zwischen 10 und 15 LP)                |                |
|------------------|---------------------------------------------------------------------------------------|----------------|
| M-WIWI-101494    | Grundlagen BWL 1                                                                      | 7 LP           |
| M-WIWI-101578    | Grundlagen BWL 2                                                                      | 8 LP           |
| M-WIWI-101398    | Einführung in die Volkswirtschaftslehre                                               | 10 LP          |
| Wahlpflichtblock | Wahlmodule Wirtschaftswissenschaften (zwischen 1 und 2 Bestandteilen sowie mind. 8 LF | <del>)</del> ) |
| M-WIWI-101399    | Vertiefung Informatik                                                                 | 9 LP           |
| M-WIWI-101402    | eFinance                                                                              | 9 LP           |
| M-WIWI-101403    | Finanzwissenschaft                                                                    | 9 LP           |
| M-WIWI-101413    | Anwendungen des Operations Research                                                   | 9 LP           |
| M-WIWI-103396    | Einführung in die Volkswirtschaftslehre: VWL I                                        | 5 LP           |
| M-WIWI-101414    | Methodische Grundlagen des OR                                                         | 9 LP           |
| M-WIWI-101421    | Supply Chain Management                                                               | 9 LP           |
| M-WIWI-101423    | Topics in Finance II                                                                  | 9 LP           |
| M-WIWI-101424    | Grundlagen des Marketing                                                              | 9 LP           |
| M-WIWI-101425    | Strategie und Organisation                                                            | 9 LP           |
| M-WIWI-101434    | eBusiness und Service Management                                                      | 9 LP           |
| M-WIWI-101435    | Essentials of Finance                                                                 | 9 LP           |
| M-WIWI-101437    | Industrielle Produktion I                                                             | 9 LP           |
| M-WIWI-101464    | Energiewirtschaft                                                                     | 9 LP           |
| M-WIWI-101465    | Topics in Finance I                                                                   | 9 LP           |
| M-WIWI-101466    | Real Estate Management                                                                | 9 LP           |
| M-WIWI-101467    | Bauökologie                                                                           | 9 LP           |
| M-WIWI-101494    | Grundlagen BWL 1                                                                      | 7 LP           |
| M-WIWI-101498    | Controlling (Management Accounting)                                                   | 9 LP           |
| M-WIWI-101499    | Angewandte Mikroökonomik                                                              | 9 LP           |
| M-WIWI-101501    | Wirtschaftstheorie                                                                    | 9 LP           |
| M-WIWI-101513    | Personal und Organisation                                                             | 9 LP           |
| M-WIWI-101578    | Grundlagen BWL 2                                                                      | 8 LP           |
| M-WIWI-101668    | Wirtschaftspolitik I                                                                  | 9 LP           |
| M-WIWI-102752    | Fundamentals of Digital Service Systems                                               | 9 LP           |
| M-WIWI-103278    | Optimierung unter Unsicherheit                                                        | 9 LP           |
| M-WIWI-101398    | Einführung in die Volkswirtschaftslehre                                               | 10 LP          |

## 1.5.4 Maschinenbau

Bestandteil von: Anwendungsfach

| Pflichtbestandteile |                                               |       |  |  |
|---------------------|-----------------------------------------------|-------|--|--|
| M-MACH-100279       | Technische Mechanik I                         | 7 LP  |  |  |
| M-MACH-100284       | Technische Mechanik II                        | 6 LP  |  |  |
| M-MACH-102382       | Technische Mechanik III und IV                | 10 LP |  |  |
| Wahlpflichtblock:   | Wahlpflichtblock: Wahlbereich Maschinenbau () |       |  |  |
| M-MACH-101299       | Maschinenkonstruktionslehre                   | 8 LP  |  |  |
| M-MACH-102564       | Mess- und Regelungstechnik                    | 7 LP  |  |  |
| M-MACH-102565       | Strömungslehre                                | 8 LP  |  |  |

1 AUFBAU DES STUDIENGANGS Anwendungsfach

# 1.5.5 Elektrotechnik und Informationstechnik

**Bestandteil von: Anwendungsfach** 

| Wahlpflichtblock: Pflichtbereich Elektrotechnik und Informationstechnik (3 Bestandteile) |                                                                         |      |  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------|--|
| M-ETIT-101845                                                                            | Lineare Elektrische Netze                                               | 7 LP |  |
| M-ETIT-102102                                                                            | Digitaltechnik                                                          | 6 LP |  |
| M-ETIT-102164                                                                            | Elektronische Schaltungen                                               | 6 LP |  |
| Wahlpflichtblock: Wahlpflichtbereich Elektrotechnik und Informationstechnik (mind. 4 LP) |                                                                         |      |  |
| M-ETIT-102123                                                                            | Signale und Systeme                                                     | 6 LP |  |
| M-ETIT-102181                                                                            | Systemdynamik und Regelungstechnik                                      | 6 LP |  |
| M-ETIT-104428                                                                            | Elektromagnetische Felder Die Erstverwendung ist ab 01.04.2019 möglich. | 6 LP |  |
| M-ETIT-104515                                                                            | Elektromagnetische Wellen Die Erstverwendung ist ab 01.04.2019 möglich. | 6 LP |  |

# 1.6 Mathematische Vertiefung

| Wahlpflichtblock: | Gebiet Algebra und Geometrie (mind. 8 LP)                                            |       |
|-------------------|--------------------------------------------------------------------------------------|-------|
| M-MATH-101314     | Einführung in die Algebra und Zahlentheorie                                          | 8 LP  |
| M-MATH-101315     | Algebra                                                                              | 8 LP  |
| M-MATH-101317     | Differentialgeometrie                                                                | 8 LP  |
| M-MATH-101336     | Graphentheorie                                                                       | 8 LP  |
| M-MATH-102867     | Geometrische Gruppentheorie                                                          | 8 LP  |
| M-MATH-102948     | Algebraische Topologie                                                               | 8 LP  |
| M-MATH-102950     | Kombinatorik                                                                         | 8 LP  |
| M-MATH-102957     | Extremale Graphentheorie                                                             | 8 LP  |
| M-MATH-103152     | Elementare Geometrie                                                                 | 8 LP  |
| M-MATH-103464     | Hyperbolische Geometrie                                                              | 8 LP  |
| M-MATH-104261     | Lie Gruppen und Lie Algebren Die Erstverwendung ist ab 01.10.2018 möglich.           | 8 LP  |
| Wahlpflichtblock: | Gebiet Analysis (mind. 8 LP)                                                         |       |
| M-MATH-101320     | Funktionalanalysis                                                                   | 8 LP  |
| M-MATH-101768     | Spektraltheorie                                                                      | 8 LP  |
| M-MATH-102870     | Klassische Methoden für partielle Differentialgleichungen                            | 8 LP  |
| M-MATH-102871     | Rand- und Eigenwertprobleme                                                          | 8 LP  |
| M-MATH-102874     | Integralgleichungen                                                                  | 8 LP  |
| M-MATH-102923     | Geometrische Analysis                                                                | 8 LP  |
| M-MATH-103164     | Analysis 4                                                                           | 8 LP  |
| M-MATH-102890     | Inverse Probleme Die Erstverwendung ist ab 20.08.2018 möglich.                       | 8 LP  |
| M-MATH-105652     | Modelle der mathematischen Biologie<br>Die Erstverwendung ist ab 01.04.2021 möglich. | 4 LP  |
|                   | Gebiet Angewandte und Numerische Mathematik ()                                       |       |
| M-MATH-103219     | Optimierungstheorie                                                                  | 8 LP  |
| M-MATH-102888     | Numerische Methoden für Differentialgleichungen                                      | 8 LP  |
| M-MATH-102889     | Einführung in das Wissenschaftliche Rechnen                                          | 8 LP  |
| M-MATH-102890     | Inverse Probleme                                                                     | 8 LP  |
| M-MATH-102935     | Compressive Sensing                                                                  | 5 LP  |
|                   | Gebiet Stochastik ()                                                                 |       |
| M-MATH-102919     | Finanzmathematik in diskreter Zeit                                                   | 8 LP  |
| M-MATH-103220     | Statistik                                                                            | 10 LP |
| M-MATH-101322     | Wahrscheinlichkeitstheorie                                                           | 6 LP  |
| M-MATH-101323     | Markovsche Ketten                                                                    | 6 LP  |
| Wahlpflichtblock: |                                                                                      |       |
| M-MATH-103465     | Seminar                                                                              | 3 LP  |
| M-MATH-103467     | Seminar                                                                              | 3 LP  |

# 1.7 Überfachliche Qualifikationen

Leistungspunkte

6

| Pflichtbestandteile |                          |      |
|---------------------|--------------------------|------|
| M-MATH-103998       | Schlüsselqualifikationen | 6 LP |

1 AUFBAU DES STUDIENGANGS Zusatzleistungen

# 1.8 Zusatzleistungen

| Wahlpflichtblock: Zusatzmodule (max. 30 LP) |                    |       |  |
|---------------------------------------------|--------------------|-------|--|
| M-MATH-103943                               | Weitere Leistungen | 30 LP |  |

## 2 Module



## 2.1 Modul: Algebra [M-MATH-101315]

**Verantwortung:** Prof. Dr. Frank Herrlich **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 8               | Jedes Wintersemester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |         |      |                    |  |
|---------------------|---------|------|--------------------|--|
| T-MATH-102253       | Algebra | 8 LP | Herrlich, Kühnlein |  |

## Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

## Qualifikationsziele

Absolventinnen und Absolventen können

- · wesentliche Konzepte der Algebra nennen und erörtern,
- den Aufbau der Galoistheorie nachvollziehen und ihre Aussagen auf konkrete Fragestellungen anwenden,
- grundlegende Resultate über Bewertungsringe und ganze Ringerweiterungen nennen und zueinander in Beziehung setzen,
- und sind darauf vorbereitet, eine Abschlussarbeit im Bereich Algebra zu schreiben

## Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

## Voraussetzungen

Keine

## Inhalt

- Körper: algebraische Körpererweiterungen, Galoistheorie, Einheitswurzeln und Kreisteilung, Lösen von Gleichungen durch Radikale
- Bewertungen: Beträge, Bewertungsringe
- Ringtheorie: Tensorprodukt von Moduln, ganze Ringerweiterungen, Normalisierung, noethersche Ringe, Hilbertscher Basissatz

## **Empfehlungen**

Das Modul "Einführung in Algebra und Zahlentheorie" sollte bereits belegt worden sein.

## Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



## 2.2 Modul: Algebraische Topologie [M-MATH-102948]

**Verantwortung:** Prof. Dr Roman Sauer **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus       | Dauer      | Level | Version |
|-----------------|--------------|------------|-------|---------|
| 8               | Unregelmäßig | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                        |      |                 |
|---------------------|------------------------|------|-----------------|
| T-MATH-105915       | Algebraische Topologie | 8 LP | Kammeyer, Sauer |

## Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von 120 min.

## Qualifikationsziele

Absolventinnen und Absolventen

- · können die Fundamentalgruppe grundlegender Beispielsräume berechnen,
- beherrschen grundlegende Konzepte der Überlagerungstheorie,
- · können selbstorganisiert und reflexiv arbeiten.

## Zusammensetzung der Modulnote

Notenbildung: Note der Prüfung

## Voraussetzungen

Keine

#### Inhalt

- · Satz von Seifert und van Kampen
- Fundamentalgruppe und Überlagerungstheorie
- · Klassifikation von Flächen

## **Anmerkungen**

Wird jedes 4. Semester angeboten, jeweils im Sommersemester.

## **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



## 2.3 Modul: Algorithmen I [M-INFO-100030]

**Verantwortung:** Prof. Dr. Peter Sanders **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Anwendungsfach / Informatik (Pflichtbereich Informatik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |               |      |         |
|---------------------|---------------|------|---------|
| T-INFO-100001       | Algorithmen I | 6 LP | Sanders |

## Erfolgskontrolle(n)

Siehe Teilleistung

## Qualifikationsziele

Der/die Studierende

- kennt und versteht grundlegende, häufig benötigte Algorithmen, ihren Entwurf, Korrektheits- und Effizienzanalyse, Implementierung, Dokumentierung und Anwendung,
- kann mit diesem Verständnis auch neue algorithmische Fragestellungen bearbeiten,
- wendet die im Modul Grundlagen der Informatik (Bachelor Informationswirtschaft / Wirtschaftsinformatik ) erworbenen Programmierkenntnisse auf nichttriviale Algorithmen an.
- wendet die in Grundbegriffe der Informatik und den Mathematikvorlesungen erworbenen mathematischen Herangehensweise an die Lösung von Problemen an. Schwerpunkte sind hier formale Korrektheitsargumente und eine mathematische Effizienzanalyse.

## Voraussetzungen

Siehe Teilleistung

#### Inhalt

Dieses Modul soll Studierenden grundlegende Algorithmen und Datenstrukturen vermitteln.

Die Vorlesung behandelt unter anderem:

- · Grundbegriffe des Algorithm Engineering
- Asymptotische Algorithmenanalyse (worst case, average case, probabilistisch, amortisiert)
- Datenstrukturen z.B. Arrays, Stapel, Warteschlangen und Verkettete Listen
- Hashtabellen
- Sortieren: vergleichsbasierte Algorithmen (z.B. quicksort, insertionsort), untere Schranken, Linearzeitalgorithmen (z.B. radixsort)
- Prioritätslisten
- · Sortierte Folgen, Suchbäume und Selektion
- · Graphen (Repräsentation, Breiten-/Tiefensuche, Kürzeste Wege, Minimale Spannbäume)
- · Generische Optimierungsalgorithmen (Greedy, Dynamische Programmierung, systematische Suche, Lokale Suche)
- · Geometrische Algorithmen

## **Empfehlungen**

Siehe Teilleistung

## **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Vorlesung mit 3 SWS + 1 SWS Übung.

- 6 LP entspricht ca. 180 Stunden
- ca. 45 Std. Vorlesungsbesuch,
- ca. 15 Std. Übungsbesuch,
- ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter
- ca. 30 Std. Prüfungsvorbereitung



## 2.4 Modul: Algorithmen II [M-INFO-101173]

Verantwortung: Prof. Dr. Hartmut Prautzsch

Prof. Dr. Peter Sanders Prof. Dr. Dorothea Wagner

**Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Anwendungsfach / Informatik (Wahlbereich Informatik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                |      |                     |  |
|---------------------|----------------|------|---------------------|--|
| T-INFO-102020       | Algorithmen II | 6 LP | Prautzsch, Sanders, |  |
|                     |                |      | Wagner              |  |

## Erfolgskontrolle(n)

Siehe Teilleistung.

## **Oualifikationsziele**

Der/die Studierende besitzt einen vertieften Einblick in die theoretischen und praktischen Aspekte der Algorithmik und kann algorithmische Probleme in verschiedenen Anwendungsgebieten identifizieren und formal formulieren. Außerdem kennt er/sie weiterführende Algorithmen und Datenstrukturen aus den Bereichen Graphenalgorithmen, Algorithmische Geometrie, String-Matching,

Algebraische Algorithmen, Kombinatorische Optimierung und Algorithmen für externen Speicher. Er/Sie kann unbekannte Algorithmen eigenständig verstehen, sie den genannten Gebieten zuordnen, sie anwenden, ihre Laufzeit bestimmen, sie beurteilen sowie geeignete

Algorithmen für gegebene Anwendungen auswählen. Darüber hinaus ist der/die Studierende in der Lage bestehende Algorithmen auf verwandte Problemstellungen zu übertragen.

Neben Algorithmen für konkrete Problemstellungen kennt der/die Studierende fortgeschrittene Techniken des algorithmischen Entwurfs. Dies umfasst parametrisierte Algorithmen, approximierende Algorithmen, Online-Algorithmen, randomisierte Algorithmen, parallele Algorithmen, lineare Programmierung, sowie Techniken des Algorithme Engenieering. Für gegebene Algorithmen kann der/die Studierende eingesetzte Techniken identifizieren und damit diese Algorithmen besser verstehen. Darüber hinaus kann er für eine gegebene Problemstellung geeignete Techniken auswählen und sie nutzen, um eigene Algorithmen zu entwerfen.

## Voraussetzungen

Siehe Teilleistung.

#### Inhalt

Dieses Modul soll Studierenden die grundlegenden theoretischen und praktischen Aspekte der Algorithmentechnik vermitteln. Es werden generelle Methoden zum Entwurf und der Analyse von Algorithmen für grundlegende algorithmische Probleme vermittelt sowie die Grundzüge allgemeiner algorithmischer Methoden wie Approximationsalgorithmen, Lineare Programmierung, Randomisierte Algorithmen, Parallele Algorithmen und parametrisierte Algorithmen behandelt.

## **Anmerkungen**

Im Bachelor-Studiengang SPO 2008 ist das Modul Algorithmen II ein Pflichtmodul.

## **Arbeitsaufwand**

Vorlesung mit 3 SWS + 1 SWS Übung. 6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung



## 2.5 Modul: Analysis 1 und 2 [M-MATH-101306]

**Verantwortung:** Prof. Dr. Michael Plum **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Grundstrukturen ab 1.01.2019

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 18              | Jedes Wintersemester | 2 Semester | 3     | 2       |

| Pflichtbestandteil | e                       |                  |                                                                          |
|--------------------|-------------------------|------------------|--------------------------------------------------------------------------|
| T-MATH-106335      | Analysis 1 - Klausur    | Hu<br>Pli<br>Sci | ey, Herzog,<br>ındertmark, Lamm,<br>um, Reichel,<br>hmoeger,<br>hnaubelt |
| T-MATH-106336      | Analysis 2 - Klausur    | Hu<br>Plu<br>Sci | ey, Herzog,<br>Indertmark, Lamm,<br>um, Reichel,<br>hmoeger,<br>hnaubelt |
| T-MATH-102235      | Analysis 1 Übungsschein | Hu<br>Pli<br>Sci | ey, Herzog,<br>ındertmark, Lamm,<br>um, Reichel,<br>hmoeger,<br>hnaubelt |
| T-MATH-102236      | Analysis 2 Übungsschein | Hu<br>Plu<br>Sci | ey, Herzog,<br>ındertmark, Lamm,<br>um, Reichel,<br>hmoeger,<br>hnaubelt |

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen von jeweils 120 Minuten Dauer sowie den beiden bestandenen Studienleistungen aus den Übungen.

## Qualifikationsziele

Die Studierenden können einfache Beweise führen und dabei mathematische Aussagen formal korrekt ausdrücken und die Grundregeln der elementaren Logik anwenden. Sie beherrschen insbesondere das Beweisprinzip der vollständigen Induktion. Sie können die zentralen Aussagen zur Konvergenz von Folgen von Reihen und Funktionen erläutern und damit Beispiele behandeln. Die wichtigen Eigenschaften der elementaren Funktionen können sie wiedergeben. Die Theorie der Stetigkeit und Differenzierbarkeit können sie im skalaren und im vektorwertigen Fall beschreiben und daraus Eigenschaften von Funktionen herleiten. Die Studierenden sind in der Lage, die topologischen Grundbegriffe im Rahmen der normierten Vektorräume zu diskutieren und bei einfachen Beispielen zu verwenden. Sie können eindimensionale Integrale und Kurvenintegrale berechnen und die zugrunde liegende Theorie erläutern. Sie können die grundlegenden Existenzaussagen zu gewöhnlichen Differentialgleichungen beschreiben und damit Anwendungsbeispiele lösen.

## Zusammensetzung der Modulnote

Die Modulnote ist die Durchschnittsnote der beiden Teilprüfungen.

Beide Teilprüfungen sind getrennt zu bestehen.

## Voraussetzungen

Keine

## Inhalt

- · Vollständige Induktion, reelle und komplexe Zahlen,
- Konvergenz von Folgen, Zahlenreihen, Potenzreihen
- Elementare Funktionen
- · Stetigkeit reeller Funktionen
- Differentiation reeller Funktionen, Satz von Taylor
- Integration reeller Funktionen, uneigentliches Integral
- Konvergenz von Funktionenfolgen- und reihen
- Normierte Vektorräume, topologische Grundbegriffe, Fixpunktsatz von Banach
- Mehrdimensionale Differentiation, implizit definierte Funktionen, Extrema ohne/mit Nebenbedingungen
- · Kurvenintegral, Wegunabhängigkeit
- Lineare gewöhnliche Differentialgleichungen, Trennung der Variablen, Satz von Picard und Lindelöf.

## **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 540 Stunden

Präsenzzeit: 240 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 300 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung der Vorlesungsinhalte
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



## 2.6 Modul: Analysis 3 [M-MATH-101318]

**Verantwortung:** Prof. Dr. Wolfgang Reichel **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Grundstrukturen ab 1.01.2019

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 9               | Jedes Wintersemester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                      |      |                                                                                   |  |
|---------------------|----------------------|------|-----------------------------------------------------------------------------------|--|
| T-MATH-102245       | Analysis 3 - Klausur | 9 LP | Frey, Herzog,<br>Hundertmark, Lamm,<br>Plum, Reichel,<br>Schmoeger,<br>Schnaubelt |  |

### Erfolgskontrolle(n)

Die Modulprüfung erfogt in Form einer schriftlichen Gesamtprüfung (120min).

### Qualifikationsziele

Absolventinnen und Absolventen können

- das Problem des Messens von Inhalten von Mengen beurteilen
- die Konstruktion des Lebesgueschen Masses, des Lebesgueschen Integrals und des Oberflächenintegrals reproduzieren und grundlegende Eigenschaften nennen
- · Volumina von Körpern und mehrdimensionale Integrale berechnen
- Integralsätze erläutern und anwenden
- · Aussagen zur Konvergenz von Fourierreihen treffen.

## Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

## Voraussetzungen

Keine

#### Inhalt

- · Messbare Mengen, messbare Funktionen
- · Lebesguesche Mass, Lebesguesches Integral
- · Konvergenzsätze für Lebesgue Integrale
- Prinzip von Cavalieri, Satz von Fubini
- Transformationssatz
- Divergenzsatz (Gausscher Integralsatz)
- Satz von Stokes
- Fourierreihen

## **Empfehlungen**

Folgende Module sollten bereits belegt worden sein:

Analysis 1 und 2

Lineare Algebra 1 und 2

## **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 270 Stunden

Präsenzzeit: 120 Stunden

• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



## 2.7 Modul: Analysis 4 [M-MATH-103164]

**Verantwortung:** Prof. Dr. Roland Schnaubelt **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Analysis)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                      |      |                                                                                   |  |
|---------------------|----------------------|------|-----------------------------------------------------------------------------------|--|
| T-MATH-106286       | Analysis 4 - Prüfung | 8 LP | Frey, Herzog,<br>Hundertmark, Lamm,<br>Plum, Reichel,<br>Schmoeger,<br>Schnaubelt |  |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

#### Qualifikationsziele

Die Studierenden können einfache Anwendungsprobleme als gewöhnliche Differentialgleichungen modellieren. Für Anfangswertprobleme können sie die Existenz und Eindeutigkeit der Lösungen nachweisen. Sie sind in der Lage qualitative Eigenschaften der Lösungen mit Hilfe der Phasenebene zu analysieren und die Stabilität von Fixpunkten bestimmen. Sie können lineare Randwertprobleme auf ihre Lösbarkeit untersuchen und beherrschen einfache Lösungsmethoden für elementare partielle Differentialgleichungen.

Die Studierenden verstehen den grundsätzlichen Unterschied zwischen reeller und komplexer Funktionentheorie. Anhand von Reihendarstellungen und dem Satz von Cauchy können sie die besonderen Eigenschaften holomorpher Funktionen begründen und die Hauptsätze der Funktionentheorie ableiten. Sie können isolierte Singularitäten bestimmen und damit reelle Integrale berechnen.

## Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

## Voraussetzungen

Keine

#### Inhalt

- Modellierung mit Differentialgleichungen
- Existenztheorie
- · Phasenebene, Stabilität
- Randwertprobleme, elementare partielle Differentialgleichungen
- Holomorphie
- Integralsatz und -formel von Cauchy
- Hauptsätze der Funktionentheorie
- isolierte Singularitäten, reelle Integrale

## Empfehlungen

Empfehlung: Analysis 1-3, Lineare Algebra 1+2.

## **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



## 2.8 Modul: Angewandte Mikroökonomik [M-WIWI-101499]

Verantwortung: Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch | 3     | 3       |

| Wahlpflichtblock: Wahlpflichtangebot (mind. 9 LP) |                                                          |        |             |
|---------------------------------------------------|----------------------------------------------------------|--------|-------------|
| T-WIWI-102876                                     | Auction & Mechanism Design                               | 4,5 LP | Szech       |
| T-WIWI-102892                                     | Economics and Behavior                                   | 4,5 LP | Szech       |
| T-WIWI-102850                                     | Einführung in die Spieltheorie                           | 4,5 LP | Puppe, Reiß |
| T-WIWI-102792                                     | Entscheidungstheorie                                     | 4,5 LP | Ehrhart     |
| T-WIWI-102844                                     | Industrieökonomie                                        | 4,5 LP | Reiß        |
| T-WIWI-102739                                     | Öffentliche Einnahmen                                    | 4,5 LP | Wigger      |
| T-WIWI-102736                                     | Volkswirtschaftslehre III: Einführung in die Ökonometrie | 5 LP   | Schienle    |
| T-WIWI-100005                                     | Wettbewerb in Netzen                                     | 4,5 LP | Mitusch     |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

## Qualifikationsziele

Der/die Studierende

- besitzt fundierte Kenntnisse in der Theorie strategischer Entscheidungen. Ein Hörer der Vorlesung "Einführung in die Spieltheorie" ist in der Lage, allgemeine strategische Fragestellungen systematisch zu analysieren und gegebenenfalls Handlungsempfehlungen für konkrete volkswirtschaftliche Entscheidungssituationen (wie kooperatives vs. egoistisches Verhalten) zu geben, (Lehrveranstaltung "Einführung in die Spieltheorie");
- erkennt die Grundprobleme des unvollkommenen Wettbewerbs und deren wirtschaftspolitische Implikationen und kann Lösungsmöglichkeiten anbieten, (Lehrveranstaltung "Industrieökonomik");
- erlangt ein grundlegendes ökonomisches Verständnis für Netzwerkindustrien wie Telekom-, Versorgungs-, IT- und Verkehrssektoren. Insbesondere gewinnt er/sie eine plastische Vorstellung von den besonderen Charakteristika von Netzwerkindustrien hinsichtlich Planung, Wettbewerb, Wettbewerbsverzerrung und staatlichem Eingriff. Die Hörer sind in der Lage, abstrakte Konzepte und formale Methoden auf diese Anwendungsfelder zu übertragen, (Lehrveranstaltung "Wettbewerb in Netzen");
- besitzt weiterführende Kenntnisse in der Theorie und Politik der Besteuerung und der Staatsverschuldung, beurteilt die allokativen und distributiven Effekte verschiedener Besteuerungsarten und kennt Umfang, Struktur und Formen der staatlichen Kreditaufnahme und kann mögliche Langzeitfolgen und Nachhaltigkeit der öffentlichen Kreditaufnahme benennen.

## Voraussetzungen

Keine.

#### Inhalt

Hauptziel des Moduls ist die Vertiefung der Kenntnisse in verschiedenen Anwendungsgebieten der mikroökonomischen Theorie. Die Teilnehmer sollen die Konzepte und Methoden der mikroökonomischen Analyse zu beherrschen lernen und in die Lage versetzt werden, diese auf reale Probleme anzuwenden.

## **Empfehlungen**

Der vorherige Besuch des Moduls Volkswirtschaftslehre wird vorausgesetzt.

## Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden.

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



## 2.9 Modul: Anwendungen des Operations Research [M-WIWI-101413]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |  |
|-----------------|----------------|------------|---------|-------|---------|--|
| 9               | Jedes Semester | 1 Semester | Deutsch | 3     | 9       |  |

| Wahlpflichtblock: Wahlpflichtangebot (zwischen 1 und 2 Bestandteilen) |                                                               |        |           |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------|--------|-----------|--|--|
| T-WIWI-102704                                                         | Standortplanung und strategisches Supply Chain Management     | 4,5 LP | Nickel    |  |  |
| T-WIWI-102714                                                         | Taktisches und operatives Supply Chain Management             | 4,5 LP | Nickel    |  |  |
| Wahlpflichtblock: Er                                                  | Wahlpflichtblock: Ergänzungsangebot (höchstens 1 Bestandteil) |        |           |  |  |
| T-WIWI-102726                                                         | Globale Optimierung I                                         | 4,5 LP | Stein     |  |  |
| T-WIWI-106199                                                         | Modellieren und OR-Software: Einführung                       | 4,5 LP | Nickel    |  |  |
| T-WIWI-106545                                                         | Optimierungsansätze unter Unsicherheit                        | 4,5 LP | Rebennack |  |  |

## Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

## Qualifikationsziele

Der/ die Studierende

- · ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagement vertraut,
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.

#### Voraussetzungen

Pflicht ist mindestens eine der Teilleistungen "Standortplanung und strategisches Supply Chain Management" sowie "Taktisches und operatives Supply Chain Management".

## Inhalt

Supply Chain Management befasst sich mit der Planung und Optimierung des gesamten, unternehmensübergreifenden Beschaffungs-, Herstellungs- und Distributionsprozesses mehrerer Produkte zwischen allen beteiligten Geschäftspartnern (Lieferanten, Logistikdienstleistern, Händlern). Ziel ist es, unter Berücksichtigung verschiedenster Rahmenbedingungen die Befriedigung der (Kunden-) Bedarfe, so dass die Gesamtkosten minimiert werden.

Dieses Modul befasst sich mit mehreren Teilgebieten des Supply Chain Management. Zum einen mit der Bestimmung optimaler Standorte innerhalb von Supply Chains. Diese strategischen Entscheidungen über die die Platzierung von Anlagen wie Produktionsstätten, Vertriebszentren und Lager u.ä., sind von großer Bedeutung für die Rentabilität von Supply Chains. Sorgfältig durchgeführte Standortplanungen erlauben einen effizienteren Materialfluss und führen zu verringerten Kosten und besserem Kundenservice. Einen weiteren Schwerpunkt bildet die Planung des Materialtransports im Rahmen des Supply Chain Managements. Durch eine Aneinanderreihung von Transportverbindungen und Zwischenstationen wird die Lieferstelle (Produzent) mit der Empfangsstelle (Kunde) verbunden. Es wird betrachtet, wie für vorgegebene Warenströme oder Sendungen aus den möglichen Logistikketten die optimale Liefer- und Transportkette auszuwählen ist, die bei Einhaltung der geforderten Lieferzeiten und Randbedingungen zu den geringsten Kosten führt.

Darüber hinaus bietet das Modul die Möglichkeit verschiedene Aspekte der taktischen und operativen Planungsebene im Supply Chain Management kennenzulernen. Hierzu gehören v.a. Methoden des Schedulings sowie verschiedene Vorgehensweisen in der Beschaffungs- und Distributionslogistik. Fragestellungen der Warenhaltung und des Lagerhaltungsmanagements werden ebenfalls angesprochen.

## **Empfehlungen**

Kenntnisse aus den Vorlesungen "Einführung in das Operations Research I" sowie "Einführung in das Operations Research II" sind hilfreich.

## **Anmerkungen**

Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

#### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5 Leistungspunkten ca. 150 Stunden, für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



## 2.10 Modul: Bauökologie [M-WIWI-101467]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 2 Semester | Deutsch | 3     | 3       |

| Pflichtbestandteile |                |        |             |  |
|---------------------|----------------|--------|-------------|--|
| T-WIWI-102742       | Bauökologie I  | 4,5 LP | Lützkendorf |  |
| T-WIWI-102743       | Bauökologie II | 4,5 LP | Lützkendorf |  |

## Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

## Qualifikationsziele

Der/die Studierende

- kennt die Grundlagen des nachhaltigen Planens, Bauens und Betreibens von Gebäuden mit einem Schwerpunkt im Themenbereich Bauökologie
- besitzt Kenntnisse über die bauökologischen Bewertungsmethoden sowie Hilfsmittel zur Planung und Bewertung von Gebäuden
- ist in der Lage, diese Kenntnisse zur Beurteilung der ökologischen Vorteilhaftigkeit sowie des Beitrages zu einer nachhaltigen Entwicklung von Immobilien einzusetzen.

## Voraussetzungen

Keine

### Inhalt

Nachhaltiges Planen, Bauen und Betreiben von Immobilien sowie "green buildings" und "sustainable buildings" sind z.Z. die beherrschenden Themen in der Immobilienbranche. Diese Themen sind nicht nur für Planer sondern insbesondere auch für Akteure von Interesse, die sich künftig mit der Entwicklung, Finanzierung und Versicherung von Immobilien beschäftigen oder mit der Steuerung von Gebäudebeständen und Immobilienfonds betraut sind.

Das Lehrangebot vermittelt einerseits die Grundlagen des energiesparenden, ressourcenschonenden und gesundheitsgerechten Planens, Bauens und Betreibens. Andererseits werden bewertungsmethodische Grundlagen für die Analyse und Kommunikation der ökologischen Vorteilhaftigkeit von Lösungen erörtert. Mit den Grundlagen für die Zertifizierung der Nachhaltigkeit von Gebäuden werden Kenntnisse erworben, die momentan stark nachgefragt werden.

Zur Veranschaulichung der Lehrinhalte des Moduls werden Videos und Simulationstools eingesetzt.

## **Empfehlungen**

Es wird eine Kombination mit dem Modul *Real Estate Management* empfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- Industrielle Produktion (Stoff- und Energieflüsse in der Ökonomie, Stoff- und Energiepolitik, Emissionen in die Umwelt)
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion)

## **Arbeitsaufwand**

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



## 2.11 Modul: Betriebssysteme [M-INFO-103454]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Anwendungsfach / Informatik (Wahlbereich Informatik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                 |      |         |
|---------------------|-----------------|------|---------|
| T-INFO-101969       | Betriebssysteme | 6 LP | Bellosa |

## Erfolgskontrolle(n)

Siehe Teilleistung

## Qualifikationsziele

Die Studierenden beschreiben die grundlegenden Mechanismen und Strategien eines Betriebssystems. Die Studierenden zeigen die Abläufe in den einzelnen Komponenten eines Betriebssystems auf und verfolgen die Interaktion über genormte Schnittstellen.

Die Studierenden nutzen praktisch die Systemschnittstelle, um Dienste vom Betriebssystem anzufordern. Dazu entwerfen und implementieren die Studierenden kleine Anwendung und nutzen dabei Systemaufrufe.

## Voraussetzungen

Siehe Teilleistung

#### Inhalt

Studierende beschreiben Mechanismen, Verfahren und Kontrollstrukturen in folgenden Betriebssystemkomponenten:

- Prozessverwaltung
- Synchronisation
- Speicherverwaltung
- Dateisystem
- I/O Verwaltung

## **Empfehlungen**

Siehe Teilleistung.

## Anmerkungen

Die semesterbegleitenden Übungsaufgaben sind freiwillig. Der Schein wird durch eine Schein-Klausur (Programmierklausur) erlangt. Dabei werden die handwerklichen Fertigkeiten der Systemprogrammierung abgeprüft.

## **Arbeitsaufwand**

60 h 4 SWS \* 15 Nachbearbeitung 60 h 4 h \* 15 Nachbearbeitung 30 h 2 h \* 15 Tutorium 30 h Klausurvorbereitung 180 h = 6 ECTS



## 2.12 Modul: Compressive Sensing [M-MATH-102935]

**Verantwortung:** Prof. Dr. Andreas Rieder **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Angewandte und Numerische Mathematik)

| Leistungspunkte | Turnus       | Dauer      | Level | Version |
|-----------------|--------------|------------|-------|---------|
| 5               | Unregelmäßig | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                     |      |        |
|---------------------|---------------------|------|--------|
| T-MATH-105894       | Compressive Sensing | 5 LP | Rieder |

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

## Qualifikationsziele

Absolventinnen und Absolventen können die Ideen des Compressive Sensing erläutern und Anwendungsgebiete nennen. Die grundlegenden Algorithmen können sie anwenden, vergleichen und ihr Konvergenzverhalten analysieren.

## Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

## Voraussetzungen

Keine

## Inhalt

- Was ist Compressive Sensing und wo kommt es zum Einsatz
- · Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme
- Grundlegende Algorithmen
- · Restricted Isometry Property
- · Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme mit Zufallsmatrizen

#### **Empfehlungen**

Das Modul "Einführung in die Stochastik" ist hilfreich.

## **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 150 Stunden

Präsenzzeit: 60 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



## 2.13 Modul: Controlling (Management Accounting) [M-WIWI-101498]

Verantwortung: Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache  | Level | Version |
|-----------------|----------------|------------|----------|-------|---------|
| 9               | Jedes Semester | 2 Semester | Englisch | 3     | 2       |

| Pflichtbestandteile |                         |        |         |  |
|---------------------|-------------------------|--------|---------|--|
| T-WIWI-102800       | Management Accounting 1 | 4,5 LP | Wouters |  |
| T-WIWI-102801       | Management Accounting 2 | 4,5 LP | Wouters |  |

## Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 13 SPO) über die Lehrveranstaltungen des Moduls. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

## Qualifikationsziele

Die Studierenden

- sind vertraut mit verschiedenen Methoden des "Management Accounting",
- können diese Methoden zur Kostenschätzung, Profitabilitätsanalyse und Kostenrechnung anwenden,
- sind fähig mit diesen Methoden kurz- und langfristige Entscheidungsfragen zu analysieren,
- sind imstande organisatorische Steuerungsinstrumente zu gestalten.

#### Voraussetzungen

Keine

## Inhalt

Das Modul besteht aus zwei Vorlesungen "Management Accounting 1" und "Management Accounting 2". Der Schwerpunkt des Moduls wird auf das strukturierte Lernen von Methoden des "Management Accounting" gelegt.

#### **Anmerkungen**

Folgende Lehrveranstaltungen werden für das Modul angeboten:

- Die Vorlesung "Management Accounting 1" wird turnusmäßig im Sommersemester angeboten.
- Die Vorlesung "Management Accounting 2" wird turnusmäßig im Wintersemester angeboten.

## **Arbeitsaufwand**

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



## 2.14 Modul: Differentialgeometrie [M-MATH-101317]

**Verantwortung:** Prof. Dr. Wilderich Tuschmann **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                       |      |                                   |  |
|---------------------|-----------------------|------|-----------------------------------|--|
| T-MATH-102275       | Differentialgeometrie | 8 LP | Grensing, Leuzinger,<br>Tuschmann |  |

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten Dauer.

## Qualifikationsziele

Absolventinnen und Absolventen

- · können grundlegende Aussagen und Techniken der modernen Differentialgeometrie näher erörtern und anwenden,
- · sind mit exemplarischen Anwendungen der Differentialgeometrie vertraut,
- können weiterführende Seminare und Vorlesungen im Bereich der Differentialgeometrie und Topologie besuchen.

## Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

## Voraussetzungen

Keine

## Inhalt

- Mannigfaltigkeiten
- Tensoren
- · Riemannsche Metriken
- · Lineare Zusammenhänge
- Kovariante Ableitung
- Parallelverschiebung
- Geodätische
- · Krümmungstensor und Krümmungsbegriffe

## Optional:

- Bündel
- Differentialformen
- · Satz von Stokes

## **Empfehlungen**

Die Module "Einführung in Geometrie" und "Topologie" bzw. "Elementare Geometrie" sollten bereits belegt worden sein.

## Anmerkungen

Wird erstmalig im Sommersemester 2018 stattfinden.

## **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung



## 2.15 Modul: Digitaltechnik [M-ETIT-102102]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Anwendungsfach / Elektrotechnik und Informationstechnik (Pflichtbereich Elektrotechnik und

Informationstechnik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                |      |        |
|---------------------|----------------|------|--------|
| T-ETIT-101918       | Digitaltechnik | 6 LP | Becker |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

## Qualifikationsziele

Die Studierenden können die grundlegende Verfahren der Digitaltechnik und der digitalen Informationsverarbeitung mit dem Schwerpunkt digitale Schaltungen benennen. Sie sind in der Lage Codierungen auf digitale Informationen anzuwenden und zu analysieren. Darüber hinaus kennen die Studierenden die mathematischen Grundlagen und können graphische und algebraische Verfahren für den Entwurf, die Analyse und die Optimierung digitaler Schaltungen und Automaten anwenden.

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

## Voraussetzungen

keine

#### Inhalt

Diese Vorlesung stellt eine Einführung in wichtige theoretische Grundlagen der Digitaltechnik dar, die für Studierende des 1. Semesters Elektrotechnik vorgesehen ist. Da sie daher nicht auf Kenntnissen der Schaltungstechnik aufbauen kann, stehen abstrakte Modellierungen des Verhaltens und der Strukturen im Vordergrund. Darüber hinaus soll die Vorlesung auch Grundlagen vermitteln, welche in anderen Vorlesungen benötigt werden

Schwerpunkte der Vorlesung sind die formalen, methodischen und mathematischen Grundlagen zum Entwurf digitaler Systeme. Darauf aufbauend wird auf die technische Realisierung digitaler Systeme eingegangen, im speziellen auf den Entwurf und die Verwendung von Standardbausteinen.

#### **Arbeitsaufwand**

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in 23 Vorlesungen und 7 Übungen: 45Std.
- 2. Vor-/Nachbereitung der selbigen: 90Std. (~2 Std. pro Einheit)
- 3. Klausurvorbereitung und Präsenz in selbiger: 30 + 2 Std.



## 2.16 Modul: eBusiness und Service Management [M-WIWI-101434]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch | 3     | 9       |

| Wahlpflichtblock: Wahlpflichtangebot (9 LP) |                                                        |        |                    |
|---------------------------------------------|--------------------------------------------------------|--------|--------------------|
| T-WIWI-109938                               | Digital Services                                       | 4,5 LP | Satzger, Weinhardt |
| T-WIWI-110797                               | eFinance: Informationssysteme für den Wertpapierhandel | 4,5 LP | Weinhardt          |
| T-WIWI-109816                               | Foundations of Interactive Systems                     | 4,5 LP | Mädche             |
| T-WIWI-109936                               | Platform Economy                                       | 4,5 LP | Dorner, Weinhardt  |
| T-WIWI-109940                               | Spezialveranstaltung Wirtschaftsinformatik             | 4,5 LP | Weinhardt          |

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

## Qualifikationsziele

Die Studierenden

- verstehen die strategischen und operativen Gestaltungen von Informationen und Informationsprodukten,
- analysieren die Rolle von Informationen auf Märkten,
- · evaluieren Fallbeispiele bzgl. Informationsprodukte,
- · erarbeiten Lösungen in Teams.

## Voraussetzungen

Keine

## Inhalt

Dieses Modul vermittelt einen Überblick über die gegenseitigen Abhängigkeiten von strategischem Management und Informationssystemen. Es wird eine klare Unterscheidung in der Betrachtung von Information als Produktions- und Wettbewerbsfaktor sowie als Wirtschaftsgut eingeführt. Die zentrale Rolle von Informationen wird durch das Konzept des Informationslebenszyklus

erläutert, deren einzelne Phasen vor allem aus betriebswirtschaftlicher und mikroökonomischer Perspektive analysiert werden. Über diesen Informationslebenszyklus hinweg wird jeweils der Stand der Forschung in der ökonomischen Theorie dargestellt. Die Veranstaltung wird durch begleitende Übungen ergänzt. Die Vorlesungen "Plattformökonomie", "eFinance: Wirtschaftsinformatik für den Wertpapierhandel" und "eServices" bilden drei Vertiefungs- und Anwendungsbereiche für die Inhalte der Pflichtveranstaltung. In der Kernveranstaltung "Plattformökonomie" wird insbesondere auf den Austausch zweier Handelspartner über einen Intermediär auf Internetplattformen eingegangen. Themen sind Netzwerkeffekte, Peer-To-Peer Märkte, Blockchains und Marktmechanismen. Über den englischsprachigen Vorlesungsteil hinaus vermittelt der Kurs das Wissen anhand einer Fallstudie, in der die Studierenden selbst eine Plattform analysieren sollen.

Die Vorlesung "eFinance: Wirtschaftsinformatik für den Wertpapierhandel"vermittelt tiefgehende und praxisrelevante Inhalte über den börslichen und außerbörslichen Wertpapierhandel. Der Fokus liegt auf der ökonomischen und technischen Gestaltung von Märkten als informationsverarbeitenden Systemen.

In "eServices" wird die zunehmende Entwicklung von elektronischen Dienstleistungen im Gegensatz zu den klassischen Diensleistungen hervorgehoben. Die Informations- und Kommunikationstechnologie ermöglicht die Bereitstellung von Diensten, die durch Interaktivität und Individualität gekennzeichnet sind. In dieser Veranstaltung werden die Grundlagen für die Entwicklung und das Management IT-basierter Dienstleistungen gelegt.

Die Veranstaltung "Spezialveranstaltung Wirtschaftsinformatik" festigt die theoretischen Grundlagen und ermöglicht weitergehende praktische Erfahrungen im Bereich der Wirtschaftsinformatik. Seminarpraktika des IM können als Spezialveranstaltung Wirtschaftsinformatik belegt werden.

## **Anmerkungen**

Als Spezialveranstaltung Wirtschaftsinformatik können alle Seminarpraktika des IM belegt werden. Aktuelle Informationen zum Angebot sind unter: www.iism.kit.edu/im/lehre zu finden.

## **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



### 2.17 Modul: eFinance [M-WIWI-101402]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache          | Level | Version |
|-----------------|----------------|------------|------------------|-------|---------|
| 9               | Jedes Semester | 2 Semester | Deutsch/Englisch | 3     | 8       |

| Pflichtbestandteile                                |                                                        |        |               |  |
|----------------------------------------------------|--------------------------------------------------------|--------|---------------|--|
| T-WIWI-110797                                      | eFinance: Informationssysteme für den Wertpapierhandel | 4,5 LP | Weinhardt     |  |
| Wahlpflichtblock: Ergänzungsangebot (mind. 4,5 LP) |                                                        |        |               |  |
| T-WIWI-102643                                      | Derivate                                               | 4,5 LP | Uhrig-Homburg |  |
| T-WIWI-102646                                      | Internationale Finanzierung                            | 3 LP   | Uhrig-Homburg |  |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

Die Studierenden

- · verstehen und analysieren die Wertschöpfungskette im Wertpapierhandel,
- bestimmen und gestalten Methoden und Systeme situationsangemessen und wenden diese zur Problemlösung im Bereich Finance an,
- beurteilen und kritisieren die Investitionsentscheidungen von Händlern,
- wenden theoretische Methoden aus der Ökonometrie an,
- · erarbeiten Lösungen in Teams.

#### Voraussetzungen

Die Lehrveranstaltung eFinance: Informationssysteme für den Wertpapierhandel [2540454] muss im Modul erfolgreich geprüft werden.

### Inhalt

Das Modul "eFinance" adressiert aktuelle Probleme der Finanzwirtschaft und untersucht, welche Rolle dabei Information und Wissen spielen und wie Informationssysteme diese Probleme lösen bzw. mildern können. Dabei werden die Veranstaltungen von erfahrenen Vertretern aus der Praxis ergänzt. Das Modul ist unterteilt in eine Veranstaltung zum Umfeld von Banken und Versicherungen sowie eine weitere zum Bereich des elektronischen Handels von Finanztiteln auf globalen Finanzmärkten. Zur Wahl steht auch die Vorlesung Derivate, welche sich mit Produkten auf Finanzmärkten, und insbesondere mit Future- und Forwardkontrakten sowie der Bewertung von Optionen befasst. Als Ergänzung können zudem die Veranstaltungen Börsen und Internationale Finanzierung gewählt werden, um ein besseres Verständnis für Kapitalmärkte zu entwickeln.

#### **Anmerkungen**

Das aktuelle Angebot an Seminaren passend zu diesem Modul ist auf der folgenden Webseite aufgelistet: http://www.iism.kit.edu/im/lehre

### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden, für Lehrveranstaltungen mit 3 Leistungspunkten ca. 90 Stunden und für Lehrveranstaltungen mit 1,5 Leistungspunkten 45 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.18 Modul: Einführung in das Wissenschaftliche Rechnen [M-MATH-102889]

**Verantwortung:** Prof. Dr. Willy Dörfler

Prof. Dr Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Angewandte und Numerische Mathematik)

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | 3     | 2       |

| Pflichtbestandteile |                                             |  |                                                   |  |
|---------------------|---------------------------------------------|--|---------------------------------------------------|--|
| T-MATH-105837       | Einführung in das Wissenschaftliche Rechnen |  | Dörfler, Hochbruck,<br>Jahnke, Rieder,<br>Wieners |  |

### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

#### Qualifikationsziele

Absolventinnen und Absolventen können

- die Verzahnung aller Aspekte des Wissenschaftlichen Rechnens an einfachen Beispielen entwickeln: von der Modellbildung über die algorithmische Umsetzung bis zur Stabilitäts- und Fehleranalyse.
- · Konzepte der Modellierung mit Differentialgleichungen erklären
- Einfache Anwendungsbeispiele algorithmisch umsetzen, den Code evaluieren und die Ergebnisse darstellen und diskutieren.

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

#### Voraussetzungen

Keine

### Inhalt

- Numerische Methoden für Anfangswertaufgaben, Randwertaufgaben und Anfangsrandwertaufgaben (Finite Differenzen, Finite Elemente)
- · Modellierung mit Differentialgleichungen
- · Algorithmische Umsetzung von Anwendungsbeispielen
- · Präsentation der Ergebnisse wissenschaftlicher Rechnungen

#### **Empfehlungen**

Die Inhalte der Module "Numerische Mathematik 1 und 2", "Numerische Methoden für Differentialgleichungen" sowie "Programmieren: Einstieg in die Informatik und algorithmische Mathematik" werden benötigt.

### **Anmerkungen**

3 Stunden Vorlesung und 3 Stunden Praktikum

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.19 Modul: Einführung in die Algebra und Zahlentheorie [M-MATH-101314]

Verantwortung: Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                                         |      |                    |
|---------------------|-----------------------------------------|------|--------------------|
| T-MATH-102251       | Einführung in Algebra und Zahlentheorie | 8 LP | Herrlich, Kühnlein |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

#### Qualifikationsziele

Absolventinnen und Absolventen

- beherrschen die grundlegenden algebraischen und zahlentheoretischen Strukturen
- verstehen die Denkweise der modernen Algebra,
- sind in der Lage, an weiterführenden Vorlesungen und Seminaren teilzunehmen.

### Voraussetzungen

Keine

#### Inhalt

- Zahlen: größter gemeinsamer Teiler, Euklidscher Algorithmus, Primzahlen, Fundamentalsatz der Arithmetik
- Gruppen : Satz von Lagrange, Normalteiler und Faktorgruppen, Freie Gruppen, Sylowsätze
- · Ringe: Ideale und modulares Rechnen, Chinesischer Restsatz, quadratisches Reziprozitätsgesetz, Endliche Körper



# 2.20 Modul: Einführung in die Stochastik [M-MATH-101321]

Verantwortung: Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Grundlagen Angewandte Mathematik (Pflichtbestandteil)

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                              |      |                                     |  |
|---------------------|------------------------------|------|-------------------------------------|--|
| T-MATH-102256       | Einführung in die Stochastik | 6 LP | Bäuerle, Fasen-<br>Hartmann, Henze, |  |
|                     |                              |      | Hug, Klar, Last                     |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (120 Minuten).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

#### Qualifikationsziele

Die Studierenden

- · können einfache stochastische Vorgänge modellieren,
- können Laplace-Wahrscheinlichkeiten mit Hilfe der kombinatorischen Grundformeln berechnen,
- wissen, in welchen Zusammenhängen (Urnenmodelle, Bernoulli-Kette) die wichtigsten diskreten Verteilungen auftreten,
- · beherrschen die grundlegenden Rechenregeln im Umgang mit Wahrscheinlichkeiten,
- · kennen die Begriffe Erwartungswert, Varianz, Kovarianz, Korrelation und Quantil und wissen mit ihnen umzugehen,
- können das schwache Gesetz großer Zahlen sowie den Zentralen Grenzwertsatz von de Moivre-Laplace formulieren und anwenden,
- sind mit den Begriffen Parameterschätzung und statistischer Test am Beispiel der Binomialverteilung vertraut,
- · können mit den Begriffen Verteilungsfunktion und Dichte umgehen,
- kennen die stetige Gleichverteilung, die Exponentialverteilung und die ein- und mehrdimensionale Normalverteilung

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

### Voraussetzungen

Keine

#### Inhalt

Deskriptive Statistik, Diskrete Wahrscheinlichkeitsräume, Kombinatorik, bedingte Wahrscheinlichkeiten, stochastische Unabhängigkeit, Zufallsvariablen und ihre Verteilungen, Kenngrößen von Verteilungen, bedingte Erwartungswerte und bedingte Verteilungen, schwaches Gesetz großer Zahlen, Zentrale Grenzwertsätze, statistische Verfahren im Zusammenhang mit der Binomialverteilung, allgemeine Wahrscheinlichkeitsräume, Rechnen mit Verteilungsdichten, Quantile, multivariate Normalverteilung

### **Empfehlungen**

Die Inhalte der Module Analysis sowie Lineare Algebra werden benötigt.

### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 180 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung



# 2.21 Modul: Einführung in die Volkswirtschaftslehre [M-WIWI-101398]

Verantwortung: Prof. Dr. Clemens Puppe

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Betriebswirtschaftslehre/Volkswirtschaftslehre)

Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Level | Version |
|-----------------|----------------|------------|-------|---------|
| 10              | Jedes Semester | 2 Semester | 3     | 1       |

| Pflichtbestandteile |                                         |      |             |  |
|---------------------|-----------------------------------------|------|-------------|--|
| T-WIWI-102708       | Volkswirtschaftslehre I: Mikroökonomie  | 5 LP | Puppe, Reiß |  |
| T-WIWI-102709       | Volkswirtschaftslehre II: Makroökonomie | 5 LP | Wigger      |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die einzelnen Lehrveranstaltungen des Moduls. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

#### Qualifikationsziele

Der/die Studierende

- · kennt und versteht die grundsätzlichen volkswirtschaftlichen Fragestellungen,
- · kann die aktuellen wirtschaftspolitischen Probleme der globalisierten Welt benennen,
- ist in der Lage, elementare Lösungsstrategien zu entwickeln.

Dabei ist der Fokus der beiden Lehrveranstaltungen des Moduls unterschiedlich. Während in der Vorlesung VWL I die ökonomischen Probleme hauptsächlich als Entscheidungsprobleme aufgefasst und gelöst werden, soll in VWL II das Verständnis des Studenten für die Dynamik wirtschaftlicher Prozesse gefördert werden.

### Zusammensetzung der Modulnote

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

### Voraussetzungen

Keine

#### Inhalt

Es werden die grundlegende Konzepte, Methoden und Modelle der Mikro- und Makroökonomie vermittelt. In der Lehrveranstaltung VWL I [2600012] geht es neben der Mikroökonomischen Entscheidungstheorie, Fragen der Markttheorie und Problemen des unvollständigen Wettbewerbs auch um die Grundzüge der Spieltheorie und der Wohlfahrtstheorie. VWL II [2600014] thematisiert volkswirtschaftliche Ordnungsmodelle und die volkswirtschaftliche Gesamtrechnung ebenso wie Fragen des Außenhandels und der Geldpolitik. Zudem werden das komplexe Wachstum und Konjunktur und volkswirtschaftliche Spekulation behandelt.

#### **Anmerkungen**

Achtung: Die Lehrveranstaltung Volkswirtschaftslehre I: Mikroökonomie [2610012] ist Bestandteil der Orientierungsprüfung nach § 8(1), SPO. Deshalb muss die Prüfung in Volkswirtschaftslehre I: Mikroökonomie [2610012] bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters, einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters abgelegt werden, um den Prüfungsanspruch im Studiengang nicht zu verlieren.

### **Arbeitsaufwand**

Gesamtaufwand bei 10 Leistungspunkten: ca. 300 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



# 2.22 Modul: Einführung in die Volkswirtschaftslehre: VWL I [M-WIWI-103396]

Verantwortung: Prof. Dr. Clemens Puppe

Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

Leistungspunkte<br/>5Turnus<br/>Jedes WintersemesterDauer<br/>1 SemesterLevel<br/>3Version<br/>1

| Pflichtbestandteile |                                        |      |             |
|---------------------|----------------------------------------|------|-------------|
| T-WIWI-102708       | Volkswirtschaftslehre I: Mikroökonomie | 5 LP | Puppe, Reiß |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) (nach §4(2), 1 SPO).

In der Mitte des Semesters **kann** zusätzlich eine Übungsklausur stattfinden, deren Ergebnis zur Verbesserung der Note in der Hauptklausur eingesetzt werden kann. Die Einzelheiten dazu werden vom jeweiligen Dozenten rechtzeitig mitgeteilt.

Die Prüfung (Hauptklausur) wird im Anschluss an die Vorlesung angeboten. Die Nachklausur folgt im gleichen Prüfungszeitraum. Zulassungsberechtigt zur Nachklausur sind i.d.R. nur Wiederholer. Näheres bei den Klausurregelungen des Instituts.

### Qualifikationsziele

Der/die Studierende

- · kennt und versteht die grundsätzlichen volkswirtschaftlichen Fragestellungen,
- kann die aktuellen wirtschaftspolitischen Probleme der globalisierten Welt benennen,
- ist in der Lage, elementare Lösungsstrategien zu entwickeln.

### Zusammensetzung der Modulnote

Die Note des Moduls entspricht der Note der Teilleistung.

### Voraussetzungen

Keine

#### Inhalt

Es werden die grundlegende Konzepte, Methoden und Modelle der Mikro- und Makroökonomie vermittelt. In der Lehrveranstaltung VWL I [2600012] geht es neben der Mikroökonomischen Entscheidungstheorie, Fragen der Markttheorie und Problemen des unvollständigen Wettbewerbs auch um die Grundzüge der Spieltheorie und der Wohlfahrtstheorie.

#### **Arbeitsaufwand**

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden



# 2.23 Modul: Einführung in Rechnernetze [M-INFO-103455]

**Verantwortung:** Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Anwendungsfach / Informatik (Wahlbereich Informatik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 4               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                            |      |            |
|---------------------|----------------------------|------|------------|
| T-INFO-102015       | Einführung in Rechnernetze | 4 LP | Zitterbart |

# Erfolgskontrolle(n)

Siehe Teilleistung.

### Voraussetzungen

keine.



# 2.24 Modul: Elektromagnetische Felder [M-ETIT-104428]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Anwendungsfach / Elektrotechnik und Informationstechnik (Wahlpflichtbereich Elektrotechnik und

Informationstechnik) (EV ab 01.04.2019)

Leistungspunkte<br/>6Turnus<br/>Jedes SommersemesterDauer<br/>1 SemesterSprache<br/>DeutschLevel<br/>3Version<br/>1

| Pflichtbestandteile |                           |      |             |
|---------------------|---------------------------|------|-------------|
| T-ETIT-109078       | Elektromagnetische Felder | 6 LP | Doppelbauer |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

#### Qualifikationsziele

Ziel ist die Vermittlung der theoretischen Grundlagen von elektrischen, magnetischen und elektromagnetischen Feldern auf Basis der Maxwell-Gleichungen. Die Studierenden können elektromagnetische Felder einfacher Anordnungen von Ladungen und stromführenden Leitern analytisch mit Hilfe der Maxwell-Gleichungen berechnen, Feldbilder skizzieren und die auftretenden Kräfte und Leistungen daraus ableiten. Sie können den Einfluss von Dielektrika und ferromagnetischen Materialien berücksichtigen.

### Voraussetzungen

keine

#### Inhalt

Diese Vorlesung ist eine Einführung in die elektromagnetische Feldtheorie auf Basis der Maxwell-Gleichungen. Behandelt werden elektrostatische Felder, elektrische Strömungsfelder, magnetische Felder und zeitlich langsam veränderliche Felder:

- · Mathematische Grundlagen der Feldtheorie
- · Grundlagen elektromagnetischer Felder
- · Elektrostatische Felder
- · Elektrische Strömungsfelder
- · Magnetische Felder
- Quasistationäre (zeitlich langsam veränderliche) Felder

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt.

Zusätzlich werden Tutorien in Kleingruppen angeboten.

Die Unterlagen zur Lehrveranstaltung (Skript und Formelsammlung) finden sich online auf der Webseite des Instituts. Das erforderliche Passwort wird in der ersten Vorlesungsstunde bekannt gegeben.

### **Empfehlungen**

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden vorausgesetzt.

### **Arbeitsaufwand**

Für das gesamte Modul werden 6 Credit Points (ECTS) vergeben, die sich folgendermaßen aufteilen:

- · Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h
- Präsenzzeit in Übungen (1 h je 15 Termine) = 15 h
- · Präsenzzeit in Tutorien = 15 Wochen je 2 h = 30 h
- · Vor-/Nachbereitung des Stoffes: 15 Wochen je 3 h = 45 h
- · Klausurvorbereitung und Präsenz in der Klausur: 1,5 Wochen je 40 h = 60 h

Gesamtaufwand ca. 180 Stunden = 6 ECTS.



# 2.25 Modul: Elektromagnetische Wellen [M-ETIT-104515]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Anwendungsfach / Elektrotechnik und Informationstechnik (Wahlpflichtbereich Elektrotechnik und

Informationstechnik) (EV ab 01.04.2019)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                           |      |        |
|---------------------|---------------------------|------|--------|
| T-ETIT-109245       | Elektromagnetische Wellen | 6 LP | Randel |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

#### Qualifikationsziele

Die Studierenden sind in der Lage, Berechnungen elektromagnetischen Wellenphänomenen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen.

Die Studierenden haben ein Verständnis für die physikalischen Zusammenhänge erlangt und können Lösungsansätze für grundlegende Aufgabenstellungen erarbeiten. Mit Hilfe der erlernten Methodik sind sie in die Lage versetzt, die Inhalte von Vorlesungen mit technischen Anwendungen zu verstehen.

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

### Voraussetzungen

keine

#### Inhalt

Diese Vorlesung ist eine Einführung in die Theorie elektromagnetischer Wellen auf Basis der Maxwell-Gleichungen. Die Vorlesung basiert auf den Inhalten der Vorlesung elektromagnetische Felder. Behandelt werden die folgenden Themen

- · Verschiebungsstromdichte
- · Die Wellengleichung
- Ebene Wellen im nichtleitenden Medium
- Reflexion und Brechung von ebenen Wellen
- · Reflexion an einer Leiteroberfläche; der Skineffekt
- · Harmonische Wellen
- Linear und zirkular polarisierte Wellen
- · Lösungsmethoden zu Potentialproblemen
- · Separation der skalaren Wellengleichung
- Wellenleiter (Hohlleiter, Glasfaser)
- Der Hertzsche Dipol

### **Empfehlungen**

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden vorausgesetzt.

#### **Arbeitsaufwand**

Für das gesamte Modul werden 6 Credit Points (ECTS) vergeben, die sich folgendermaßen aufteilen:

- Präsenzzeit in Vorlesungen (1,5 h je 13 Termine) und Übungen (1,5 h je 13 Termine) = 39 h
- Präsenzzeit in Tutorien = 13 Wochen je 2 h = 26 h
- Vor-/Nachbereitung des Stoffes: 13 Wochen je 3 h = 39 h
- Klausurvorbereitung und Präsenz in der Klausur: 2 Wochen je 40 h = 80 h

Gesamtaufwand ca. 180 Stunden = 6 ECTS.



# 2.26 Modul: Elektronische Schaltungen [M-ETIT-102164]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Anwendungsfach / Elektrotechnik und Informationstechnik (Pflichtbereich Elektrotechnik und

Informationstechnik)

Leistungspunkte<br/>6Turnus<br/>Jedes SommersemesterDauer<br/>1 SemesterSprache<br/>DeutschLevel<br/>3Version<br/>1

| Pflichtbestandteile |                           |      |        |
|---------------------|---------------------------|------|--------|
| T-ETIT-101919       | Elektronische Schaltungen | 6 LP | Ulusoy |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle findet im Rahmen einer schriftlichen Gesamtprüfung von 2 Stunden statt.

Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).

#### Qualifikationsziele

Die Studierenden werden befähigt, die Funktionen und Wirkungsweisen von Dioden, Z-Dioden, bipolaren- und Feldeffekttransistoren, analogen Grundschaltungen, von einstufigen Verstärkern bis hin zu Operationsverstärkern zu analysieren und zu bewerten. Durch die vermittelten Kenntnisse über Bauelementparameter und Funktion der Bauelemente werden die Studierenden in die Lage versetzt, verschiedene Verstärkerschaltungen analysieren und berechnen zu können. Durch den Erwerb von Kenntnissen um Groß- und Kleinsignalmodelle der Bauelemente können die Studierenden ihr theoretisches Wissen für den Aufbau von Schaltungen praktisch anwenden. Darüber hinaus wird den Studierenden erweiterte Kenntnisse über den schaltungstechnischen Aufbau und Anwendungen aller digitalen Grundelemente (Inverter, NAND, NOR, Tri-state Inverter und Transmission Gates) sowie von Schaltungen für den Einsatz in sequentielle Logik, wie Flipflops, Zähler, Schieberegister, vermittelt. Diese Kenntnisse erlauben den Studierenden aktuelle Trends in der Halbleiterentwicklung kritisch zu begleiten und zu analysieren. Abgerundet werden diese Kenntnisse durch den Aufbau und die Funktionsweise von Digital/Analog- und Analog/Digital-Wandlern. Auf diese Weise werden die Studierenden befähigt, moderne elektrische Systeme von der Signalerfassung (Sensor, Detektor) über die Signalkonditionierung (Verstärker, Filter, etc.) zu analysieren und ggfs. eigenständig zu optimieren.

#### Zusammensetzung der Modulnote

Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).

#### Voraussetzungen

Keine

#### Inhalt

Grundlagenvorlesung über passive und aktive elektronische Bauelemente und Schaltungen für analoge und digitale Anwendungen. Schwerpunkte sind der Aufbau und die schaltungstechnische Realisierung analoger Verstärkerschaltungen mit Bipolar- und Feldeffekttransistoren, der schaltungstechnische Aufbau von einfachen Logikelementen für komplexe logische Schaltkreise. Zudem werden die Grundlagen der Analog/Digital und Digital/Analog-Wandlung vermittelt. Im Einzelnen werden die nachfolgenden Themen behandelt:

- Einleitung (Bezeichnungen, Begriffe)
- Passive Bauelemente (R, C, L)
- Halbleiterbauelemente (Dioden, Transistoren)
- Dioden
- Bipolare Transistoren
- · Feldeffekttransistoren (JFET, MOSFET, CMOS), Eigenschaften und Anwendungen
- · Verstärkerschaltungen mit Transistoren
- Eigenschaften von Operationsverstärkern
- · Anwendungsbeispiele von Operationsverstärkern
- Kippschaltungen
- Schaltkreisfamilien (bipolar, MOS)
- · Sequentielle Logik (Flipflops, Zähler, Schieberegister)
- Codewandler und digitale Auswahlschaltungen

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt. Parallel dazu werden weitere Übungsaufgaben und Vorlesungsinhalte in Form dedizierter Tutorien in Kleinstgruppen zur Übung und Vertiefung der Lehrinhalte gestellt und gelöst.

#### **Empfehlungen**

Der erfolgreiche Abschluss von LV "Lineare elektrische Netze" ist erforderlich, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.

### **Anmerkungen**

Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).

#### **Arbeitsaufwand**

Der Arbeitsaufwand in Stunden ist nachfolgend aufgeschlüsselt:

- 1. Präsenzzeit in Vorlesungen im Sommersemester 18 h
- 2. Vor-/Nachbereitung derselbigen 12 h
- 3. Präsenzzeit in Saalübungen im Sommersemester 14 h
- 4. Vor-/Nachbereitung derselbigen 27 h
- 5. Präsenzzeit in Kleinstgruppenübungen im Sommersemester 9 h
- 6. Vor-/Nachbereitung derselbigen 12 h
- 7. Klausurvorbereitung und Präsenz in selbiger 88 h



# 2.27 Modul: Elementare Geometrie [M-MATH-103152]

**Verantwortung:** Prof. Dr. Enrico Leuzinger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                |  |                                                                                    |  |
|---------------------|--------------------------------|--|------------------------------------------------------------------------------------|--|
| T-MATH-103464       | Elementare Geometrie - Prüfung |  | Grensing, Hartnick,<br>Herrlich, Kühnlein,<br>Leuzinger, Link, Sauer,<br>Tuschmann |  |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min.).

#### Qualifikationsziele

Absolventinnen und Absolventen

- verstehen grundlegende Strukturen und Techniken der Geometrie und der Topologie und können diese nennen, diskutieren und anwenden
- verstehen elementargeometrische Konzepte von einem höheren Standpunkt aus
- sind vorbereitet für weiterführende Seminare und Vorlesungen im Bereich Geometrie/Topologie

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

#### Voraussetzungen

Keine

#### Inhalt

- Axiomatik der ebenen Geometrie: euklidische und nichteuklidische Geometrie
- Topologische Grundbegriffe mit Beispielen: topologische und metrische Räume, Stetigkeit, Zusammenhang, Kompaktheit, Quotienten
- Beispielklassen von topologischen Räumen und eine topologische Invariante: Simplizialkomplexe, Polyeder, Platonische Körper, Mannigfaltigkeiten, Euler-Charakteristik
- Geometrie von Flächen: parametrisierte Kurven und Flächen, 1./2. Fundamentalform, Gauß-Krümmung, Satz von Gauß-Bonnet

#### **Empfehlungen**

Folgende Module sollten bereits belegt worden sein: Lineare Algebra 1 und 2 Analysis 1 und 2

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.28 Modul: Energiewirtschaft [M-WIWI-101464]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache          | Level | Version |
|-----------------|----------------|------------|------------------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch/Englisch | 3     | 3       |

| Pflichtbestandteile  |                                                        |        |           |  |
|----------------------|--------------------------------------------------------|--------|-----------|--|
| T-WIWI-102746        | Einführung in die Energiewirtschaft                    | 5,5 LP | Fichtner  |  |
| Wahlpflichtblock: Ei | Wahlpflichtblock: Ergänzungsangebot (3,5 LP)           |        |           |  |
| T-WIWI-102607        | Energiepolitik                                         | 3,5 LP | Wietschel |  |
| T-WIWI-100806        | Renewable Energy-Resources, Technologies and Economics | 3,5 LP | Jochem    |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die Vorlesungen Einführung in die Energiewirtschaft und eine der zwei Ergänzungsveranstaltungen Renewable Energy - Resources, Technology and Economics oder Energiepolitik.

Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

Der/die Studierende

- ist in der Lage, energiewirtschaftliche Zusammenhänge zu benennen und ökologische Auswirkungen der Energieversorgung zu beurteilen,
- · kann die verschiedenen Energieträger und deren Eigenheiten bewerten,
- · kennt die energiepolitischen Rahmenvorgaben,
- besitzt Kenntnisse hinsichtlich der neuen marktwirtschaftlichen Gegebenheiten der Energiewirtschaft und insbesondere der Kosten und Potenziale Erneuerbarer Energien.

### Voraussetzungen

Die LV "Einführung in die Energiewirtschaft" [2581010] ist Pflicht im Modul.

#### Inhalt

Einführung in die Energiewirtschaft: Charakterisierung (Reserven, Anbieter, Kosten, Technologien) verschiedener Energieträger (Kohle, Gas, Erdöl, Elektrizität, Wärme etc.)

Renewable Energy - Resources, Technology and Economics: Charakterisierung der verschiedenen erneuerbaren Energieträger (Wind, Sonne, Wasser, Erdwärme etc.)

Energiepolitik: Energiestrommanagement, energiepolitische Ziele und Instrumente (Emissionshandel etc.)

### **Empfehlungen**

Die Lehrveranstaltungen sind so konzipiert, dass sie unabhängig voneinander gehört werden können. Daher kann sowohl im Winter- als auch im Sommersemester mit dem Modul begonnen werden.

#### **Anmerkungen**

Auf Antrag beim Institut können auch zusätzliche Studienleistungen (z.B. von anderen Universitäten) im Modul angerechnet werden.

### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3,5 Credits ca. 105 Stunden, für Lehrveranstaltungen mit 5,5 Credits ca. 165 Stunden. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.29 Modul: Essentials of Finance [M-WIWI-101435]

**Verantwortung:** Prof. Dr. Martin Ruckes

Prof. Dr. Marliese Uhrig-Homburg

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 9               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 2       |

| Pflichtbestandteile |                      |        |               |
|---------------------|----------------------|--------|---------------|
| T-WIWI-102605       | Financial Management | 4,5 LP | Ruckes        |
| T-WIWI-102604       | Investments          | 4,5 LP | Uhrig-Homburg |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die einzelnen Lehrveranstaltungen des Moduls. Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

### Qualifikationsziele

Der/die Studierende

- · besitzt grundlegende Kenntnisse in moderner Finanzwirtschaft,
- besitzt grundlegende Kenntnisse zur Fundierung von Investitionsentscheidungen auf Aktien-, Renten- und Derivatemärkten.
- wendet konkrete Modelle zur Beurteilung von Investitionsentscheidungen auf Finanzmärkten sowie für Investitionsund Finanzierungsentscheidungen von Unternehmen an.

### Voraussetzungen

Keine

#### Inhalt

Das Modul *Essentials of Finance* beschäftigt sich mit den grundlegenden Fragestellungen der modernen Finanzwirtschaft. In den Lehrveranstaltungen werden die Grundfragen der Bewertung von Aktien diskutiert. Ein weiterer Schwerpunkt ist die Vermittlung der modernen Portfoliotheorie und analytischer Methoden der Investitionsrechnung und Unternehmensfinanzierung.

### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.30 Modul: Extremale Graphentheorie [M-MATH-102957]

**Verantwortung:** Prof. Dr. Maria Aksenovich **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus       | Dauer      | Sprache  | Level | Version |
|-----------------|--------------|------------|----------|-------|---------|
| 8               | Unregelmäßig | 1 Semester | Englisch | 3     | 1       |

| Pflichtbestandteile |                          |      |            |
|---------------------|--------------------------|------|------------|
| T-MATH-105931       | Extremale Graphentheorie | 8 LP | Aksenovich |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

#### Qualifikationsziele

Die Studierenden können Begriffe und Techniken der extremalen Graphentheorie nennen, erörtern und anwenden. Sie können extremale graphentheoretische Probleme analysieren, strukturieren und formal beschreiben. Die Studierenden verstehen Szemeredis Regularitätslemma und Szemeredis Satz und können diese, sowie probabilistische Techniken, wie abhängige Zufallswahlen und mehrschrittige zufällige Färbungen, anwenden. Sie kennen die besten Schranken für die Extremalzahlen von vollständigen Graphen, Kreisen, vollständig bipartiten Graphen und bipartiten Graphen mit beschränktem Maximalgrad. Die Studierenden verstehen Ramseys Satz für Graphen und Hypergraphen und können diesen, als auch Stepping-Techniken zur Abschätzung von Ramseyzahlen, anwenden. Desweiteren kennen und verstehen sie die Ramseyzahlen für Graphen mit beschränktem Maximalgrad. Zusätzlich können die Studierenden in englischer Fachsprache kommunizieren.

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfung.

### Voraussetzungen

Keine

#### Inhalt

Die Vorlesung vermittelt tiefergehende Konzepte der Graphentheorie, vor allem in den Bereichen der extremalen Funktionen, Regularität und der Ramsey-Theorie für Graphen und Hypergraphen. Weitere Themen beinhalten Turáns Satz, Erdös-Stone

Satz, Szemerédis Lemma, Graphenfärbungen und probabilistische Techniken.

#### **Empfehlungen**

Grundkenntnisse in lineare Algebra, Analysis und Graphentheorie sind empfohlen.

### **Anmerkungen**

Unterrichtssprache: Englisch

### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.31 Modul: Finanzmathematik in diskreter Zeit [M-MATH-102919]

**Verantwortung:** Prof. Dr. Nicole Bäuerle **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Stochastik)

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 8               | Jedes Wintersemester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                                    |      |                             |  |
|---------------------|------------------------------------|------|-----------------------------|--|
| T-MATH-105839       | Finanzmathematik in diskreter Zeit | 8 LP | Bäuerle, Fasen-<br>Hartmann |  |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

#### Qualifikationsziele

Absolventinnen und Absolventen können

- grundlegende Techniken der modernen diskreten Finanzmathematik nennen, erörtern und anwenden,
- · spezifische probabilistische Techniken gebrauchen,
- · ökonomische Fragestellungen im Bereich der diskreten Bewertung und Optimierung mathematisch analysieren,
- · selbstorganisiert und reflexiv arbeiten.

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

### Voraussetzungen

Keine

#### Inhalt

- · Endliche Finanzmärkte
- · Das Cox-Ross-Rubinstein-Modell
  - Grenzübergang zu Black-Scholes
- Charakterisierung von No-Arbitrage
- · Charakterisierung der Vollständigkeit
- Unvollständige Märkte
- · Amerikanische Optionen
- Exotische Optionen
- · Portfolio-Optimierung
- Präferenzen und stochastische Dominanz
- Erwartungswert-Varianz Portfolios
- Risikomaße

#### **Empfehlungen**

Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.32 Modul: Finanzwissenschaft [M-WIWI-101403]

**Verantwortung:** Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch | 3     | 5       |

| Wahlpflichtblock: Wahlpflichtangebot (9 LP) |                                        |        |                   |  |
|---------------------------------------------|----------------------------------------|--------|-------------------|--|
| T-WIWI-102877                               | Einführung in die Finanzwissenschaft   | 4,5 LP | Wigger            |  |
| T-WIWI-108711                               | Grundlagen der Unternehmensbesteuerung | 4,5 LP | Gutekunst, Wigger |  |
| T-WIWI-102739                               | Öffentliche Einnahmen                  | 4,5 LP | Wigger            |  |
| T-WIWI-109590                               | Öffentliches Finanzwesen               | 4,5 LP | Wigger            |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (§4(2),1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an LP erfüllt wird. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben. Die Prüfungen werden zu Beginn der vorlesungsfreien Zeit über den Stoff der jeweils zuletzt gehörten Veranstaltung angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

Die Note der Teilprüfung entspricht jeweils der Note der bestandenen Klausur.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

### Qualifikationsziele

Der Studierende

- · besitzt weiterführende Kenntnisse in der Theorie und Politik der Besteuerung und der Staatsverschuldung.
- versteht Umfang, Struktur und Formen der staatlichen Kreditaufnahme.
- kennt die Ausgestaltung des deutschen sowie internationalen Steuerrechts
- ist in der Lage fiskalpolitische Fragestellungen zu interpretieren und zu motivieren.

#### Inhalt

Die Finanzwissenschaft ist ein Teilgebiet der Volkswirtschaftslehre. Ihr Gegenstand ist die Theorie und Politik der öffentlichen oder Staatswirtschaft und deren Wechselbeziehungen zum privaten Sektor. Die Finanzwissenschaft betrachtet das staatliche Handeln aus normativer und aus positiver Perspektive. Erstere untersucht effizienz- und gerechtigkeitsorientierte Motive für die staatliche Aktivität und entwickelt Handlungsanleitungen für die Finanzpolitik. Letztere entwickelt Erklärungsansätze für das tatsächliche Handeln der finanzpolitischen Akteure. Zu den Teilgebieten der Finanzwissenschaft zählen öffentliche Einnahmen, insbesondere Steuern und öffentliche Kredite, und öffentliche Ausgaben für staatlich bereitgestellte Güter, Wohlfahrts- und Umverteilungsprogramme.

#### **Empfehlungen**

Es wird empfohlen, die Lehrveranstaltung Öffentliche Einnahmen [2560120] vor der Lehrveranstaltung Spezielle Steuerlehre [2560129] zu besuchen.

#### Anmerkungen

Die Teilleistung T-WIWI-102790 "Spezielle Steuerlehre" wird ab Wintersemester 2018/2019 nicht mehr im Modul angeboten.

#### **Arbeitsaufwand**

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



# 2.33 Modul: Fundamentals of Digital Service Systems [M-WIWI-102752]

**Verantwortung:** Prof. Dr. Gerhard Satzger

Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 2 Semester | Deutsch | 3     | 6       |

| Wahlpflichtblock: Wahlpflichtangebot (9 LP) |                                     |        |                    |
|---------------------------------------------|-------------------------------------|--------|--------------------|
| T-WIWI-109938                               | Digital Services                    | 4,5 LP | Satzger, Weinhardt |
| T-WIWI-109816                               | Foundations of Interactive Systems  | 4,5 LP | Mädche             |
| T-WIWI-110888                               | Practical Seminar: Digital Services | 4,5 LP | Satzger, Weinhardt |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

Der/ die Studierende

- versteht die unterschiedlichen Perspektiven auf Dienstleistungen und das Konzept der Wertschöpfung in Service-Netzwerken.
- kennt Konzepte, Methoden und Werkzeuge für das Design, die Modellierung, Entwicklung und das Management von digitalisierten Dienstleistungen und kann diese anwenden,
- erlangt Erfahrung in Gruppenarbeit sowie im Lösen von Fallstudien und der professionellen Präsentation von Arbeitsergebnissen,
- übt den Umgang mit der englischen Sprache als Vorbereitung auf die Arbeit in einem internationalen Umfeld.

### Voraussetzungen

Keine

#### Inhalt

Die Weltwirtschaft wird mehr und mehr durch Dienstleistungen bestimmt: in den Industriestaaten sind "Services" bereits für ca. 70% der Bruttowertschöpfung verantwortlich. Für die Gestaltung, die Entwicklung und das Management von Dienstleistungen sind jedoch traditionelle, auf Güter fokussierte Konzepte häufig unpassend oder unzureichend. Zudem treibt der rasante Fortschritt der Informations- und Kommunikations-Technologie (IKT) die ökonomische Bedeutung elektronisch erbrachter Dienstleistungen (Digital Services) noch schneller voran und verändert das Wettbewerbsumfeld: IKT-basierte Interaktion und Individualisierung eröffnen ganz neue Dimensionen der gemeinsamen Wertschöpfung zwischen Anbietern und Kunden; dynamische und skalierbare "service value networks" verdrängen etablierte Wertschöpfungsketten; digitale Dienstleistungen werden über geographische Grenzen hinweg global erbracht.

Die Studierenden erarbeiten sich in diesem Modul Grundlagen zur weiteren Vertiefung in Service Innovation, Service Economics, Service Design, Service Modellierung, Service Analytics sowie der Transformation und der Koordination von Service-Netzwerken.

### **Empfehlungen**

Keine

#### **Anmerkungen**

Dieses Modul ist Teil des KSRI-Lehrprofils "Digital Service Systems". Weitere Informationen zu einer möglichen servicespezifischen Profilierung sind unter www.ksri.kit.edu/teaching zu finden.

#### **Arbeitsaufwand**

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden. Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



# 2.34 Modul: Funktionalanalysis [M-MATH-101320]

**Verantwortung:** Prof. Dr. Roland Schnaubelt **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Analysis)

LeistungspunkteTurnusDauerLevelVersion8Jedes Wintersemester1 Semester31

| Pflichtbestandteile | Pflichtbestandteile |  |                                                                                   |  |  |  |
|---------------------|---------------------|--|-----------------------------------------------------------------------------------|--|--|--|
| T-MATH-102255       | Funktionalanalysis  |  | Frey, Herzog,<br>Hundertmark, Lamm,<br>Plum, Reichel,<br>Schmoeger,<br>Schnaubelt |  |  |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

#### Qualifikationsziele

Die Studierenden können im Rahmen der metrischen Räume topologische Grundbegriffe wie Kompaktheit erklären und in Beispielen anwenden. Sie sind in der Lage Hilbertraumstrukturen zu beschreiben und in Anwendungen zu verwenden. Sie können das Prinzip der gleichmäßigen Beschränktheit, den Banachschen Homomorphisatz und den Satz von Hahn-Banach wiedergeben und aus ihnen Folgerungen ableiten. Die Theorie dualer Banachräume, (insbesondere schwache Konvergenz, Reflexivität und Banach-Alaoglu) können sie beschreiben und in Beispielen diskutieren. Sie sind in der Lage einfache funktionalanalytische Beweise zu führen. Sie können den Spektralsatz für kompakte, selbstadjungierte Operatoren erläutern.

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfung.

#### Voraussetzungen

Keine

#### Inhalt

- Metrische Räume (topologische Grundbegriffe, Kompaktheit)
- · Hilberträume, Orthonormalbasen, Sobolevräume
- Stetige lineare Operatoren auf Banachräumen (Prinzip der gleichmäßigen Beschränktheit, Homomorphiesatz)
- Dualräume mit Darstellungssätzen, Sätze von Hahn-Banach und Banach-Alaoglu, schwache Konvergenz, Reflexivität
- Spektralsatz für kompakte selbstadjungierte Operatoren.

### Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

#### Literatur

D. Werner, Funktionalanalysis



# 2.35 Modul: Geometrische Analysis [M-MATH-102923]

**Verantwortung:** Prof. Dr. Tobias Lamm **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Analysis)

| Leistungspunkte | Turnus       | Dauer      | Level | Version |
|-----------------|--------------|------------|-------|---------|
| 8               | Unregelmäßig | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                       |      |      |
|---------------------|-----------------------|------|------|
| T-MATH-105892       | Geometrische Analysis | 8 LP | Lamm |

### Erfolgskontrolle(n)

Mündliche Prüfung im Umfang von ca. 30 Minuten.

#### Qualifikationsziele

Die Studierenden können

- · grundlegende Techniken der geometrischen Analysis anwenden
- Zusammenhaenge zwischen der Differentialgeometrie und den partiellen Differentialgleichungen erkennen.

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

#### Voraussetzungen

keine

#### Inhalt

Geometrische Evolutionsgleichungen Geometrische Variationsprobleme Minimalflaechen

#### **Empfehlungen**

Einfuehrung in die Geometrie und Topologie bzw. Elementare Geometrie, Klassische Methoden partieller Differentialgleichungen

#### **Arbeitsaufwand**

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.36 Modul: Geometrische Gruppentheorie [M-MATH-102867]

**Verantwortung:** Prof. Dr Roman Sauer **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus       | Dauer      | Level | Version |
|-----------------|--------------|------------|-------|---------|
| 8               | Unregelmäßig | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                             |      |                                                   |
|---------------------|-----------------------------|------|---------------------------------------------------|
| T-MATH-105842       | Geometrische Gruppentheorie | 8 LP | Herrlich, Leuzinger,<br>Link, Sauer,<br>Tuschmann |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung von 120 min.

#### Qualifikationsziele

Absolventinnen und Absolventen

- erkennen Wechselwirkungen zwischen Geometrie und Gruppentheorie,
- verstehen grundlegende Strukturen und Techniken der Geometrischen Gruppentheorie und können diese nennen, diskutieren und anwenden.
- · kennen und verstehen Konzepte und Resultate aus der Grobgeometrie,
- sind darauf vorbereitet, aktuelle Forschungsarbeiten aus dem Bereich der Geometrischen Gruppentheorie zu lesen.

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfung.

# Voraussetzungen

Keine

#### Inhalt

- Endlich erzeugte Gruppen und Gruppenpräsentationen
- · Cayley-Graphen und Gruppenaktionen
- · Quasi-Isometrien von metrischen Räumen, quasi-isometrische Invarianten und der Satz von Schwarz-Milnor
- Beispielklassen für Gruppen, z.B. hyperbolische Gruppen, Fuchssche Gruppen, amenable Gruppen, Zopfgruppen, Thompson-Gruppe

### **Empfehlungen**

Die Inhalte des Moduls "Einführung in die Geometrie und Topologie" bzw. "Elementare Geometrie" werden empfohlen. Das Modul "Einführung in Algebra und Zahlentheorie" ist hilfreich.

### Anmerkungen

Wird jedes 4. Semester angeboten, jeweils im Sommersemester.

#### Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung



# 2.37 Modul: Graphentheorie [M-MATH-101336]

**Verantwortung:** Prof. Dr. Maria Aksenovich **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus       | Dauer      | Sprache  | Level | Version |
|-----------------|--------------|------------|----------|-------|---------|
| 8               | Unregelmäßig | 1 Semester | Englisch | 3     | 1       |

| Pflichtbestandteile |                |      |            |
|---------------------|----------------|------|------------|
| T-MATH-102273       | Graphentheorie | 8 LP | Aksenovich |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Um einen Bonus zu bekommen, muss man jeweils 50% der Punkte für die Lösungen der Übungsblätter 1-6 sowie der Übungsblätter 7-12 erwerben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

#### Qualifikationsziele

Die Studierenden können grundlegende Begriffe und Techniken der Graphentheorie nennen, erörtern und anwenden. Sie können geeignete diskrete Probleme als Graphen modellieren und Resultate wie Menger's Satz, Kuratowski's Satz oder Turán's Satz, sowie die in den Beweisen entwickelten Ideen, auf Graphenprobleme anwenden. Insbesondere können die Studierenden Graphen hinsichtlich ihrer Kennzahlen wie Zusammenhang, Planarität, Färbbarkeit und Kantenzahl untersuchen. Sie sind in der Lage, Methoden aus dem Bereich der Graphentheorie zu verstehen und kritisch zu beurteilen. Desweiteren können die Studierenden in englischer Fachsprache kommunizieren.

#### Zusammensetzung der Modulnote

Die Modulnote ist Note der Prüfung.

### Voraussetzungen

Keine

#### Inhalt

Der Kurs über Graphentheorie spannt den Bogen von den grundlegenden Grapheneigenschaften, die auf Euler zurückgehen, bis hin zu modernen Resultaten und Techniken in der extremalen Graphentheorie. Insbesondere werden die folgenden Themen behandelt: Struktur von Bäumen, Pfaden, Zykeln, Wegen in

Graphen, unvermeidliche Teilgraphen in dichten Graphen, planare Graphen, Graphenfärbung, Ramsey-Theorie, Regularität in Graphen.

### Anmerkungen

- · Turnus: jedes zweite Jahr im Wintersemester
- · Unterrichtssprache: Englisch

### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.38 Modul: Grundbegriffe der Informatik [M-INFO-103456]

**Verantwortung:** Dr. Sebastian Stüker

**Thomas Worsch** 

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Anwendungsfach / Informatik (Pflichtbereich Informatik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                              |      |                |
|---------------------|------------------------------|------|----------------|
| T-INFO-101964       | Grundbegriffe der Informatik | 6 LP | Stüker, Worsch |

### Erfolgskontrolle(n)

Siehe Teilleistung

#### Qualifikationsziele

- Die Studierenden kennen grundlegende Definitionsmethoden und sind in der Lage, entsprechende Definitionen zu lesen und zu verstehen.
- · Sie kennen den Unterschied zwischen Syntax und Semantik.
- Die Studierenden kennen die grundlegenden Begriffe aus diskreter Mathematik und Informatik und sind in der Lage sie richtig zu benutzen, sowohl bei der Beschreibung von Problemen als auch bei Beweisen.

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur.

### Voraussetzungen

Siehe Teilleistung

### Inhalt

- Algorithmen informell, Grundlagen des Nachweises ihrer Korrektheit Berechnungskomplexität, "schwere" Probleme O-Notation, Mastertheorem
- · Alphabete, Wörter, formale Sprachen endliche Akzeptoren, kontextfreie Grammatiken
- induktive/rekursive Definitionen, vollständige und strukturelle Induktion Hüllenbildung
- · Relationen und Funktionen
- Graphen
- · Syntax für Aussagenlogik und Prädikatenlogik, Grundlagen ihrer Semantik

### Anmerkungen

Siehe Teilleistung.

#### **Arbeitsaufwand**

Vorlesung: 15 x 1.5 h = 22.50 h Uebung: 15 x 0.75 h = 11.25 h Tutorium: 15 x 1.5 h = 22.50 h Nachbereitung: 15 x 2 h = 30.00 h

Bearbeitung von Aufgaben: 14 x 3 h = 42.00 h Klausurvorbereitung: 1 x 49.75 h = 49.75 h

Klausur: 2 x 1 h = 2.00 h

Summe 180 h



# 2.39 Modul: Grundlagen BWL 1 [M-WIWI-101494]

Verantwortung: Prof. Dr. Martin Ruckes

Prof. Dr. Marliese Uhrig-Homburg

Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Betriebswirtschaftslehre/Volkswirtschaftslehre)

Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Level | Version |
|-----------------|----------------|------------|-------|---------|
| 7               | Jedes Semester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                                                                             |      |                                    |  |
|---------------------|-----------------------------------------------------------------------------|------|------------------------------------|--|
| T-WIWI-102817       | Betriebswirtschaftslehre: Unternehmensführung und<br>Informationswirtschaft | 3 LP | Nieken, Ruckes                     |  |
| T-WIWI-102819       | Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen               |      | Ruckes, Uhrig-<br>Homburg, Wouters |  |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die einzelnen Lehrveranstaltungen des Moduls. Die Prüfungen werden jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

### Qualifikationsziele

Der/die Studierende

- hat fundierte Kenntnisse in den zentralen Fragestellungen der Betriebswirtschaftslehre insbesondere mit Blick auf entscheidungsorientiertes Handeln und die modellhafte Betrachtung der Unternehmung,
- beherrscht die Grundlagen der Unternehmensführung und Informationswirtschaft sowie die Grundlagen der Finanzwirtschaft und der Prinzipien des betriebswirtschaftlichen Rechnungswesens.
- ist in der Lage, zentrale Tätigkeitsbereiche, Funktionen und Entscheidungen in einer marktwirtschaftlichen Unternehmung zu analysieren und zu bewerten.

Mit dem in den beiden Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

#### Voraussetzungen

Keine

#### Inhalt

Es werden die Grundlagen der Allgemeinen Betriebswirtschaftslehre als die Lehre vom Wirtschaften im Betrieb vermittelt. Darauf aufbauend werden schwerpunktartig die Bereiche Unternehmensführung und Organisation, Informationswirtschaft, Investition und Finanzierung sowie erste Prinzipien des internen und externen Rechnungswesens erörtert.

#### **Empfehlungen**

Es wird dringend empfohlen, die Lehrveranstaltungen des Moduls bereits im ersten Semester zu belegen.

### Arbeitsaufwand

Gesamtaufwand bei 7 Leistungspunkten: ca. 210 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



# 2.40 Modul: Grundlagen BWL 2 [M-WIWI-101578]

Verantwortung: Prof. Dr. Martin Ruckes

Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Betriebswirtschaftslehre/Volkswirtschaftslehre)

Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 8               | Jedes Semester | 2 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                               |      |                                                           |  |  |
|---------------------|---------------------------------------------------------------|------|-----------------------------------------------------------|--|--|
| T-WIWI-102818       | Betriebswirtschaftslehre: Produktionswirtschaft und Marketing | 4 LP | Fichtner, Klarmann,<br>Lützkendorf, Ruckes,<br>Schultmann |  |  |
| T-WIWI-102816       | Rechnungswesen                                                | 4 LP | Strych                                                    |  |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die einzelnen Lehrveranstaltungen des Moduls. Die Prüfungen werden jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

Der/die Studierende

- hat fundierte Kenntnisse in den zentralen Fragestellungen der Betriebswirtschaftslehre insbesondere mit Blick auf entscheidungsorientiertes Handeln und die modellhafte Betrachtung der Unternehmung,
- beherrscht die Grundlagen der Produktionswirtschaft und des Marketing sowie erste weiterführende Grundlagen des betriebswirtschaftlichen Rechnungswesens und des Controlling,
- ist in der Lage, zentrale Tätigkeitsbereiche, Funktionen und Entscheidungen in einer marktwirtschaftlichen Unternehmung zu analysieren und zu bewerten.

Mit dem in den beiden Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

### Voraussetzungen

Keine

#### Inhalt

Es werden die Grundlagen des internen und externen Rechnungswesen und der Allgemeinen Betriebswirtschaftslehre als die Lehre vom Wirtschaften im Betrieb vermittelt. Darauf aufbauend werden schwerpunktartig die Bereiche Marketing und Produktionswirtschaft erörtert.

### **Empfehlungen**

Es wird dringend empfohlen, die Lehrveranstaltungen des Moduls im 2. Semester (Betriebswirtschaftslehre: Produktionswirtschaft und Marketing) und 3. Semester (Rechnungswesen) zu belegen.

### Arbeitsaufwand

Gesamtaufwand bei 8 Leistungspunkten: ca. 240 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



# 2.41 Modul: Grundlagen des Marketing [M-WIWI-101424]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache          | Level | Version |
|-----------------|----------------|------------|------------------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch/Englisch | 3     | 5       |

| Pflichtbestandteile                                |                                    |        |        |  |  |
|----------------------------------------------------|------------------------------------|--------|--------|--|--|
| T-WIWI-102805 Marketing Mix 4,5 LP Klarmann        |                                    |        |        |  |  |
| Wahlpflichtblock: Ergänzungsangebot (mind. 4,5 LP) |                                    |        |        |  |  |
| T-WIWI-102806                                      | Dienstleistungs- und B2B Marketing | 3 LP   | Feurer |  |  |
| T-WIWI-102807                                      | International Marketing            | 1,5 LP | Feurer |  |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

Ziel dieses Moduls ist es, Studierende auf eine Tätigkeit in Marketing oder Vertrieb vorzubereiten. Gerade in technisch orientierten Unternehmen werden hierfür gerne Mitarbeiter eingesetzt, die als Wirtschaftsingenieure oder Wirtschaftsinformatiker auch selbst einen gewissen technischen Hintergrund haben.

### Studierende

- kennen die wichtigsten Konzepte, Verfahren und Theorien der vier Instrumente des Marketing Mix (Produktmanagement, Preismanagement, Kommunikationsmanagement und Vertriebsmanagement)
- verfügen über das Wissen, Entscheidungen bezüglich der gegenwärtigen und zukünftigen Produkte (Produktinnovationen) zu treffen (z.B. mittels Conjoint-Analyse)
- wissen, wie Kunden Marken wahrnehmen und wie diese Wahrnehmung durch das Unternehmen beeinflusst werden kann
- verstehen, wie Kunden auf Preise reagieren (z.B. mittels Preis-Absatz-Funktionen)
- können Preise auf Basis konzeptioneller und quantitativer Überlegungen bestimmen
- kennen die Grundlagen der Preisdifferenzierung
- sind mit verschiedenen Instrumenten der Kommunikation vertraut (z.B. TV-Werbung) und können diese treffsicher gestalten
- treffen Kommunikationsentscheidungen systematisch (z.B. mittels Mediaplanung)
- können den Markt segmentieren und das Produkt positionieren
- · wissen, wie die Wichtigkeit und Zufriedenheit von Kunden beurteilt werden können
- können die Beziehung zu Kunden und Vertriebspartnern gestalten
- wissen um Besonderheiten des Marketing im Dienstleistungs- und B2B-Bereich
- kennen die Besonderheiten des Marketing im internationalen Kontext

#### Voraussetzungen

Die Lehrveranstaltung Marketing Mix [2571152] (Kernveranstaltung) muss besucht werden.

#### Inhalt

Kernelement des Moduls ist die Veranstaltung "Marketing Mix", die als Pflichtelement auch immer absolviert werden muss. In dieser Veranstaltung werden Instrumente und Methoden vermittelt, die es Ihnen erlauben, zügig Verantwortung im operativen Marketingmanagement (Produktmanagement, Pricing, Kommunikationsmanagement und Vertrieb) zu übernehmen.

Im Kurs "Dienstleistungs- und B2B-Marketing" vermitteln wir Kenntnisse im Marketing von Dienstleistungen und bei der Vermarktung von Produkten an organisationale Käufer ("Business-to-Business"). Im Kurs "International Marketing", der auf englisch angeboten wird, geht es um die Besonderheiten des Marketing in internationalen Umgebungen.

### **Anmerkungen**

Die Lehrveranstaltungen "Dienstleistungs- und B2B Marketing" und "International Marketing" werden letztmalig im Wintersemester 2020/21 angeboten. Wir strukturieren das Veranstaltungsangebot im Modul "Grundlagen des Marketing" gerade um. Über die neuen Angebote ab dem Wintersemester 2021/22 werden wir Sie baldmöglichst informieren. Die Veranstaltung "Marketing Mix" wird im Sommersemester 2021 ganz normal weiter angeboten und auch langfristig beibehalten.

Weitere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Vertrieb (marketing.iism.kit.edu).

#### **Arbeitsaufwand**

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



# 2.42 Modul: Hyperbolische Geometrie [M-MATH-103464]

**Verantwortung:** Prof. Dr. Enrico Leuzinger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus       | Dauer      | Sprache | Level | Version |
|-----------------|--------------|------------|---------|-------|---------|
| 8               | Unregelmäßig | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                   |      |                  |
|---------------------|-----------------------------------|------|------------------|
| T-MATH-106881       | Hyperbolische Geometrie - Prüfung | 8 LP | Leuzinger, Sauer |

### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.).

#### Qualifikationsziele

Absolventinnen und Absolventen

- erhalten Einblick in eine nichteuklidische Geometrie
- verstehen grundlegende Strukturen und Techniken der hyperbolischen Geometrie und können diese nennen, diskutieren und anwenden

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

### Voraussetzungen

Keine

#### Inhalt

- · Möbiustransformationen
- 2-dimensionale Modelle
- · Trigonometrie und Differentialgeometrie
- · Parkettierungen und Fuchssche Gruppen
- Gromov-hyperbolische Räume

### **Empfehlungen**

Grundvorlesungen.

Das Modul "Einführung in Geometrie und Topologie" bzw. "Elementare Geometrie" ist hilfreich.

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.43 Modul: Industrielle Produktion I [M-WIWI-101437]

Verantwortung: Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache          | Level | Version |
|-----------------|----------------|------------|------------------|-------|---------|
| 9               | Jedes Semester | 2 Semester | Deutsch/Englisch | 3     | 3       |

| Pflichtbestandteile                          |                                       |        |                   |  |
|----------------------------------------------|---------------------------------------|--------|-------------------|--|
| T-WIWI-102606                                | Grundlagen der Produktionswirtschaft  | 5,5 LP | Schultmann        |  |
| Wahlpflichtblock: Ergänzungsangebot (3,5 LP) |                                       |        |                   |  |
| T-WIWI-102870                                | Logistics and Supply Chain Management | 3,5 LP | Schultmann, Wiens |  |
| T-WIWI-102820                                | Produktion und Nachhaltigkeit         | 3,5 LP | Schultmann, Volk  |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 SPO) über die Kernvorlesung *Grundlagen der Produktionswirtschaft* [2581950] und eine weitere Lehrveranstaltung des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

- Die Studierenden beschreiben das Gebiet der industriellen Produktion und Logistik und erkennen deren Bedeutung für Industriebetriebe und die darin tätigen Wirtschaftsingenieure/Wirtschaftsinformatiker und Volkswirtschaftler.
- Die Studierenden verwenden wesentliche Begriffe aus der Produktionswirtschaft und Logistik korrekt.
- Die Studierenden geben produktionswirtschaftlich relevante Entscheidungen im Unternehmen und dafür wesentliche Rahmenbedingungen wieder.
- Die Studierenden kennen die wesentlichen Planungsaufgaben, -probleme und Lösungsstrategien des strategischen Produktionsmanagements sowie der Logistik.
- Die Studierenden kennen wesentliche Ansätze zur Modellierung von Produktions- und Logistiksystemen.
- · Die Studierenden kennen die Bedeutung von Stoff- und Energieflüssen in der Produktion.
- Die Studierenden wenden exemplarische Methoden zur Lösung ausgewählter Problemstellungen an.

### Voraussetzungen

Die Lehrveranstaltung *Grundlagen der Produktionswirtschaft* [2581950] muss im Modul erfolgreich geprüft werden. Des Weiteren muss eine Lehrveranstaltung aus dem Ergänzungsangebot des Moduls erfolgreich geprüft werden.

#### Inhalt

Das Modul gibt eine Einführung in das Gebiet der Industriellen Produktion und Logistik. Im Mittelpunkt stehen Fragestellungen des strategischen Produktionsmanagements, die auch unter nachhaltig zeitrelevanten Aspekten betrachtet werden. Die Aufgaben der industriellen Produktionswirtschaft und Logistik werden mittels interdisziplinärer Ansätze der Systemtheorie beschrieben. Die behandelten Fragestellungen umfassen strategische Unternehmensplanung, die Forschung und Entwicklung (F&E) sowie die betriebliche Standortplanung. Unter produktionswirtschaftlicher Sichtweise werden zudem inner- und außerbetrieblichen Transport- und Lagerprobleme betrachtet. Dabei werden auch Fragen der Entsorgungslogistik und des Supply Chain Managements behandelt.

### **Empfehlungen**

Die Lehrveranstaltungen sind so konzipiert, dass sie voneinander unabhängig gehört werden können.

Mit Blick auf den konsekutiven Masterstudiengang empfiehlt es sich, das Modul mit den Modulen Industrielle Produktion II und/oder Industrielle Produktion III zu kombinieren.

### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 LP). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3,5 LP ca. 105h, für Lehrveranstaltungen mit 5,5 LP ca. 165h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.44 Modul: Integralgleichungen [M-MATH-102874]

**Verantwortung:** PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Analysis)

| Leistungspunkte | Turnus       | Dauer      | Level | Version |
|-----------------|--------------|------------|-------|---------|
| 8               | Unregelmäßig | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                     |      |                                |  |
|---------------------|---------------------|------|--------------------------------|--|
| T-MATH-105834       | Integralgleichungen | 8 LP | Arens, Griesmaier,<br>Hettlich |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30min.).

#### Qualifikationsziele

Die Studierenden können Integralgleichungen klassifizieren und hinsichtlich Existenz und Eindeutigkeit mittels Methoden der Störungstheorie und der Fredholmtheorie untersuchen. Beweisideen der Herleitung der Fredholmtheorie sowie der Störungstheorie insbesondere bei Faltungsintegralgleichungen können sie beschreiben und erläutern. Darüberhinaus können die Studierenden klassische Randwertprobleme zu gewöhnlichen linearen Differentialgleichungen und zur Potentialtheorie durch Integralgleichungen formulieren und analysieren.

# Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

### Voraussetzungen

Keine

#### Inhalt

- · Riesz- und Fredholmtheorie
- Fredholmsche und Volterrasche Integralgleichungen
- Anwendungen in der Potentialtheorie
- Faltungsgleichungen

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung



# 2.45 Modul: Inverse Probleme [M-MATH-102890]

**Verantwortung:** Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Analysis) (EV ab 20.08.2018)

Mathematische Vertiefung (Gebiet Angewandte und Numerische Mathematik)

Leistungspunkte<br/>8Turnus<br/>Jedes WintersemesterDauer<br/>1 SemesterLevel<br/>3Version<br/>1

| Pflichtbestandteile |                  |  |                                        |  |
|---------------------|------------------|--|----------------------------------------|--|
| T-MATH-105835       | Inverse Probleme |  | Arens, Griesmaier,<br>Hettlich, Rieder |  |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

#### Qualifikationsziele

Die Studierenden können gegebene Probleme hinsichtlich Gut- oder Schlechtgestelltheit unterscheiden. Sie können die allgemeine Theorie zu schlecht gestellten linearen Problemen und deren Regularisierung in Hilberträumen zusammen mit den Beweisideen beschreiben. Darüberhinaus können die Studierenden Regularisierungsverfahren wie etwa die Tikhonovregularisierung analysieren und hinsichtlich ihrer Konvergenz beurteilen.

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

### Voraussetzungen

Keine

#### Inhalt

- · Lineare Gleichungen 1. Art
- Schlecht gestelle Probleme
- · Regularisierungstheorie
- Tikhonov Regularisierung bei linearen Gleichungen
- · Iterative Regularisierungsverfahren
- · Beispiele schlecht gestellter Probleme

### **Empfehlungen**

Das Modul sollte "Funktionalanalysis" bereits belegt worden sein.

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung



# 2.46 Modul: Klassische Experimentalphysik I, Mechanik [M-PHYS-103423]

**Verantwortung:** Studiendekan Physik **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Experimentalphysik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                           |      |          |
|---------------------|-------------------------------------------|------|----------|
| T-PHYS-102283       | Klassische Experimentalphysik I, Mechanik | 8 LP | Husemann |

### Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

#### Qualifikationsziele

Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf den Gebieten der klassischen Mechanik, Hydromechanik und speziellen Relativitätstheorie und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

#### Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

#### Voraussetzungen

keine

#### Inhalt

Klassische Mechanik: Basisgrößen, Messfehler, Mechanik von Massepunkten (Kinematik und Dynamik), Newtonsche Axiome, Beispiele für Kräfte (Gravitationsgesetz, auch für beliebige Masseverteilungen, Hookesches Gesetz, Reibung). Erhaltungssätze (Energie, Impuls, Drehimpuls). Stoßprozesse. Harmonische Schwingungen, gekoppelte Oszillatoren, deterministisches Chaos. Planetenbahnen (Keplersche Gesetze), Rotierende Bezugssysteme (Scheinkräfte), Trägheitstensor, Eulersche Kreiselgleichungen (Präzession, Nutation), Wellenausbreitung in der Mechanik, Dopplereffekt.

**Hydromechanik:** Schwimmende Körper, Barometrische Höhenformel, Kontinuitätsgleichung, Laminare und turbulente Strömungen, Bernoulli-Gleichung, Hagen-Poiseuillesches Gesetz (innere Reibung), Oberflächenspannung, Eulersche Bewegungsgleichung, Wasserwellen.

**Spezielle Relativitätstheorie:** Michelson-Morley-Experiment, Bewegte Bezugssysteme, Lorentztransformation, Relativistische Effekte, Longitudinaler und transversaler Dopplereffekt, Relativistische Mechanik, kinetische Energie.

#### **Arbeitsaufwand**

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (150)

#### Lehr- und Lernformen

Klassische Experimentalphysik I, Mechanik: Vorlesung, 4 SWS; Übungen zu Klassische Experimentalphysik I, Übung: 2 SWS

#### Literatur

Lehrbücher der klassischen Mechanik



# 2.47 Modul: Klassische Experimentalphysik II, Elektrodynamik [M-PHYS-103424]

Verantwortung: Studiendekan Physik Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Experimentalphysik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 7               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                  |      |         |
|---------------------|--------------------------------------------------|------|---------|
| T-PHYS-102284       | Klassische Experimentalphysik II, Elektrodynamik | 7 LP | Ustinov |

### Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

#### Qualifikationsziele

Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf dem Gebiet der klassischen Elektrodynamik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

### Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

#### Voraussetzungen

keine

#### Inhalt

Zeitlich konstante elektrische und magnetische Felder: Basisgröße Strom, elektrisches Potential, Ohmsches Gesetz, Coulombsches Gesetz, Gesetz von Biot-Savart, Integralsätze von Gauß und Stokes, Lorentzsches Kraftgesetz (Zyklotronbewegung, Hall-Effekt), Kirchhoffsche Regeln, Kapazitäten, Energieinhalt des elektromagnetischen Feldes, Elektrische und magnetische Dipole, Stetigkeitsbedingungen bei Übergängen Vakuum/Medium.

Zeitlich veränderliche elektromagnetische Felder: Induktionsgesetze (Selbstinduktion, Transformator, Motor, Generator), Elektrische Schaltkreise (Ein- und Ausschaltvorgänge, komplexe Scheinwiderstände, RLC-Schwingkreise), Verschiebungsstrom. Die Maxwellschen Gleichungen (Integral- und Differentialform), Elektromagnetische Wellen, Hertzscher Dipol, Normaler Skin-Effekt, Hohlleiter.

**Elektrodynamik der Kontinua:** Polarisation und Magnetisierung (Para-, Ferro-, Dia-Elektrete und -Magnete), Depolarisationsund Entmagnetisierungsfaktoren, Elektrische und magnetische Suszeptibilitäten, Dielektrische Funktion, magnetische Permeabilität.

#### **Arbeitsaufwand**

210 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)

#### Lehr- und Lernformen

Klassische Experimentalphysik II, Elektrodynamik: Vorlesung, 3 SWS; Übungen zu Klassische Experimentalphysik II: Übung, 2 SWS

#### Literatur

Lehrbücher der klassischen Elektrodynamik



# 2.48 Modul: Klassische Experimentalphysik III, Optik und Thermodynamik [M-PHYS-103425]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Experimentalphysik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 9               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                            |      |           |
|---------------------|------------------------------------------------------------|------|-----------|
| T-PHYS-102285       | Klassische Experimentalphysik III, Optik und Thermodynamik | 9 LP | Wulfhekel |

#### Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

## Qualifikationsziele

Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf dem Gebiet der Optik und klassischen Thermodynamik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

# Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

#### Voraussetzungen

keine

#### Inhalt Optik:

- Einführung: Beschreibung von Lichtfeldern, Überlagerung ebener Wellen, Kohärenz, Lichtausbreitung in Materie (optische Konstanten, Dispersion und Absorption, Polarisation, Gruppengeschwindigkeit)
- Geometrische Optik: Fermatsches Prinzip, Reflexions- und Brechungsgesetz, Totalreflexion, Lichtleiter, Abbildende Systeme, Abbildungsfehler, Blenden, Auge, Lupe, Foto- und Projektionsapparat, Fernrohr, Spiegelteleskop, Mikroskop.
- Wellenoptik: Huygens-Fresnelsches Prinzip, Beugung, Interferenz (Zweifach-/ Vielfachinterferenzen, Spalt, Lochblende, Doppelspalt, Gitter, Interferometer, Auflösungsvermögen, Holographie), Polarisation (Fresnelsche Formeln), Doppelbrechung, Optische Aktivität, Streuung (Rayleigh, Thomson, Mie)
- Photonen: Eigenschaften des Photons, Strahlungsgesetze, Nichtlineare Optik.

## Thermodynamik:

- Einführung: Temperatur, Entropie, Reversible und irreversible Prozesse, Temperaturmessung, Stoffmengen, Chemisches Potential, Ideales Gas, Wärmemenge, Wärmekapazität, Wärmeübertragung.
- Kinetische Gastheorie: Druck, Wärmekapazität, Maxwellsche Geschwindigkeitsverteilung, Transportphänomene (freie Weglänge, Wärmeleitung, innere Reibung, Diffusion).
- Phänomenologische Thermodynamik und Anwendungen: Thermodynamische Potentiale, Hauptsätze der Wärmelehre, Zustandsgleichungen, Kreisprozesse (Carnot, Stirling, Wirkungsgrad), Reale Gase und Substanzen (van der Waals-Gleichung, Joule-Thomson-Effekt, kritischer Punkt, Aggregatzustände, Tripelpunkt, Phasenübergänge).

#### Arbeitsaufwand

270 Stunden bestehend aus Präsenzzeiten (105), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (165)

## Lehr- und Lernformen

Klassische Experimentalphysik III, Optik und Thermodynamik: Vorlesung 5 SWS; Übungen zu Klassische Experimentalphysik III, Optik und Thermodynamik: Übung 2 SWS

#### Literatur

Lehrbücher der Optik und Thermodynamik



# 2.49 Modul: Klassische Methoden für partielle Differentialgleichungen [M-MATH-102870]

**Verantwortung:** Prof. Dr. Michael Plum **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Analysis)

LeistungspunkteTurnusDauerLevelVersion8Jedes Wintersemester1 Semester31

| Pflichtbestandteile |                                                           |  |                                                          |
|---------------------|-----------------------------------------------------------|--|----------------------------------------------------------|
| T-MATH-105832       | Klassische Methoden für partielle Differentialgleichungen |  | Frey, Hundertmark,<br>Lamm, Plum, Reichel,<br>Schnaubelt |

## Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

#### Qualifikationsziele

Absolventinnen und Absolventen sind am Ende des Moduls mit grundlegenden Konzepten und Denkweisen auf dem Gebiet der partiellen Differentialgleichungen vertraut. Sie sind in der Lage, explizite Lösungen für gewisse Klassen partieller Differentialgleichungen zu berechnen und kennen Methoden zum Nachweis von qualitativen Eigenschaften von Lösungen.

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfung.

# Voraussetzungen

Keine

#### Inhalt

- Beispiele partieller Differentialgleichungen
- Wellengleichung
- Laplace- und Poisson-Gleichung
- Wärmeleitungsgleichung
- Klassische Lösungsmethoden

# Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung



# 2.50 Modul: Klassische Theoretische Physik I, Einführung [M-PHYS-103426]

Verantwortung: Studiendekan Physik Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Wahlmodul Theoretische Physik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                              |      |         |
|---------------------|----------------------------------------------|------|---------|
| T-PHYS-102286       | Klassische Theoretische Physik I, Einführung | 6 LP | Nierste |

## Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

#### Qualifikationsziele

Die Studentinnen und Studenten können einfache mechanische Probleme analysieren und haben die Fähigkeit, diese mit grundlegenden mathematischen Konzepten zu lösen.

#### Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

#### Voraussetzungen

keine

#### Inhalt

**Kinematik:** Bahnkurven, Inertialsysteme, Galilei-Transformation. Newtonsche Axiome. Energie, Impuls, Drehimpuls, Definitionen, Erhaltungssätze, System von Massenpunkten. Harmonischer Oszillator, mit Reibung und getrieben (periodische Kraft, Kraftstoß). Zwei-Körper-Problem mit Zentralkraft, Kepler, Klassifizierung der Bahnen, Rutherford-Streuung.

**Mathematische Hilfsmittel:** Differential- und Integralrechnung, Einfache Differentialgleichungen, Potenzreihen, Komplexe Zahlen, Vektoren, Gradient, Linienintegral, Delta-Distribution

#### **Arbeitsaufwand**

180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (120)

#### Lehr- und Lernformen

Klassische Theoretische Physik I, Einführung: Vorlesung, 2 SWS; Übungen zu Klassische Theoretische Physik I, Einführung: Übung, 2 SWS

#### Literatur

Lehrbücher der klassischen theoretischen Mechanik



# 2.51 Modul: Klassische Theoretische Physik II, Mechanik [M-PHYS-103427]

**Verantwortung:** Studiendekan Physik **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Theoretische Physik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                             |      |          |
|---------------------|---------------------------------------------|------|----------|
| T-PHYS-102287       | Klassische Theoretische Physik II, Mechanik | 6 LP | Melnikov |

# Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

#### Qualifikationsziele

Die Studentinnen und Studenten können die Konzepte der analytischen Mechanik auf mechanische Systeme anwenden. Sie sind in der Lage, die Lagrangefunktion eines mechanischen Systems herzuleiten und können daraus die Bewegungsgleichungen ausrechnen. Die Studierenden haben außerdem die Fähigkeit, die Hamiltonschen Bewegungsgleichungen aufzustellen.

#### Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

#### Voraussetzungen

keine

#### Inhalt

Lagrange- und Hamiltonformalismus, Lagrange-Gleichungen 1. und 2. Art, Symmetrieprinzipien und Erhaltungssätze. Hamiltonsches Prinzip, Hamiltonsche Bewegungsgleichungen, Phasenraum, kanonische Transformationen. Der Starre Körper. Beschleunigte und rotierende Bezugssysteme. Schwingungen in Systemen mit mehreren Freiheitsgraden. Mathematische Hilfsmittel: orthogonale Transformationen, Funktionale, Variationsrechnung.

Weitere Themen: Lineare Kette, Kontinuumsmechanik, Divergenz und Rotation, Fourier-Transformation

# **Arbeitsaufwand**

180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (120)

# Lehr- und Lernformen

Klassische Theoretische Physik II, Mechanik: Vorlesung, 2 SWS; Übungen zu Klassische Theoretischen Physik II, Mechanik: Übung, 2 SWS

#### Literatur

Lehrbücher der klassischen theoretischen Mechanik



# 2.52 Modul: Klassische Theoretische Physik III, Elektrodynamik [M-PHYS-103428]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Theoretische Physik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                    |      |       |
|---------------------|----------------------------------------------------|------|-------|
| T-PHYS-102288       | Klassische Theoretische Physik III, Elektrodynamik | 8 LP | Garst |

# Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

## Qualifikationsziele

Die Studentinnen und Studenten erlernen den Umgang mit elektrischen und magnetischen Feldern und können die elektrischen und magnetischen Eigenschaften der Materie analysieren. Sie sind in der Lage, die Maxwell-Gleichungen für einfache Fälle zu lösen. Außerdem können Sie die Maxwell-Gleichungen Lorentz-kovariant darstellen. Die Studentinnen und Studenten können aus den Maxwell-Gleichungen die Wellengleichung für die Potentiale herleiten und diese lösen.

#### Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

#### Voraussetzungen

keine

#### Inhalt

Einführung und Überblick: Grundbegriffe, Maxwellgleichungen, Kontinuitätsgleichung.

**Elektrostatik:** Grundgleichungen, skalares Potential, Beispiele, Elektrostatische Energie, Randwertprobleme, Multipolentwicklungen, Ladungsverteilung im äußeren Feld.

**Magnetostatik:** Grundgleichungen, Vektorpotential, Beispiele, Lokalisierte Stromverteilung, magnetisches Moment, Stromverteilung im äußeren Feld.

Zeitabhängige Felder und Strahlungsphänomene: Grundgleichungen, quasistationäre Näherung, Poynting-Theorem, Elektromagnetische Wellen: ebene Wellen, Polarisation, Wellenpakete, sphärische Wellen, Felder in Hohlleitern und Resonatoren, elektromagnetische Potentiale und Eichtransformationen, Retardierte und avancierte Potentiale, Abstrahlung einer lokalisierten Quelle, Hertzscher Dipol, Felder und Strahlung bewegter Punktladungen, Streuung an geladenen Teilchen

**Spezielle Relativitätstheorie und kovariante Elektrodynamik:** Einsteinsches Relativitätsprinzip, Lorentztransformationen und 4-Vektoren, Tensoren, relativistische Mechanik, kovariante Maxwellgleichungen, Energie-Impuls-Tensor, Erhaltungssätze, Lagrange-Fomulierung der Elektrodynamik.

**Materie im elektromagnetischen Feld:***P, M, D, H,* Maxwellgleichung, Beispiele zur Elektrostatik und Magnetostatik, Wellen in Dielektrika, Reflexion und Brechung, Energiesatz.

**Mathematische Hilfsmittel:** Linien-, Flächen- und Volumenintegrale, Integralsätze, Zylinder- und Kugelkoordinaten, d-Distribution (3-dimensional), Fouriertransformation, Legendrepolynome, Kugelfunktionen, Besselfunktionen, Transformationsverhalten von Vektoren und Tensoren (Drehungen, Lorentztransformationen), Hauptachsentransformation.

# Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (150)

# **Lehr- und Lernformen**

Klassische Theoretische Physik III, Elektrodynamik: Vorlesung, 4 SWS; Übungen zu Klassische Theoretische Physik III, Elektrodynamik: Übung, 2 SWS

#### Literatur

Lehrbücher der Elektrodynamik



# 2.53 Modul: Kombinatorik [M-MATH-102950]

**Verantwortung:** Prof. Dr. Maria Aksenovich **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie)

| Leistungspunkte | Turnus       | Dauer      | Level | Version |
|-----------------|--------------|------------|-------|---------|
| 8               | Unregelmäßig | 1 Semester | 3     | 1       |

| Pflichtbestandteile |              |      |            |
|---------------------|--------------|------|------------|
| T-MATH-105916       | Kombinatorik | 8 LP | Aksenovich |

# Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Um einen Bonus zu bekommen, muss man jeweils 50% der Punkte für die Lösungen der Übungsblätter 1-6 sowie der Übungsblätter 7-12 erwerben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

#### Qualifikationsziele

Die Studierenden können grundlegende Begriffe und Techniken der Kombinatorik

nennen, erörtern und anwenden. Sie können kombinatorische Probleme analysieren, strukturieren und formal beschreiben. Die Studierenden können Resultate und Methoden, wie das Inklusions-Exklusions- Prinzip, Erzeugendenfunktionen oder Young Tableaux, sowie die in den Beweisen entwickelten Ideen, auf kombinatorische Probleme anwenden. Insbesondere sind sie in der Lage, die Anzahl der geordneten und ungeordneten Arrangements gegebener Größe zu bestimmen oder die Existenz solcher Arrangements zu beweisen oder zu widerlegen. Die Studierenden sind fähig, Methoden aus dem Bereich der Kombinatorik zu verstehen und kritisch zu beurteilen. Desweiteren können die Studierenden in englischer Fachsprache kommunizieren.

#### Zusammensetzung der Modulnote

Die Modulnote ist Note der schriftlichen Prüfung.

#### Voraussetzungen

Keine

# Inhalt

Die Vorlesung bietet eine Einführung in die Kombinatorik. Angefangen mit Problemen des Abzählens und Bijektionen, werden die klassischen Methoden des Inklusion- Exklusions-Prinzip und der erzeugenden Funktionen behandelt. Weitere Themengebiete beinhalten Catalan-Familien, Permutationen, Partitionen, Young Tableaux, partielle Ordnungen und kombinatorische Designs.

#### **Empfehlungen**

Grundkenntnisse in lineare Algebra und Analysis sind empfohlen.

# Anmerkungen

- · Turnus: jedes zweite Jahr im Sommersemester
- · Unterrichtssprache: Englisch

# Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.54 Modul: Kommunikation und Datenhaltung [M-INFO-101178]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm

Prof. Dr. Martina Zitterbart

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Anwendungsfach / Informatik (Wahlbereich Informatik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                            |      |            |
|---------------------|----------------------------|------|------------|
| T-INFO-101497       | Datenbanksysteme           | 4 LP | Böhm       |
| T-INFO-102015       | Einführung in Rechnernetze | 4 LP | Zitterbart |

#### Erfolgskontrolle(n)

Siehe Teilleistung

#### Qualifikationsziele

Der/die Studierende

- kennt die Grundlagen der Datenübertragung sowie den Aufbau von Kommunikationssystemen,
- ist mit der Zusammensetzung von Protokollen aus einzelnen Protokollmechanismen vertraut und konzipiert einfache Protokolle eigenständig,
- kennt und versteht das Zusammenspiel einzelner Kommunikationsschichten und Anwendungen,
- stellt den Nutzen von Datenbank-Technologie dar,
- deiniert die Modelle und Methoden bei der Entwicklung von funktionalen Datenbank-Anwendungen, legt selbstständig einfache Datenbanken an und tätigt Zugriffe auf diese,
- kennt und versteht die entsprechenden Begrifflichkeiten und die Grundlagen der zugrundeliegenden Theorie.

#### Voraussetzungen

Siehe Teilleistung

#### Inhalt

Verteilte Informationssysteme sind nichts anderes als zu jeder Zeit von jedem Ort durch jedermann zugängliche, weltweite Informationsbestände. Den räumlich verteilten Zugang regelt die Telekommunikation, die Bestandsführung über beliebige Zeiträume und das koordinierte Zusammenführen besorgt die Datenhaltung. Wer global ablaufende Prozesse verstehen will, muss also sowohl die Datenübertragungsechnik als auch die Datenbanktechnik beherrschen, und dies sowohl einzeln als auch in ihrem Zusammenspiel.

# **Empfehlungen**

Kenntnisse aus der Volesung Softwaretechnik I werden empfohlen.

#### **Anmerkungen**

Zur Lehrveranstaltung Datenbanksysteme [24516] ist es möglich als weitergehende Übung im Wahlfach das Modul Weitergehende Übung Datenbanksysteme [IN3INWDS] (dieses Modul wird zurzeit nicht angeboten) zu belegen.

#### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 240 Stunden (8 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeit und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.55 Modul: Lie Gruppen und Lie Algebren [M-MATH-104261]

**Verantwortung:** Prof. Dr. Enrico Leuzinger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Algebra und Geometrie) (EV ab 01.10.2018)

| Leistungspunkte | Turnus       | Dauer      | Sprache | Level | Version |
|-----------------|--------------|------------|---------|-------|---------|
| 8               | Unregelmäßig | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                              |      |           |
|---------------------|------------------------------|------|-----------|
| T-MATH-108799       | Lie Gruppen und Lie Algebren | 8 LP | Leuzinger |

# Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

#### Qualifikationsziele

Absolventinnen und Absolventen haben ein tieferes Verständnis exemplarischer Konzepte und Methoden der Lie Theorie erworben. Sie sind auf eigenständige Forschung und Anwendungen der Lie Theorie vorbereitet.

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

#### Voraussetzungen

Keine

#### Inhalt

Lie Gruppen Lie Algebren Strukturtheorie Komplexe halbeinfache Lie Algebren

#### **Empfehlungen**

Folgende Module sollten bereits belegt worden sein: Elementare Geometrie, Differentialgeometrie

## **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung



# 2.56 Modul: Lineare Algebra 1 und 2 [M-MATH-101309]

**Verantwortung:** Prof. Dr. Enrico Leuzinger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Grundstrukturen ab 1.01.2019

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 18              | Jedes Wintersemester | 2 Semester | Deutsch | 3     | 2       |

| Pflichtbestandteile |                                  |      |                                                       |  |
|---------------------|----------------------------------|------|-------------------------------------------------------|--|
| T-MATH-106338       | Lineare Algebra 1 - Klausur      | 9 LP | Hartnick, Herrlich,<br>Leuzinger, Sauer,<br>Tuschmann |  |
| T-MATH-106339       | Lineare Algebra 2 - Klausur      | 9 LP | Hartnick, Herrlich,<br>Leuzinger, Sauer,<br>Tuschmann |  |
| T-MATH-102249       | Lineare Algebra 1 - Übungsschein | 0 LP | Hartnick, Herrlich,<br>Leuzinger, Sauer,<br>Tuschmann |  |
| T-MATH-102259       | Lineare Algebra 2 - Übungsschein | 0 LP | Hartnick, Herrlich,<br>Leuzinger, Sauer,<br>Tuschmann |  |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen von jeweils 120 Minuten Dauer sowie den beiden bestandenen Studienleistungen aus den Übungen.

#### Qualifikationsziele

Die Studierenden

- kennen grundlegende mathematische Beweisverfahren und sind in der Lage, eine mathematische Argumentation formal korrekt auszuführen,
- kennen die algebraischen Strukturen Gruppe, Ring, Körper, Vektorraum und deren Beziehungen untereinander,
- · beherrschen Lösungstechniken für lineare Gleichungssysteme, insbesondere das Gauß'sche Eliminationsverfahren,
- sind in der Lage, lineare Abbildungen durch Matrizen darzustellen und zugeordnete Größen wie Determinanten oder Eigenwerte mithilfe des Matrizenkalküls zu berechnen,
- können geometrische Eigenschaften wie Orthogonalität, Abstände, Isometrien durch Konzepte der linearen Algebra (Skalarprodukte, Normen) beschreiben und bestimmen.

# Zusammensetzung der Modulnote

Die Modulnote ist die Durchschnittsnote der beiden Teilprüfungen.

Beide Teilprüfungen sind getrennt zu bestehen.

## Voraussetzungen

Keine

#### Inhalt

- Grundbegriffe (Mengen, Abbildungen, Relationen, Gruppen, Ringe, Körper, Matrizen, Polynome)
- Lineare Gleichungssysteme (Gauß´sches Eliminationsverfahren, Lösungstheorie)
- Vektorräume (Beispiele, Unterräume, Quotientenräume, Basis und Dimension)
- Lineare Abbildungen (Kern, Bild, Rang, Homomorphiesatz, Vektorräume von Abbildungen, Dualraum, Darstellungsmatrizen, Basiswechsel, Endomorphismenalgebra, Automorphismengruppe)
- Determinanten
- Eigenwerttheorie (Eigenwerte, Eigenvektoren, charakteristisches Polynom, Normalformen)
- Vektorräume mit Skalarprodukt (bilineare Abbildungen, Skalarprodukt, Norm, Orthogonalität, adjungierte Abbildung, normale und selbstadjungierte Endomorphismen, Spektralsatz, Isometrien und Normalformen)
- Grundlagen der multilinearen Algebra
- Euklidische Räume (Unterräume, Bewegungen, Klassifikation, Ähnlichkeitsabbildungen)
- · Optional: Affine Geometrie, Quadriken

# **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 540 StundenPräsenzzeit: 240 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 300 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.57 Modul: Lineare Elektrische Netze [M-ETIT-101845]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Anwendungsfach / Elektrotechnik und Informationstechnik (Pflichtbereich Elektrotechnik und

Informationstechnik)

LeistungspunkteTurnusDauerSpracheLevelVersion7Jedes Wintersemester1 SemesterDeutsch31

| Pflichtbestandteile |                           |      |        |
|---------------------|---------------------------|------|--------|
| T-ETIT-101917       | Lineare Elektrische Netze | 7 LP | Dössel |

#### Erfolgskontrolle(n)

In einer schriftlichen Prufung im Umfang von 120 Minuten werden die Inhalte der Lehrveranstaltung Lineare Elektrische Netze (7 LP) gepruft. Bei bestandener Prufung können Studierende einen Notenbonus von bis zu 0,4 Notenpunkten erhalten, wenn zuvor semesterbegleitend zwei Projektaufgaben erfolgreich bearbeitet wurden. Die Bearbeitung der Projektaufgaben wird durch die Abgabe einer Dokumentation oder des Projektcodes nachgewiesen.

#### **Oualifikationsziele**

Im Modul Lineare Elektrische Netze erwirbt der Studierende Kompetenzen bei der Analyse und dem Design von elektrischen Schaltungen mit linearen Bauelementen mit Gleichstrom und Wechselstrom. Hierbei ist er in der Lage, die Themen zu erinnern und zu verstehen, zudem die behandelten Methoden anzuwenden, um hiermit die elektrischen Schaltungen mit linearen Bauelementen zu analysieren und deren Relevanz, korrekte Funktion und Eigenschaften zu beurteilen.

#### Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der Teilleistung Lineare Elektrische Netze. Wie im Abschnitt "Erfolgskontrolle(n)" beschrieben, setzt diese sich aus der Note der schriftlichen Prufung Lineare Elektrische Netze und einem eventuell erhaltenen Notenbonus zusammen.

#### Voraussetzungen

keine

#### Inhalt

Methoden zur Analyse komplexer linearer elektrischer Schaltungen

Definitionen von U, I, R, L, C, unabhängige Quellen, abhängige Quellen

Kirchhoffsche Gleichungen, Knotenpunkt-Potential-Methode, Maschenstrom-Methode

Ersatz-Stromquelle, Ersatz-Spannungsquelle, Stern-Dreiecks-Transformation, Leistungsanpassung

Operationsverstärker, invertierender Verstärker, Addierer, Spannungsfolger, nicht-invertierender Verstärker, Differenzverstärker

Sinusförmige Ströme und Spannungen, Differentialgleichungen für L und C, komplexe Zahlen

Beschreibung von RLC-Schaltungen mit komplexen Zahlen, Impedanz, komplexe Leistung, Leistungsanpassung

Brückenschaltungen, Wheatstone-, Maxwell-Wien- und Wien-Brückenschaltungen

Serien- und Parallel-Schwingkreise

Vierpoltheorie, Z, Y und A-Matrix, Impedanztransformation, Ortskurven und Bodediagramm

Transformator, Gegeninduktivität, Transformator-Gleichungen, Ersatzschaltbilder des Transformators

Drehstrom, Leistungsübertragung und symmetrische Last.

#### Anmerkungen

Achtung: Dieses Modul ist Bestandteil der Orientierungsprüfung nach SPO Bachelor Elektrotechnik und Informationstechnik.

## **Arbeitsaufwand**

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht.

Unter den Arbeitsaufwand der LV Lineare Elektrische Netze fallen

- 1. Präsenzzeit in Vorlesungen, Ubungen
- 2. Vor-/Nachbereitung
- 3. Klausurvorbereitung und Präsenz in selbiger

Der Arbeitsaufwand für Punkt 1 entspricht etwa 60 Stunden, für die Punkte 2-3 etwa 115 -150 Stunden. Insgesamt beträgt der Arbeitsaufwand für die LV Lineare Elektrische Netze 175-210 Stunden. Dies entspricht 7 LP.



# 2.58 Modul: Markovsche Ketten [M-MATH-101323]

Verantwortung: Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Grundlagen Angewandte Mathematik (Wahlpflichtmodul Grundlagen Angewandte Mathematik)

Mathematische Vertiefung (Gebiet Stochastik)

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 6               | Jedes Sommersemester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                   |   |                                                        |
|---------------------|-------------------|---|--------------------------------------------------------|
| T-MATH-102258       | Markovsche Ketten | 1 | Bäuerle, Fasen-<br>Hartmann, Henze,<br>Hug, Klar, Last |

## Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

#### Qualifikationsziele

Die Studierenden

- kennen ausgewählte Methoden der Konstruktion, der mathematischen Modellierung und der Analyse zeitdiskreter und zeitstetiger zufälliger Vorgänge und wenden diese an,
- · können einfache Berechnungen von Wahrscheinlichkeiten und Mittelwerten im Rahmen dieser Modelle durchführen,
- · kennen Prinzipien der Klassifikation Markovscher Ketten und können diese anwenden,
- können invariante Maße (stationäre Verteilungen) bestimmen und das Langzeitverhalten von Markov-Ketten analysieren,
- können selbstorganisiert und reflexiv arbeiten.

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

#### Voraussetzungen

Keine

#### Inhalt

- Markov-Eigenschaft
- Übergangswahrscheinlichkeiten
- Simulationsdarstellung
- · Irreduzibilität und Aperiodizität
- Stationäre Verteilungen
- Ergodensätze
- Reversible Markovsche Ketten
- Warteschlangen
- · Jackson-Netzwerke
- Irrfahrten
- · Markov Chain Monte Carlo
- · Markovsche Ketten in stetiger Zeit
- · Übergangsintensitäten
- Geburts-und Todesprozesse
- · Poissonscher Prozess

# Empfehlungen

Folgende Module sollten bereits belegt worden sein: Einführung in die Stochastik

# **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 180 Stunden

Präsenzzeit: 60 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche

Vorbereitung auf die studienbegleitende Modulprüfung



# 2.59 Modul: Maschinenkonstruktionslehre [M-MACH-101299]

**Verantwortung:** Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: Anwendungsfach / Maschinenbau (Wahlbereich Maschinenbau)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Wintersemester | 2 Semester | Deutsch | 3     | 3       |

| Pflichtbestandteile |                                                        |      |            |
|---------------------|--------------------------------------------------------|------|------------|
| T-MACH-110363       | Maschinenkonstruktionslehre Grundlagen I und II        | 6 LP | Matthiesen |
| T-MACH-110364       | Maschinenkonstruktionslehre Grundlagen I, Vorleistung  | 1 LP | Matthiesen |
| T-MACH-110365       | Maschinenkonstruktionslehre Grundlagen II, Vorleistung | 1 LP | Matthiesen |

## Erfolgskontrolle(n)

Schriftliche Prüfung über die Inhalte von Maschinenkonstruktionslehre I&II

Dauer: 90 min zzgl. Einlessezeit

Prüfungsvorleistung: Erfolgreiche Teilnahme an den Vorleistungen im Lehrgebiet Maschinenkonstruktionslehre I&II

#### Qualifikationsziele

#### Lernziel Federn:

- · Federarten erkennen können und Beanspruchung erklären können
- Eigenschaften einer federnden LSS in später vorgestellten Maschinenelementen erkennen und beschreiben können
- · Wirkprinzip verstehen und erklären können
- Einsatzgebiete von Federn kennen und aufzählen
- · Belastung und daraus resultierende Spannungen graphisch darstellen können
- · Artnutzgrad als Mittel des Leichtbaus beschreiben können
- Verschiedene Lösungsvarianten bezüglich Leichtbau analysieren können (Artnutzungsgrad einsetzen)
- Mehrere Federn als Schaltung erklären können und Gesamtfedersteifigkeit berechnen können

#### Lernziel technische Systeme:

- · Erklären können, was ein technisches System ist
- "Denken in Systemen"
- Systemtechnik als Abstraktionsmittel zur Handhabung von Komplexität anwenden
- Funktionale Zusammenhänge technischer Systeme erkennen
- Den Funktionsbegriff kennen lernen
- C&C<sup>2</sup>-A als Mittel der Systemtechnik anwenden können

#### Lernziel Visualisierung:

- · Prinzipskizzen erstellen und interpretieren können
- Technische Freihandzeichnung als Mittel zur Kommunikation anwenden
- Die handwerklichen Grundlagen des technischen Freihandzeichnens anwenden können
- Ableitung von 2D-Darstellungen in unterschiedliche perspektivische Darstellungen technischer Gebilde und umgekehrt
- · Lesen von technischen Zeichnungen beherrschen
- Zweckgerichtet technische Zeichnungen bemaßen
- · Schnittdarstellungen technischer Systeme als technische Skizze erstellen können

#### Lernziel Lagerungen:

- · Lagerungen in Maschinensystemen erkennen und in ihre Grundfunktionen erklären können
- · Lager (Typ/Bauart/Funktion) nennen und in Maschinensystemen und Technischen Zeichnungen erkennen können
- Einsatzbereiche und Auswahlkriterien für die verschiedenen Lager und Lagerungen nennen und Zusammenhänge erklären können
- Gestaltung der Festlegungen der Lager in verschiedenen Richtungen radial/axial und in Umfangsrichtung funktional erklären können
- Auswahl als iterativen Prozess exemplarisch kennen und beschreiben können
- Dimensionierung von Lagerungen exemplarisch für die Vorgehensweise des Ingenieurs bei der Dimensionierung von Maschinenelementen durchführen können
- Erste Vorstellungen für Wahrscheinlichkeiten in der Vorhersage von Lebensdauern von Maschinenelementen entwickeln
- Am Schädigungsbild erkennen können, ob statische oder dynamische Überlast Grund für Werkstoffversagen war
- Äquivalente statische und dynamische Lagerlasten aus Katalog und gegebenen äußeren Kräften auf das Lager berechnen können
- · Grundgleichung der Dimensionierung nennen, erklären und auf die Lagerdimensionierung übertragen können

#### Lernziele Dichtungen:

#### Die Studierenden...

- können das grundlegende Funktionsprinzip von Dichtungen diskutieren.
- · können die physikalischen Ursachen eines Stoffüberganges
- beschreiben.
- können das C&C-Modell auf Dichtungen anwenden
- · können die drei wichtigsten Klassierungskriterien von Dichtungen nennen, erläutern und anwenden
- können die Funktionsweise einer berührungslosen und einer berührenden Dichtung verdeutlichen.
- · können die Dichtungsbauformen unterscheiden, bestimmen und den Klassierungskriterien zuordnen.
- · können den Aufbau und die Wirkungsweise eines
- Radialwellenrings diskutieren.
- · Können statische Dichtungen anhand verschiedener
- · Auswahlkriterien bewerten.
- · können dynamische, rotatorische Dichtungen anhand
- verschiedener Auswahlkriterien bewerten.
- · können translatorische Dichtungen anhand verschiedener
- · Auswahlkriterien bewerten.
- · können das Konstruktionsprinzip "Selbstverstärkung" beschreiben und an einer Dichtung anwenden.

- · können den Stickslip anhand des Bewegungsablaufs einer
- · translatorischen Dichtung erklären

#### Lernziele Gestaltung:

Die Studierenden...

- · können die Grundregeln der Gestaltung und Gestaltungsprinzipien in konkreten Problemen anwenden
- · haben die Prozessphasen der Gestaltung verstanden
- können Teilsysteme in ihrer Einbindung in das Gesamtsystem gestalten
- · können Anforderungsbereiche an die Gestaltung nennen und berücksichtigen
- · kennen die Hauptgruppen der Fertigungsverfahren
- · kennen die Fertigungsprozesse und können diese erklären
- können die Auswirkung der Werkstoffwahl und des Fertigungsverfahren in einer Konstruktionszeichnung berücksichtigen und erkennbar abbilden.

#### Lernziele Schraubenverbindungen:

Die Studierenden...

- · können verschiedene Schraubenanwendungen aufzählen und erklären.
- · können Bauformen erkennen und in ihrer Funktion erklären
- können ein C&C<sup>2</sup> Modell einer Schraubenverbindung aufbauen und daran die Einflüsse auf die Funktion diskutieren
- · können die Funktionsweise einer Schraubenverbindung mit Hilfe eines Federmodelles erklären
- · können die Schraubengleichung wiedergeben, anwenden und diskutieren.
- Können die Beanspruchbarkeit niedrig belasteter Schraubenverbindungen zum Zweck der Dimensionierung abschätzen
- Können angeben, welche Schraubenverbindung berechnet und welche nur grob ausgelegt werden
- · Können die Dimensionierung von Schraubenverbindungen als Flanschverbindung durchführen
- Können das Verspannungsschaubild erstellen, erklären und diskutieren

## Voraussetzungen

Keine

# Inhalt

#### MKL I:

Einführung in die Produktentwicklung

Werkzeuge zur Visualisierung (Techn. Zeichnen)

Produkterstellung als Problemlösung

Technische Systeme Produkterstellung

- Systemtheorie
- Contact and Channel Approach C&C<sup>2</sup>-A

Grundlagen ausgewählter Konstruktions- und Maschinenelemente

- Federn
- Lagerung und Führungen
- Dichtungen

Begleitend zur Vorlesung finden Übungen statt, mit folgenden Inhalt:

Getriebeworkshop

Werkzeuge zur Visualisierung (Techn. Zeichnen)

Technische Systeme Produkterstellung

- Systemtheorie
- Contact amd Channel Approach C&C<sup>2</sup>-A

#### Federn

Lagerung und Führungen

#### MKL II:

- Dichtungen
- Gestaltung
- Dimensionierung
- Bauteilverbindungen
- Schrauben

#### **Arbeitsaufwand**

MKL1:

Präsenz: 33,5 h

Anwesenheit in Vorlesungen: 15 \* 1,5 h = 22,5 h Anwesenheit in Übungen: 8 \* 1,5 h = 12 h

Selbststudium: 56,5 h

Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die

Klausur: 56,5 h

Insgesamt: 90 h = 3 LP

MKL2:

Präsenz: 33 h

Anwesenheit in Vorlesungen: 15 \* 1,5 h = 22,5 h Anwesenheit in Übungen: 7 \* 1,5 h = 10,5 h

Selbststudium: 87 h

Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die

Klausur: 87h

Insgesamt: 150 h = 5 LP

## Mehraufwand für Fachfremde Studiengänge MKL1 + MKL2 insgesamt: 30 h = 1 LP

(Wirtschaftsingenieurwesen Bachelor 2015, Chemieingenieurwesen und Verfahrenstechnik Bachelor 2015, Ingenieurpädagogik LA Bachelor Berufliche Schulen 2015, Ingenieurpädagogik LA Bachelor Berufliche Schulen 2015)

#### Lehr- und Lernformen

Vorlesung

Hörsaalübung

Semesterbegleitende Projektarbeit

Online-Test



# 2.60 Modul: Mess- und Regelungstechnik [M-MACH-102564]

**Verantwortung:** Prof. Dr.-Ing. Christoph Stiller **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: Anwendungsfach / Maschinenbau (Wahlbereich Maschinenbau)

Leistungspunkte<br/>7Turnus<br/>Jedes WintersemesterDauer<br/>1 SemesterSprache<br/>Deutsch/EnglischLevel<br/>3Version<br/>2

| Pflichtbestandteile |                                           |      |         |
|---------------------|-------------------------------------------|------|---------|
| T-MACH-104745       | Grundlagen der Mess- und Regelungstechnik | 7 LP | Stiller |

#### Erfolgskontrolle(n)

Art der Prüfung: schriftliche Prüfung Dauer der Prüfung: 150 Minuten

#### Qualifikationsziele

- Die Studierenden können mess- und regelungstechnische Prinzipien für physikalische Größen benennen, beschreiben und an Beispielen erläutern.
- Sie können systemtheoretische Eigenschaften von dynamischen Systemen benennen, analysieren und bewerten.
- Sie können reale Systeme systemtheoretisch modellieren und die Eignung aufgestellter Modellen bewerten.
- Sie können Methoden zur Synthese von Reglern anwenden und so parametrisierte Regler analysieren und bewerten.
- Sie können Messprinzipien auswählen und Messeinrichtungen zur Messung nicht-elektrischer Größen modellieren, analysieren und bewerten.
- Sie können die Messunsicherheiten von Messgrößen quantifizieren und beurteilen.

#### Zusammensetzung der Modulnote

Note der Prüfung

# Voraussetzungen

keine

#### Inhalt

- 1. Dynamische Systeme
- 2. Eigenschaften wichtiger Systeme und Modellbildung
- 3. Übertragungsverhalten und Stabilität
- 4. Synthese von Reglern
- 5. Grundbegriffe der Messtechnik
- 6. Estimation
- 7. Messaufnehmer
- 8. Einführung in digitale Messverfahren

# Empfehlungen

Grundkenntnisse der Physik und Elektrotechnik, gewöhnliche lineare Differentialgleichungen, Laplace Transformation

#### Anmerkungen

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

#### **Arbeitsaufwand**

84 Stunden Präsenzzeit, 126 Stunden Selbststudium.

#### Lehr- und Lernformen

Vorlesung

Übungen

#### Literatur

Buch zur Vorlesung:

C. Stiller: Grundlagen der Mess- und Regelungstechnik, Shaker Verlag, Aachen, 2005

· Measurement and Control Systems:

R.H. Cannon: Dynamics of Physical Systems, McGraw-Hill Book Comp., New York,

G.F. Franklin: Feedback Control of Dynamic Systems, Addison-Wesley Publishing Company, USA, 1988

R. Dorf and R. Bishop: Modern Control Systems, Addison-Wesley C. Phillips and R. Harbor: Feedback Control Systems, Prentice-Hall

· Regelungstechnische Bücher:

J. Lunze: Regelungstechnik 1 & 2, Springer-Verlag R. Unbehauen: Regelungstechnik 1 & 2, Vieweg-Verlag O. Föllinger: Regelungstechnik, Hüthig-Verlag W. Leonhard: Einführung in die Regelungstechnik, Teubner-Verlag Schmidt, G.: Grundlagen der Regelungstechnik, Springer-Verlag, 2. Aufl., 1989

· Messtechnische Bücher:

E. Schrüfer: Elektrische Meßtechnik, Hanser-Verlag, München, 5. Aufl., 1992 U. Kiencke, H. Kronmüller, R. Eger: Meßtechnik, Springer-Verlag, 5. Aufl., 2001 H.-R. Tränkler: Taschenbuch der Messtechnik, Verlag Oldenbourg München, 1996 W. Pfeiffer: Elektrische Messtechnik, VDE Verlag Berlin 1999 Kronmüller, H.: Prinzipien der Prozeßmeßtechnik 2, Schnäcker-Verlag, Karlsruhe, 1. Aufl., 1980

Measurement and Control Systems



# 2.61 Modul: Methodische Grundlagen des OR [M-WIWI-101414]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Level | Version |
|-----------------|----------------|------------|-------|---------|
| 9               | Jedes Semester | 1 Semester | 3     | 9       |

| Wahlpflichtblock: Wahlpflichtangebot (mindestens 1 Bestandteil sowie zwischen 4,5 und 9 LP) |                                                           |        |           |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------|-----------|--|
| T-WIWI-102726                                                                               | Globale Optimierung I                                     | 4,5 LP | Stein     |  |
| T-WIWI-103638                                                                               | Globale Optimierung I und II                              | 9 LP   | Stein     |  |
| T-WIWI-102724                                                                               | Nichtlineare Optimierung I                                | 4,5 LP | Stein     |  |
| T-WIWI-103637                                                                               | Nichtlineare Optimierung I und II                         | 9 LP   | Stein     |  |
| Wahlpflichtblock: E                                                                         | rgänzungsangebot ()                                       |        |           |  |
| T-WIWI-106546                                                                               | Einführung in die Stochastische Optimierung               | 4,5 LP | Rebennack |  |
| T-WIWI-102727                                                                               | Globale Optimierung II                                    | 4,5 LP | Stein     |  |
| T-WIWI-102725                                                                               | Nichtlineare Optimierung II                               | 4,5 LP | Stein     |  |
| T-WIWI-102704                                                                               | Standortplanung und strategisches Supply Chain Management | 4,5 LP | Nickel    |  |

## Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen(nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

#### Qualifikationsziele

Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren, insbesondere aus der nichtlinearen und aus der globalen Optimierung,
- · kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
- · validiert, illustriert und interpretiert erhaltene Lösungen.

#### Voraussetzungen

Mindestens eine der Teilleistungen Nichtlineare Optimierung I und Globale Optimierung I muss absolviert werden.

#### Inhalt

Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren für Optimierungsprobleme mit kontinuierlichen Entscheidungsvariablen. Die Vorlesungen zur nichtlinearen Optimierung behandeln lokale Lösungskonzepte, die Vorlesungen zur globalen Optimierung die Möglichkeiten zur globalen Lösung.

## **Empfehlungen**

Kenntnisse aus den Vorlesungen "Einführung in das Operations Research I" sowie "Einführung in das Operations Research II" sind hilfreich.

# Anmerkungen

Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu nachgelesen werden.

#### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.62 Modul: Modelle der mathematischen Biologie [M-MATH-105652]

**Verantwortung:** Prof. Dr. Wolfgang Reichel **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Analysis) (EV ab 01.04.2021)

| Leistungspunkte | Turnus       | Dauer      | Sprache | Level | Version |
|-----------------|--------------|------------|---------|-------|---------|
| 4               | Unregelmäßig | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                     |      |         |
|---------------------|-------------------------------------|------|---------|
| T-MATH-111291       | Modelle der mathematischen Biologie | 4 LP | Reichel |

## Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (60 min.)

#### Qualifikationsziele

Absolventinnen und Absolventen

- können Modelle der mathematischen Biologie aufstellen und diskutieren
- verfügen über Kenntnisse der nichtlinearen Analysis zur Untersuchung von Differential- und Differenzengleichungen
- können mittels rigoroser mathematischer Hilfsmittel Modelle analysieren und Schlussfolgerungen ziehen
- können sich kritisch mit den Stärken und Schwächen der Modelle auseinandersetzen

## Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

## Voraussetzungen

Keine

#### Inhalt

Diskrete Populationsmodelle Differentialgleichungsmodelle für Populationswachstum Modelle der Populationsgenetik Epidemiologische Modelle

#### **Empfehlungen**

Analysis 1-2, Lineare Algebra 1-2, Analysis 3-4 oder Analysis für das Lehramt

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 120 Stunden

Präsenzzeit: 43 Stunden Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 77 Stunden

Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes

Bearbeitung von Übungsaufgaben

Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche

Vorbereitung auf die studienbegleitende Modulprüfung



# 2.63 Modul: Moderne Experimentalphysik I, Atome und Kerne [M-PHYS-101704]

Verantwortung: Studiendekan Physik Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Experimentalphysik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                               |      |                     |
|---------------------|-----------------------------------------------|------|---------------------|
| T-PHYS-105132       | Moderne Experimentalphysik I, Atome und Kerne | 8 LP | Studiendekan Physik |

# Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

#### Qualifikationsziele

Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf den Gebieten der Atomphysik und der Kernphysik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

## Voraussetzungen

keine

#### Inhalt

- Experimentelle Grundlagen der Atomphysik: Masse und Ausdehnung der Atome, Elementarladung, spezifische Ladung des Elektrons. Struktur der Atome, Thomson-Modell, Rutherford-Streuversuch, Optisches Spektrum von Atomen, Bohrsche Postulate. Anregung durch Stöße, Quantelung der Energie (Franck-Hertz-Versuch), Korrespondenzprinzip. Photoeffekt, Comptoneffekt.
- Elemente der Quantenmechanik: Materiewellen und Wellenpakete. Heisenbergsche Unschärferelation. Schrödingergleichung
- Das Wasserstoffatom: Schrödingergleichung im Zentralfeld, Energiezustände des Wasserstoffatoms, Bahn- und Spinmagnetismus, Stern-Gerlach-Versuch. Spin-BahnKopplung, Feinstruktur. Einfluss des Kernspins: Hyperfeinstruktur.
- Atome im magnetischen und elektrischen Feld: Zeeman-Effekt, Paschen-Back-Effekt. Spinresonanz und ihre Anwendungen. Stark-Effekt, Experiment von Lamb und Rutherford.
- Mehrelektronensysteme: Heliumatom, Singulett-/Triplettsystem.Kopplung von Drehimpulsen, Vektorgerüstmodell, Landéfaktor. Periodensystem und Schalenstruktur. Erzeugung und Nachweis von Röntgenstrahlung. Maser, Laser.
- Aufbau der Atomkerne: Ladung, Masse, Bindungsenergie und Massendefekt. Experimentelle Bestimmung von Kernradien: Rutherfordstreuung. Lepton-Kern-Streuung und Formfaktoren. Myonische (pionische) Atome.
- Fundamentale Eigenschaften stabiler Kerne und Kernmodelle: Tröpfchenmodell, Kernspins und Kernmomente, Parität, Angeregte Kernzustände, Schalenmodell (nur in Grundzügen)
- Kernkräfte: Deuteron, Isospin-Formalismus, Interpretation der Kernkraft als Austauschkraft. Zerfall instabiler Kerne, Zerfallsgesetz, Halbwertszeit, alpha-, beta-, gamma-Zerfall. Kernspaltung, Kernreaktionen (nur Grundidee und ausgewählte Beispiele).

## Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung und Vorbereitung der Übungen (150)

#### Literatur

Lehrbücher der Atomphysik und Kernphysik



# 2.64 Modul: Moderne Experimentalphysik II, Moleküle und Festkörper [M-PHYS-101705]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Experimentalphysik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                        |      |                     |
|---------------------|--------------------------------------------------------|------|---------------------|
| T-PHYS-105133       | Moderne Experimentalphysik II, Moleküle und Festkörper | 8 LP | Studiendekan Physik |

# Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

## Qualifikationsziele

Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf den Gebieten der Molekülphysik und der Festkörperphysik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

## Voraussetzungen

keine

#### Inhalt

- Einführung in die Physik der Moleküle: Molekülbindung, Molekülspektroskopie (Rotations-, Schwingungs- und Bandenspektren, Franck- Condon-Prinzip).
- Bindungstypen: Kovalente Bindung, Ionenbindung, Metallische Bindung, van der WaalsBindung, Wasserstoff-Brückenbindung.
- Kristallstrukturen: Punktgitter, Elementarzelle, Basis, Symmetrieoperationen. BravaisGitter, kristallographische Punktgruppen, Einfache Kristallstrukturen, Realkristalle. Defekte (Punktdefekte, Versetzungen, Korngrenzen). Amorphe Festkörper. Optional: mechanische Eigenschaften (Härte, elastische und plastische Verformung).
- Beugung und reziprokes Gitter: Streuung an periodischen Strukturen, Beugungsbedingung nach Laue, Reziprokes Gitter, Ewald-Konstruktion, Braggsches Gesetz. Brillouin-Zonen, Strukturfaktor, Formfaktor. Temperaturabhängigkeit der Streuintensität. Methoden der Strukturanalyse.
- Gitterdynamik: Adiabatische Näherung, Harmonische Näherung. Lineare einatomige und zweiatomige Kette. Schwingungen des dreidimensionalen Gitters. Zustandsdichte. Quantisierung der Gitterschwingungen. Streuung an zeitlich veränderlichen Strukturen. Bestimmung von Phononen-Dispersionsrelationen, Debye-Näherung.
- Thermische Eigenschaften des Gitters: Mittlere thermische Energie eines harmonischen Oszillators. Bose-Statistik. Spezifische Wärme des Gitters, Anharmonische Effekte: thermische Ausdehnung, Wärmeleitfähigkeit des Gitters. Zwei-Niveau-Systeme. SchottkyAnomalie.
- Dielektrische Eigenschaften von Isolatoren: Makroskopisches und mikroskopisches elektrisches Feld. Dielektrische Konstante und Polarisierbarkeit, Verschiebungspolarisation. Lorentzoszillator. Ferro-, Pyro- und Piezoelektrizität.
- Freies Elektronengas: Drude-Modell (dc- und ac-Leitfähigkeit), Hall-Effekt, Plasmonen, optische Leitfähigkeit.
   Thermische Eigenschaften. Sommerfeld-Modell (Grundzustand des freien Elektronengases) Fermi-Dirac-Verteilung.
   Spezifische Wärme, Transporteigenschaften.
- Elektronen im periodischen Potential: Bloch-Zustände, Elektronen im schwachen periodischen Potential. Brillouin-Zonen und Fermiflächen, Näherung für stark gebundene Elektronen.
- Halbklassische Dynamik von Kristallelektronen: Semiklassische Bewegungsgleichungen, effektive Masse Elektronen und Löcher. Boltzmanngleichung. Elektronische Streuprozesse in Metallen. Elektron-Elektron-Wechselwirkung. Quanteneffekte im elektronischen Transport.
- Halbleiter: Allgemeine Eigenschaften und Bandstruktur. Konzentration der Ladungsträger, dotierte Halbleiter. Leitfähigkeit und Beweglichkeit, p-n-Übergang.
- Magnetische Eigenschaften: Magnetismus der Leitungselektronen. Atomarer Magnetismus (Dia-, Paramagnetismus), Magnetische Wechselwirkungen (Austauschwechselwirkung), Ferro- und Antiferromagnetismus, Ferrimagnetismus, Magnonen.
- Grundbegriffe der Supraleitung: Idealer Leiter und Supraleiter, London-Gleichungen. Cooper-Paare und BCS-Theorie. Josephson-Effekte. Supraleiter 1. und 2. Art. Supraleitende Oxide.

# Anmerkungen

Für Studierende der KIT-Fakultät für Informatik gilt: Die Prüfungen in diesem Modul sind über Zulassungen vom ISS (KIT-Fakultät für Informatik) anzumelden. Dafür reicht eine E-Mail mit Matrikeln. und Name der gewünschten Prüfung an Beratung-informatik@informatik.kit.edu aus.

# Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung und Vorbereitung der Übungen (150)

#### Literatur

Lehrbücher der Molekülphysik und der Festkörperphysik



# 2.65 Modul: Moderne Experimentalphysik III, Teilchen und Hadronen [M-PHYS-101706]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Experimentalphysik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                       |      |                     |
|---------------------|-------------------------------------------------------|------|---------------------|
| T-PHYS-106804       | Moderne Experimentalphysik III, Teilchen und Hadronen | 6 LP | Studiendekan Physik |

# Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

#### Qualifikationsziele

Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf dem Gebiet der Teilchenphysik und kann einfache physikalische Probleme aus diesem Gebiet selbständig bearbeiten.

#### Voraussetzungen

keine

#### Inhalt

- Wechselwirkung von Strahlung und Teilchen mit Materie. Detektoren. Teilchenbeschleuniger (zumindest: Van de Graaff, Zyklotron, Synchrotron).
- Strahlenbelastung, Strahlenschutz: Definitionen der verschiedenen Einheiten, einige Zahlenwerte (kurz).
- Ausgewählte Anwendungen der Kern- und Teilchenphysik: Kernenergie, Spaltreaktoren, Kernfusion. Datierungen, astrophysikalische Aspekte.
- Struktur der Materie: elastische, inelastische und tiefinelastische Lepton-Nukleon-Streuung, Formfaktoren der Nukleonen, Nukleonresonanzen (Delta-Resonanz), Strukturfunktionen, Partonen. Übersicht Standardmodell der Teilchenphysik.
- Symmetrien und Erhaltungssätze: Quantenzahlen der Elementarteilchen, diskrete Symmetrien C, T, P; Paritätsverletzung, CP-Verletzung (zumindest kurz), CPT-Erhaltung. Schlüsselexperimente.
- Quarks, Gluonen und Hadronen: Quarkmodell, Baryonen- und Mesonenmultipletts, Quarkoniumzustände J/Psi und Y, Farbwechselwirkungen in der Quantenchromodynamik (QCD), QCD-Potential, Confinement und asymptotische Freiheit, Gluonen, Jet-Bildung. Partonmodell. Schlüsselexperimente.
- Elektroschwache Wechselwirkung: Elektroschwache Vereinheitlichung, Kopplungen von W- und Z-Bosonen, Higgs-Mechanismus, Massen der Elementarteilchen, Quarkmischung, Schlüsselexperimente.
- Moderne Teilchenphysik: Experimente in Elektron-Positron-Annihilation und Kollisionen von Hadronen, Neutrinophysik.
- Offene Fragen und Querverbindungen: Grenzen und Erweiterungen des Standardmodells (Grundgedanken), Verbindung von Teilchenphysik, Kosmologie und Astroteilchenphysik

#### **Arbeitsaufwand**

180 Stunden bestehend aus Präsenzzeiten (68), Nachbereitung der Vorlesung und Vorbereitung der Übungen (112)

## Literatur

Lehrbücher der Teilchenphysik



# 2.66 Modul: Moderne Theoretische Physik I, Quantenmechanik I [M-PHYS-103180]

**Verantwortung:** Studiendekan Physik **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Theoretische Physik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                  |      |                     |
|---------------------|--------------------------------------------------|------|---------------------|
| T-PHYS-105134       | Moderne Theoretische Physik I, Quantenmechanik 1 | 8 LP | Studiendekan Physik |

# Erfolgskontrolle(n)

mündliche Prüfung

#### Qualifikationsziele

Der/die Studierende erlernt die grundlegenden Konzepte der Einteilchen-Quantenmechanik und wendet diese auf wichtige Fragestellungen an. Er/sie legt damit die Grundlage für ein fundamentales Verständnis der mikroskopischen Welt.

#### Voraussetzungen

keine

#### Inhalt

- Einführung: Historische Bemerkungen, Grenzen der klassischen Physik.
- Dualismus Teilchen und Welle: Wellenmechanik, Materiewellen, Wellenpakete, Unschärferelation, Schrödingergleichung, Qualitatives Verständnis einfacher Fälle.
- Mathematische Hilfsmittel: Hilbertraum, Bra und Ket, Operatoren, Hermitizität, Unitarität, Eigenvektoren und Eigenwerte, Observable, Basis, Vollständigkeit.
- Postulate der Quantenmechanik: Messprozess, Zeitentwicklung, Zeitentwicklung von Erwartungswerten, Ehrenfest-Theorem und klassischer Grenzfall.
- Eindimensionale Potentiale: Potentialtöpfe, harmonischer Oszillator.
- Gebundene Zustände in einem dreidimensionalen Potential: Separation der Variablen, Zentralpotential, Drehimpuls, Drehsymmetrie und Spin, Entartung, Teilchen im äußeren elektromagnetischen Feld, Wasserstoffatom.
- Zeitunabhängige Störungstheorie: Nichtentarteter und entarteter Fall, Feinstruktur des Wasserstoffspektrums, Stark-Effekt.
- Grundlagen der Streutheorie: Differentieller Wirkungsquerschnitt, Bornsche Reihe und Bornsche N\u00e4herung, Partialwellen und Streuphasen, optisches Theorem.

### **Arbeitsaufwand**

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung und Vorbereitung der Übungen (150)

#### Literatur

Lehrbücher der Quantenmechanik



# 2.67 Modul: Moderne Theoretische Physik II, Quantenmechanik II [M-PHYS-101708]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Theoretische Physik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                   |      |                     |
|---------------------|---------------------------------------------------|------|---------------------|
| T-PHYS-106095       | Moderne Theoretische Physik II, Quantenmechanik 2 | 6 LP | Studiendekan Physik |

#### Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

#### Qualifikationsziele

Der/die Studierende erlernt die grundlegenden Konzepte der Quantenmechanik für Mehrteilchensysteme und der relativistischen Quantenmechanik, sowie die Grundlagen der Quantenfeldtheorie.

#### Voraussetzungen

keine

#### Inhalt

- Mehrteilchensysteme: Austauschentartung, identische Teilchen: Bosonen und Fermionen, Heliumatom.
- Zeitabhängige Phänomene: Zeitentwicklungsoperator, Schrödinger-, Heisenberg- und Wechselwirkungsbild, Dyson-Entwicklung, zeitgeordnete Produkte, Fermis Goldene Regel.
- Drehimpuls, irreduzible Darstellungen der Drehungen: Addition von Drehimpulsen, Produktdarstellungen der Drehgruppe, Clebsch-Gordan-Koeffizienten, Irreduzible Tensoroperatoren, Wigner-Eckart-Theorem.
- Relativistische Quantenmechanik: Lorentzgruppe und Drehgruppe, Klein-Gordon-Gleichung, Spinordarstellung der Lorentzgruppe, Dirac-Gleichung, Löchertheorie, Lösungen der freien Gleichung und Kovarianz, Ankopplung eines äußeren elektromagnetischen Feldes, Relativistisches Wasserstoffatom.
- Quantisierung des elektromagnetischen Feldes: Photonen, Strahlung, Strahlungsübergänge, Spontane und induzierte Emission, Auswahlregeln.
- Grundzüge der Quantenfeldtheorie: Besetzungszahldarstellung und freie Felder, Wechselwirkung und Störungstheorie, Feynman-Diagramme, Diagrammregeln.

#### Anmerkungen

Für Studierende der KIT-Fakultät für Informatik gilt: Die Prüfungen in diesem Modul sind über Zulassungen vom ISS (KIT-Fakultät für Informatik) anzumelden. Dafür reicht eine E-Mail mit Matrikeln. und Name der gewünschten Prüfung an Beratung-informatik@informatik.kit.edu aus.

#### **Arbeitsaufwand**

180 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung und Vorbereitung der Übungen (105)

#### Literatur

Lehrbücher der Quantenmechanik



# 2.68 Modul: Moderne Theoretische Physik III, Statistische Physik [M-PHYS-101709]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Anwendungsfach / Physik (Theoretische Physik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Wintersemester | 2 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                      |      |                     |
|---------------------|------------------------------------------------------|------|---------------------|
| T-PHYS-106096       | Moderne Theoretische Physik III, Statistische Physik | 8 LP | Studiendekan Physik |

# Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

# Qualifikationsziele

Der/die Studierende erlernt die grundlegenden Konzepte der Quantenstatistik und statistischen Thermodynamik.

# Voraussetzungen

keine

#### Inhalt

Teil a:

- Statistische Formulierung der Thermodynamik (klassisch und quantenmechanisch): Gibbs-Ensemble, reine und gemischte Zustände, Dichtematrix und Liouville-Gleichung, Mikrokanonisches, kanonisches und großkanonisches Ensemble.
- Ideale Systeme: Boltzmann-Gas, Bosonen (Bose-Einstein-Kondensation, Hohlraumstrahlung, Phononen), Fermionen (entartetes Fermigas), Spinsysteme.

#### Teil b:

- Reale Systeme: van der Waals-Gas, Spinmodelle mit Wechselwirkung, Wechselwirkungen in Festkörpern (Born-Oppenheimer, 2. Quantisierung), Näherungsverfahren.
- Phasenübergänge: Ising-Modell, Landau-Freie-Energie-Funktional (Molekularfeldnäherung, Fluktuationen), Kritische Exponenten und Universalitätsklassen.
- Zusätzliche Themen: Stochastische Prozesse, Master-Gleichung, Fokker-Planck- und Langevin-Beschreibung, Boltzmann-Transport-Theorie Elektrische und Wärmeleitfähigkeit, thermoelektrische Effekte, Hydrodynamik, Linear-Response-(Kubo-) Formalismus, Fluktuations-Dissipations-Theorem, Kramers-Kronig-Relationen.

#### **Anmerkungen**

Für Studierende der KIT-Fakultät für Informatik gilt: Die Prüfungen in diesem Modul sind über Zulassungen vom ISS (KIT-Fakultät für Informatik) anzumelden. Dafür reicht eine E-Mail mit Matrikeln. und Name der gewünschten Prüfung an Beratung-informatik@informatik.kit.edu aus.

# Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung und Vorbereitung der Übungen (150)

#### Literatur

Lehrbücher der Quantenmechanik und zur statistischen Physik



# 2.69 Modul: Modul Bachelorarbeit [M-MATH-103701]

Verantwortung: Dr. Sebastian Grensing
Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Bachelorarbeit

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 12              | Jedes Semester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                |       |          |
|---------------------|----------------|-------|----------|
| T-MATH-107476       | Bachelorarbeit | 12 LP | Grensing |

#### Erfolgskontrolle(n)

Die Bachelorarbeit wird gemäß §14 (7) der Studien- und Prüfungsordnung bewertet. Der Umfang der Bachelorarbeit entspricht 12 Leistungspunkten. Thema und Aufgabenstellung sind an den vorgesehenen Arbeitsaufwand anzupassen. Die maximale Bearbeitungsdauer beträgt sechs Monate. Bei der Abgabe der Bachelorarbeit haben die Studierenden gemäß §14 (5) schriftlich zu versichern, dass sie die Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit "nicht ausreichend" (5,0) bewertet.

Auf Antrag der/des Studierenden kann der/die Prüfende genehmigen, dass die Bachelorarbeit in einer anderen Sprache als Deutsch geschrieben wird. Soll die Bachelorarbeit außerhalb der KIT-Fakultät für Mathematik angefertigt werden, so bedarf dies der Genehmigung durch den Prüfungsausschuss. Details regelt §14 der Studien- und Prüfungsordnung.

#### **Oualifikationsziele**

Die Studierenden können ein zugeordnetes Thema selbständig und in begrenzter Zeit nach wissenschaftlichen Methoden bearbeiten. Sie beherrschen die dafür erforderlichen wissenschaftlichen Methoden und Verfahren, setzen diese korrekt an, modifizieren diese Methoden und Verfahren, falls dies erforderlich ist, und entwickeln sie bei Bedarf weiter. Alternative Ansätze werden kritisch verglichen. Die Studierenden schreiben ihre Ergebnisse klar strukturiert und in akademisch angemessener Form in ihrer Arbeit auf.

#### Voraussetzungen

Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 100 LP erfolgreich abgelegt hat.

# **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. In den folgenden Bereichen müssen in Summe mindestens 100 Leistungspunkte erbracht werden:
  - Anwendungsfach
  - Grundlagen Angewandte Mathematik
  - Mathematische Grundstrukturen ab 1.01.2019
  - Mathematische Grundstrukturen ab 1.10.2016
  - Mathematische Vertiefung
  - Mathematisches Seminar
  - Überfachliche Qualifikationen

#### Inhalt

Nach §14 SPO soll die Bachelorarbeit zeigen, dass die Studierenden in der Lage sind, ein Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten. Den Studierenden ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. In Ausnahmefällen sorgt die/der Vorsitzende des Prüfungsausschusses auf Antrag der oder des Studierenden dafür, dass die/der Studierende innerhalb von vier Wochen ein Thema für die Bachelorarbeit erhält. Die Ausgabe des Themas erfolgt in diesem Fall über die/den Vorsitzende/n des Prüfungsausschusses. Weitere Details regelt §14 der Studien- und Prüfungsordnung.

#### Arbeitsaufwand

Arbeitsaufwand gesamt: 360 h Präsenzstudium: 0 h Eigenstudium: 360 h



# 2.70 Modul: Numerische Mathematik 1+2 [M-MATH-103214]

**Verantwortung:** Prof. Dr. Willy Dörfler

Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Grundlagen Angewandte Mathematik (Pflichtbestandteil)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 12              | Jedes Wintersemester | 2 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                   |      |                                                   |
|---------------------|-----------------------------------|------|---------------------------------------------------|
| T-MATH-106391       | Numerische Mathematik 1 - Klausur |      | Dörfler, Hochbruck,<br>Jahnke, Rieder,<br>Wieners |
| T-MATH-106394       | Numerische Mathematik 2 - Klausur | 6 LP | Dörfler, Hochbruck,<br>Jahnke, Rieder,<br>Wieners |

#### Erfolgskontrolle(n)

Zwei schriftliche Prüfungen, jeweils am Ende der Teilvorlesungen und im Umfang von jeweils 90 Minuten.

#### **Oualifikationsziele**

Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen der Numerischen Mathematik nennen, erörtern und anwenden (insbesondere die Stabilität, Konvergenz und Komplexität numerischer Verfahren).
- die Verzahnung aller Aspekte der Numerischen Mathematik an einfachen Beispielen verdeutlichen: von der Modellbildung über die algorithmische Umsetzung bis zur Stabilitäts- und Fehleranalyse.

#### Zusammensetzung der Modulnote

Bei Erreichen von 60% der Punkte der Pflichtaufgaben eines Semesters wird eine Verbesserung der Teilmodulnote um eine Zwischennote gewährt (ausgenommen 1.0 und 5.0). Die Anzahl der Pflichtaufgaben wird zu Beginn des Semesters bekanntgegeben.

Notenbildung: Arithmetisches Mittel der beiden Teilnoten.

#### Voraussetzungen

Keine

# Inhalt

- Modellbildung
- Grundlagen (Zahlendarstellung, Kondition, Stabilität)
- Direkte und iterative Lösungsverfahren für lineare Gleichungssysteme und Ausgleichsprobleme
- Interpolation und Approximation (Polynom-, Spline- und trigonometrische Interpolation)
- Eigenwertprobleme
- Nichtlineare Gleichungssysteme und Ausgleichsprobleme
- Numerische Integration

# **Empfehlungen**

Die Inhalte der Module "Analysis 1+2", "Lineare Algebra 1+2" sowie "Programmieren: Einstieg in die Informatik und algorithmische Mathematik" werden benötigt.

# **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 360 Stunden

Präsenzzeit: 180 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 180 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung



# 2.71 Modul: Numerische Methoden für Differentialgleichungen [M-MATH-102888]

Verantwortung: Prof. Dr. Willy Dörfler

Prof. Dr Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Angewandte und Numerische Mathematik)

Leistungspunkte<br/>8Turnus<br/>Jedes WintersemesterDauer<br/>1 SemesterLevel<br/>3Version<br/>1

| Pflichtbestandteile |                                                 |                                                   |
|---------------------|-------------------------------------------------|---------------------------------------------------|
| T-MATH-105836       | Numerische Methoden für Differentialgleichungen | Dörfler, Hochbruck,<br>Jahnke, Rieder,<br>Wieners |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

#### Qualifikationsziele

Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen zur Behandlung von Differentialgleichungen nennen, erörtern und anwenden (insbesondere die Stabilität, Konvergenz und Komplexität der numerischen Verfahren)
- · Konzepte der Modellierung mit Differentialgleichungen wiedergeben
- Differentialgleichungen numerisch lösen

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

# Voraussetzungen

Keine

# Inhalt

- Numerische Methoden für Anfangswertaufgaben (Runge-Kutta-Verfahren, Mehrschrittverfahren, Ordnung, Stabilität, steife Probleme)
- Numerische Methoden für Randwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für elliptische Gleichungen zweiter Ordnung)
- Numerische Methoden für Anfangsrandwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für Parabolische Gleichungen und Hyperbolische Gleichungen)

# **Empfehlungen**

Die Inhalte der Module "Numerische Mathematik 1 und 2" sowie "Programmieren: Einstieg in die Informatik und algorithmische Mathematik" werden benötigt.

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.72 Modul: Optimierung unter Unsicherheit [M-WIWI-103278]

Verantwortung: Prof. Dr. Steffen Rebennack

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch | 3     | 4       |

| Wahlpflichtblock: Wahlpflichtangebot (zwischen 1 und 2 Bestandteilen) |                                                               |        |           |  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------|--------|-----------|--|--|
| T-WIWI-106546                                                         | Einführung in die Stochastische Optimierung                   | 4,5 LP | Rebennack |  |  |
| T-WIWI-106545                                                         | Optimierungsansätze unter Unsicherheit                        | 4,5 LP | Rebennack |  |  |
| Wahlpflichtblock: Ei                                                  | Wahlpflichtblock: Ergänzungsangebot (höchstens 1 Bestandteil) |        |           |  |  |
| T-WIWI-102724                                                         | Nichtlineare Optimierung I                                    | 4,5 LP | Stein     |  |  |
| T-WIWI-102714                                                         | Taktisches und operatives Supply Chain Management             | 4,5 LP | Nickel    |  |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren unter Unsicherheit, insbesondere aus der stochastischen Optimierung,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme unter Unsicherheit und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen.
- validiert, illustriert und interpretiert erhaltene Lösungen, insbesondere von stochastischen Optimierungsproblemen.

#### Voraussetzungen

Mindestens eine der beiden Teilleistungen "Optimierungsansätze unter Unsicherheit" und "Einführung in die Stochastische Optimierung" ist Pflicht.

#### Inhalt

Der Schwerpunkt des Moduls liegt auf der Modellierung und der Analyse von mathematischen Optimierungsproblemen, bei denen bestimmte Daten nicht vollständig vorhanden sind zum Zeitpunkt der Entscheidungsfindung. Die Vorlesungen zur Einführung in die stochastische Optimierung behandeln Methoden, um Verteilungsinformation in die mathematischen Modell zu integrieren. Die Vorlesungen zu den Optimierungsansätzen unter Unsicherheit bietet alternative Ansätze wie zum Beispiel robuste Optimierung.

# **Empfehlungen**

Kenntnisse aus den Vorlesungen "Einführung in das Operations Research I" sowie "Einführung in das Operations Research II" sind hilfreich.

#### **Anmerkungen**

Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://sop.ior.kit.edu/28.php nachgelesen werden.

#### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5 Credits ca. 150h und für Lehrveranstaltungen mit 4.5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.73 Modul: Optimierungstheorie [M-MATH-103219]

**Verantwortung:** Prof. Dr. Roland Griesmaier **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Angewandte und Numerische Mathematik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 2       |

| Pflichtbestandteile |                               |      |                                          |
|---------------------|-------------------------------|------|------------------------------------------|
| T-MATH-106401       | Optimierungstheorie - Klausur | 8 LP | Griesmaier, Hettlich,<br>Rieder, Wieners |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten Dauer.

#### Qualifikationsziele

Die Studierenden sollen in die Lage versetzt werden, endlichdimensionale Optimierungsaufgaben in Standardformen zu transformieren und zu klassifizieren und diese hinsichtlich Existenz, Eindeutigkeit und Dualität zu analysieren. Sie sollen in der Lage sein, mit Hilfe des Simplexverfahrens (Phase I und II) lineare Probleme zu lösen und sollen die notwendigen und hinreichenden Optimalitätsbedingungen für konvexe und nichtlineare Probleme nennen und erläutern

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

## Voraussetzungen

Keine

können.

#### Inhalt

Konvexe Mengen, lineare Optimierungsaufgaben (Existenz, Dualität, Anwendungen), Simplexverfahren, konvexe Optimierungsaufgaben (Existenz, Eindeutigkeit, Dualität), differenzierbare Optimierungsaufgaben (Lagrangesche Multiplikatorenregel), Anwendungen (z.B. in der Spieltheorie oder Graphentheorie)

#### **Empfehlungen**

Lineare Algebra 1+2, Analysis 1+2

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.74 Modul: Personal und Organisation [M-WIWI-101513]

Verantwortung: Prof. Dr. Petra Nieken

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 2 Semester | Deutsch | 3     | 4       |

| Pflichtbestandteile                                           |                                               |        |           |  |  |
|---------------------------------------------------------------|-----------------------------------------------|--------|-----------|--|--|
| T-WIWI-102909                                                 | Personalmanagement                            | 4,5 LP | Nieken    |  |  |
| Wahlpflichtblock: Ergänzungsangebot (zwischen 4,5 und 5,5 LP) |                                               |        |           |  |  |
| T-WIWI-102630                                                 | Organisationsmanagement                       | 3,5 LP | Lindstädt |  |  |
| T-WIWI-102908                                                 | Personalpolitik und Arbeitsmarktinstitutionen | 4,5 LP | Nieken    |  |  |
| T-WIWI-102871                                                 | Problemlösung, Kommunikation und Leadership   | 2 LP   | Lindstädt |  |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen über die einzelnen Lehrveranstaltungen des Moduls. Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

Der/ die Studierende

- kennt und analysiert grundlegende Prozesse, Instrumente und Herausforderungen des heutigen Personal- und Organisationsmanagements.
- wendet die erlernten Analysetechniken zur Beurteilung von strategischen Situationen im Personal- und Organisationsmanagement an.
- · bewertet die Stärken und Schwächen existierender Strukturen und Regelungen anhand systematischer Kriterien.
- · diskutiert und beurteilt die praktische Anwendbarkeit von Modellen und Methoden anhand von Fallstudien.
- besitzt grundlegende Kenntnisse zur Anwendbarkeit und Problematik unterschiedlicher wissenschaftlicher Untersuchungsmethoden im personal- und organisationsökonomischen Kontext.

# Voraussetzungen

Die Lehrveranstaltung "Personalmanagement" muss im Modul erfolgreich geprüft werden.

#### Inhalt

Im Rahmen dieses Moduls erhalten die Studierenden grundlegende Kenntnisse im Bereich des Personal- und Organisationsmanagements. Dabei werden sowohl strategische als auch operative Aspekte des Personal- und Organisationsmanagements betrachtet. Das Modul bietet einen aktuellen Überblick über grundlegende Konzepte und Modelle sowie ein realistisches Bild über Möglichkeiten und Risiken rationaler Gestaltungsansätze im Personal- und Organisationsmanagement.

Die Studierenden lernen Methoden und Instrumente zur Personalplanung, -auswahl und -entwicklung kennen und sind in der Lage diese anzuwenden. Darüber hinaus werden Fragen der optimalen Organisationsgestaltung oder der Personalpolitik betrachtet. Dabei steht die strategische Analyse von Entscheidungssituationen unter Einbeziehung von mikroökonomischen oder verhaltensökonomischen Ansätzen im Vordergrund. Empirische Ergebnisse von Feld- und/oder Laborstudien werden kritisch diskutiert.

#### **Empfehlungen**

Vorheriger Besuch des Moduls Betriebswirtschaftslehre wird empfohlen.

Es werden Grundkenntnisse in Mikroökonomie, Spieltheorie sowie Statistik empfohlen.

# **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.75 Modul: Programmieren: Einstieg in die Informatik und algorithmische Mathematik [M-MATH-103228]

Verantwortung: Prof. Dr. Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Grundstrukturen ab 1.01.2019

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                                                                        |      |                 |  |
|---------------------|----------------------------------------------------------------------------------------|------|-----------------|--|
| T-MATH-106418       | Programmieren: Einstieg in die Informatik und algorithmische<br>Mathematik - Klausur   | 6 LP | Dörfler, Krause |  |
| T-MATH-106419       | Programmieren: Einstieg in die Informatik und algorithmische<br>Mathematik - Praktikum | 0 LP | Dörfler, Krause |  |

# Erfolgskontrolle(n)

Prüfungsvorleistung: bestandenes Praktikum.

Prüfung: Schriftliche Prüfung im Umfang von 90 Minuten.

# Qualifikationsziele

Absolventinnen und Absolventen können

- in einer höheren Programmiersprache programmieren
- den Entwurf und die Beschreibung von Algorithmen skizzieren
- mathematische Formeln in Programme übertragen
- grundlegende Algorithmen aus Mathematik und Informatik einsetzen
- Konzepte der objektorientierten Programmierung anwenden

# Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

# Voraussetzungen

Keine

#### Inhalt

- Strukturierter Programmentwurf
- Iteration und Rekursion
- Datenstrukturen (insbesondere Felder)
- Prozedurale Programmierung mit Funktionen bzw. Methoden
- Objektorientierte Programmierung
- Entwicklung anwendungsorientierter Programme
- · Umsetzung mathematischer Konzepte am Rechner

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 180 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung



# 2.76 Modul: Proseminar [M-MATH-101803]

Verantwortung: Dr. Stefan Kühnlein

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** Mathematisches Seminar

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 3               | Jedes Semester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile Pflichtbestandteile Pflichtbestandteile |                       |      |          |
|-------------------------------------------------------------|-----------------------|------|----------|
| T-MATH-103404                                               | Proseminar Mathematik | 3 LP | Kühnlein |

# Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Studienleistung in Form eines Vortrags von mindestens 45 Minuten Dauer.

#### Qualifikationsziele

Die Studierenden werden am Ende des Moduls

- ein abgegrenztes einfaches Problem in einem speziellen Gebiet analysiert haben,
- fachspezifische Probleme innerhalb der vorgegebenen Aufgabenstellung erörtern, mit geeigneten Medien präsentieren und verteidigen können,
- Zusammenfassungen der wichtigsten Ergebnisse des Themas selbständig erstellt haben,
- über kommunikative, organisatorische und didaktische Kompetenzen bei Problemanalysen verfügen. Sie können erste Techniken des wissenschaftlichen Arbeitens anwenden.

### Zusammensetzung der Modulnote

Entfällt, da unbenotet.

# Voraussetzungen

Keine

#### Inhalt

Der konkrete Inhalt richtet sich nach dem jeweils angebotenen Proseminarthema. Die Proseminarthemen setzen nur die Pflichtveranstaltungen des ersten Semesters voraus.

#### **Empfehlungen**

Die Belegung sollte frühzeitig geplant werden, da die Proseminarplatzvergabe im Vorsemester durch ein Online-Verfahren erfolgt.

### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 90 Stunden

- Erarbeitung der fachlichen Inhalte des Vortrags
- Didaktische Aufbereitung der Vortragsinhalte
- Konzeption des Tafelbildes bzw. der Beamerpräsentation
- Übungsvortrag, eventuell Erstellung eines Handouts



# 2.77 Modul: Rand- und Eigenwertprobleme [M-MATH-102871]

**Verantwortung:** Prof. Dr. Wolfgang Reichel **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Analysis)

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                             |  |                                                          |  |
|---------------------|-----------------------------|--|----------------------------------------------------------|--|
| T-MATH-105833       | Rand- und Eigenwertprobleme |  | Frey, Hundertmark,<br>Lamm, Plum, Reichel,<br>Schnaubelt |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

#### Qualifikationsziele

Absolventinnen und Absolventen können

- die Bedeutung von Rand- und Eigenwertproblemen innerhalb der Mathematik und/oder Physik beurteilen und an Hand von Beispielen illustrieren.
- · qualitative Eigenschaften von Lösungen beschreiben,
- mit Hilfe funktionalanalytischer Methoden die Existenz von Lösungen von Randwertproblemen beweisen,
- Aussagen über Existenz von Eigenwerten, Eigenfunktionen von elliptischen Differentialoperatoren treffen sowie deren Eigenschaften beschreiben.

# Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

# Voraussetzungen

Keine

# Inhalt

- Beispiele von Rand- und Eigenwertproblemen
- · Maximumprinzipien für Gleichungen 2. Ordnung
- · Funktionenräume, z.B. Sobolev-Räume
- Schwache Formulierung linearer elliptischer Gleichungen 2. Ordnung
- Existenz- und Regularitätstheorie elliptischer Gleichungen
- · Eigenwerttheorie für schwach formulierte elliptische Eigenwertprobleme

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.78 Modul: Real Estate Management [M-WIWI-101466]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 2 Semester | Deutsch | 3     | 2       |

| Pflichtbestandteile |                           |        |             |  |
|---------------------|---------------------------|--------|-------------|--|
| T-WIWI-102744       | Real Estate Management I  | 4,5 LP | Lützkendorf |  |
| T-WIWI-102745       | Real Estate Management II | 4,5 LP | Lützkendorf |  |

# Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

Der/die Studierende

- besitzt einen Überblick über die verschiedenen Facetten und Zusammenhänge innerhalb der Immobilienwirtschaft, über die wesentlichen Entscheidungen im Lebenszyklus von Immobilien und über die Sichten und Interessen der am Bau Beteiligten,
- kann die im bisherigen Studium erlernten Verfahren und Methoden der Betriebswirtschaftslehre auf Problemstellungen aus dem Bereich der Immobilienwirtschaft übertragen und anwenden.

# Voraussetzungen

Keine

#### Inhalt

Die Bau-, Wohnungs- und Immobilienwirtschaft bietet den Absolventen des Studiengangs interessante Aufgaben sowie gute Arbeits- und Aufstiegschancen. Das Lehrangebot gibt einen Einblick in die volkswirtschaftliche Bedeutung der Branche, erörtert betriebswirtschaftliche Fragestellungen im Immobilien- und Wohnungsunternehmen und vermittelt die Grundlagen für das Treffen von Entscheidungen im Lebenszyklus von Gebäuden sowie beim Management von Gebäudebeständen. Innovative Betreiber- und Finanzierungsmodelle werden ebenso dargestellt wie aktuelle Entwicklungen bei der Betrachtung von Immobilien als Asset-Klasse. Das Lehrangebot eignet sich insbesondere auch für Studierende, die volkswirtschaftliche, betriebswirtschaftliche oder finanzierungstechnische Fragestellungen in der Bau- und Immobilienbranche bearbeiten möchten.

# **Empfehlungen**

Es wird eine Kombination mit dem Modul*Bauökologie*empfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- · Finanzwirtschaft und Banken
- Versicherungen
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion, Facility Management)

# **Arbeitsaufwand**

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



# 2.79 Modul: Schlüsselqualifikationen [M-MATH-103998]

Einrichtung: Universität gesamt

Bestandteil von: Überfachliche Qualifikationen

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 6               | Jedes Semester | 1 Semester | Deutsch | 3     | 1       |

| Wahlpflichtblock: Überfachliche Qualifikationen (mind. 6 LP) |                                      |      |      |  |
|--------------------------------------------------------------|--------------------------------------|------|------|--|
| T-MATH-106119                                                | Einführung in Python                 | 3 LP | Weiß |  |
| T-MATH-108198                                                | Platzhalter Schlüsselqualifikation 1 | 2 LP |      |  |

# Voraussetzungen

keine



# 2.80 Modul: Seminar [M-MATH-103465]

Verantwortung: Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Seminar)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 3               | Jedes Semester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                    |      |          |
|---------------------|--------------------|------|----------|
| T-MATH-106882       | Seminar Bachelor 1 | 3 LP | Kühnlein |

# Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines Vortrags von mindestens 45 Minuten Dauer.

#### Qualifikationsziele

Die Studierenden sollen am Ende des Moduls

- · ein abgegrenztes Problem in einem speziellen Gebiet analysiert haben,
- fachspezifische Probleme innerhalb der vorgegebenen Aufgabenstellung erörtern, mit geeigneten Medien präsentieren und verteidigen können,
- Zusammenfassungen der wichtigsten Ergebnisse des Themas selbständig erstellt haben,
- über kommunikative, organisatorsiche und didaktische Kompetenzen bei koplexen Problemanalysen verfügen. Sie können Techniken des wissenschaftlichen Arbeitens anwenden.

### Zusammensetzung der Modulnote

Entfällt, da unbenotet.

# Voraussetzungen

Keine

#### Inhalt

Der konkrete Inhalt richtet sich nach den angebotenen Seminarthemen.

# **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 90 Stunden

- Erarbeitung der fachlichen Inhalte des Vortrags
- · Didaktische Aufbereitung der Vortragsinhalte
- Konzeption desTafelbildes bzw. der Beamerpräsentation
- · Übungsvortrag, eventuell Erstellung eines Handouts



# 2.81 Modul: Seminar [M-MATH-103467]

Verantwortung: Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Seminar)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 3               | Jedes Semester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                    |      |          |
|---------------------|--------------------|------|----------|
| T-MATH-106883       | Seminar Bachelor 2 | 3 LP | Kühnlein |

# Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines Vortrags von mindestens 45 Minuten Dauer.

#### Qualifikationsziele

Die Studierenden sollen am Ende des Moduls

- · ein abgegrenztes Problem in einem speziellen Gebiet analysiert haben,
- fachspezifische Probleme innerhalb der vorgegebenen Aufgabenstellung erörtern, mit geeigneten Medien präsentieren und verteidigen können,
- Zusammenfassungen der wichtigsten Ergebnisse des Themas selbständig erstellt haben,
- über kommunikative, organisatorsiche und didaktische Kompetenzen bei koplexen Problemanalysen verfügen. Sie können Techniken des wissenschaftlichen Arbeitens anwenden.

# Zusammensetzung der Modulnote

Entfällt, da unbenotet.

# Voraussetzungen

Keine

#### Inhalt

Der konkrete Inhalt richtet sich nach den angebotenen Seminarthemen.

# **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 90 Stunden

- Erarbeitung der fachlichen Inhalte des Vortrags
- · Didaktische Aufbereitung der Vortragsinhalte
- Konzeption desTafelbildes bzw. der Beamerpräsentation
- · Übungsvortrag, eventuell Erstellung eines Handouts



# 2.82 Modul: Seminar [M-MATH-103462]

Verantwortung: Dr. Stefan Kühnlein

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** Mathematisches Seminar

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 3               | Jedes Semester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                  |      |          |
|---------------------|------------------|------|----------|
| T-MATH-106879       | Seminar Bachelor | 3 LP | Kühnlein |

# Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines Vortrags von mindestens 45 Minuten Dauer.

#### Qualifikationsziele

Die Studierenden sollen am Ende des Moduls

- · ein abgegrenztes Problem in einem speziellen Gebiet analysiert haben,
- fachspezifische Probleme innerhalb der vorgegebenen Aufgabenstellung erörtern, mit geeigneten Medien präsentieren und verteidigen können,
- · Zusammenfassungen der wichtigsten Ergebnisse des Themas selbständig erstellt haben,
- über kommunikative, organisatorsiche und didaktische Kompetenzen bei koplexen Problemanalysen verfügen. Sie können Techniken des wissenschaftlichen Arbeitens anwenden.

# Zusammensetzung der Modulnote

Entfällt, da unbenotet.

# Voraussetzungen

Keine

#### Inhalt

Der konkrete Inhalt richtet sich nach den angebotenen Seminarthemen.

# **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 90 Stunden

- Erarbeitung der fachlichen Inhalte des Vortrags
- · Didaktische Aufbereitung der Vortragsinhalte
- Konzeption desTafelbildes bzw. der Beamerpräsentation
- · Übungsvortrag, eventuell Erstellung eines Handouts



# 2.83 Modul: Signale und Systeme [M-ETIT-102123]

**Verantwortung:** Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Anwendungsfach / Elektrotechnik und Informationstechnik (Wahlpflichtbereich Elektrotechnik und

Informationstechnik)

LeistungspunkteTurnusDauerSpracheLevelVersion6Jedes Wintersemester1 SemesterDeutsch31

| Pflichtbestandteile |                     |      |          |
|---------------------|---------------------|------|----------|
| T-ETIT-101922       | Signale und Systeme | 6 LP | Heizmann |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Signale und Systeme.

#### Qualifikationsziele

Die Studenten sind nach Abschluss des Moduls vertraut mit der Darstellung von Signalen und beherrschen die Grundlagen der Systemtheorie.

Durch Anwendung von Transformationen auf Signale und Systeme sind Sie in der Lage Lösungsansätze für zeitkontinuierliche sowie zeitdiskrete Problemstellungen der Signalverarbeitung zu beschreiben und zu bewerten. Die erlernten mathematischen Methoden können auf Fragestellungen aus anderen Bereichen des Studiums übertragen werden.

# Zusammensetzung der Modulnote

Notenbildung ergibt sich aus der schriftlichen Prüfung.

# Voraussetzungen

keine

### Inhalt

Das Modul stellt eine Grundlagenvorlesung zur Signalverarbeitung dar. Schwerpunkte der Vorlesung sind die Betrachtung und Beschreibung von Signalen (zeitlicher Verlauf einer beobachteten Größe) und Systemen. Für den zeitkontinuierlichen und den zeitdiskreten Fall werden die unterschiedlichen Eigenschaften und Beschreibungsformen hergeleitet und analysiert.

### **Empfehlungen**

Höhere Mathematik I + II

#### **Arbeitsaufwand**

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung und der 14-täglich stattfinden Übung sowie die Vorbereitung (50-60 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von 150-160 h



# 2.84 Modul: Softwaretechnik I [M-INFO-103453]

**Verantwortung:** Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner Prof. Dr. Walter Tichy

**Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Anwendungsfach / Informatik (Wahlbereich Informatik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                   |      |                              |  |
|---------------------|-------------------|------|------------------------------|--|
| T-INFO-101968       | Softwaretechnik I | 6 LP | Koziolek, Reussner,<br>Tichy |  |

# Erfolgskontrolle(n)

Siehe Teilleistung

#### Qualifikationsziele

Der/die Studierende definiert und vergleicht die in der Vorlesung besprochenen Konzepte und Methoden und wendet diese erfolgreich an.

# Voraussetzungen

Siehe Teilleistung

#### Inhalt

Ziel dieser Vorlesung ist es, das Grundwissen über Methoden und Werkzeuge zur Entwicklung und Wartung umfangreicher Software-Systeme zu vermitteln. Inhaltliche Themen: Projektplanung, Systemanalyse, Kostenschätzung, Entwurf, Implementierung, Qualitätssicherung, Prozessmodelle, Software-Wartung, Software-Werkzeuge, Konfigurations-Management.

### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Vor- und Nachbereitungszeiten 1,5 h / 1 SWS

Gesamtaufwand:

(4 SWS + 1,5 x 4 SWS) x 15 + 30 h Klausurvorbereitung = 180 h = 6 ECTS



# 2.85 Modul: Spektraltheorie [M-MATH-101768]

**Verantwortung:** Prof. Dr. Dorothee Frey **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Analysis)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 8               | Jedes Sommersemester | 1 Semester | Deutsch | 5     | 1       |

| Pflichtbestandteile |                           |      |                                                         |  |
|---------------------|---------------------------|------|---------------------------------------------------------|--|
| T-MATH-103414       | Spektraltheorie - Prüfung | 8 LP | Frey, Herzog,<br>Kunstmann,<br>Schmoeger,<br>Schnaubelt |  |

# Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

#### **Oualifikationsziele**

Die Studenten kennen das Spektrum und die Resolventenfunktion von abgeschlossenen Operatoren auf Banachräumen sowie deren grundlegende Eigenschaften und können diese an einfachen Beispielen erläutern. Sie können die speziellen Spektraleigenschaften kompakter Operatoren sowie die Fredholm'sche Alternative begründen. Sie können mit Hilfe des Funktionalkalküls von Dunford und dem Spektralkalkül für selbstadjungierte Operatoren algebraische Identitäten und Normabschätzungen für Operatoren herleiten. Dies gilt insbesondere für Spektralprojektionen und Spektralabbildungssätze. Sie sind in der Lage diese

allgemeine Theorie auf Integral- und Differentialoperatoren anzuwenden und erkennen die Bedeutung der spektraltheoretischen Methoden in der Analysis.

# Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

#### Voraussetzungen

Keine

#### Inhalt

- · Abgeschlossene Operatoren auf Banachräumen
- · Spektrum und Resolvente
- Kompakte Operatoren und Fredholm'sche Alternative
- Funktionalkalkül von Dunford, Spektralprojektionen
- Unbeschränkte selbstadjungierte Operatoren auf Hilberträumen
- Spektralsatz
- · Durch Formen definierte Operatoren
- · Sektorielle Operatoren
- · Anwendungen auf partielle Differentialgleichungen

#### **Empfehlungen**

Das Modul "Funktionalanalysis" sollte bereits belegt worden sein.

#### **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.86 Modul: Statistik [M-MATH-103220]

Verantwortung: PD Dr. Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematische Vertiefung (Gebiet Stochastik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 10              | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                       |       |      |  |
|---------------------|-----------------------|-------|------|--|
| T-MATH-106415       | Statistik - Klausur   | 10 LP | Klar |  |
| T-MATH-106416       | Statistik - Praktikum | 0 LP  | Klar |  |

# Erfolgskontrolle(n)

Prüfungsvorleistung: Praktikumsschein

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

# Qualifikationsziele

Die Studierenden

- · können die grundlegenden Aufgaben der Statistik nennen und an Beispielen verdeutlichen,
- können die prinzipielle Vorgehensweise statistischer Tests erläutern,
- sind mit den wichtigsten Schätz- und Testverfahren vertraut und können diese Verfahren mit Hilfe moderner Software praktisch anwenden,
- · können in einfachen Situationen beurteilen, welche statistischen Methoden anwendbar sind,
- kennen spezifische probabilistische Techniken und können damit statistische Verfahren mathematisch analysieren.

# Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

### Voraussetzungen

Das Modul kann nicht zusammen mit der Teilleistung Volkswirtschaftslehre III: Einführung in die Ökonometrie geprüft werden.

# **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-102736 - Volkswirtschaftslehre III: Einführung in die Ökonometrie darf nicht begonnen worden sein.

#### Inhalt

Die Statistik befasst sich mit der Frage, wie man mit Methoden der Wahrscheinlichkeitstheorie aus Datensätzen Informationen über eine größere Gesamtheit gewinnen kann. Inhalte der Vorlesung sind:

- · Statistische Modelle
- Parameterschätzung
  - Maximum-Likelihood-Methode
  - Momentenmethode
  - Eigenschaften von Schätzern
  - Cramer-Rao-Ungleichung
  - Asymptotik von ML-Schätzern
- Konfidenzintervalle
  - Satz von Student
  - Intervall-Schätzung unter Normalverteilungsannahme
- Testen statistischer Hypothesen
  - p-Wert
  - Gauß- und Ein-Stichproben-t-Test
  - Optimalität von Tests
  - Likelihood-Quotienten-Tests
  - Vergleich von zwei Stichproben unter Normalverteilungsannahme
- Lineare Regressionsmodelle
  - Kleinste-Quadrate-Methode
  - Tests und Konfidenzbereiche im klassischen linearen Regressionsmodell
- · Varianz- und Kovarianzanalyse
- · Analyse von kategorialen Daten
- · Nichtparametrische Verfahren
- Verwendung von Statistiksoftware zur Durchführung wichtiger Verfahren

# **Empfehlungen**

Die Inhalte des Moduls "Einführung in die Stochastik" werden benötigt.

# **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 300 Stunden

Präsenzzeit: 120 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 180 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.87 Modul: Strategie und Organisation [M-WIWI-101425]

Verantwortung: Prof. Dr. Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 2 Semester | Deutsch | 3     | 4       |

| Wahlpflichtblock: Strategie und Organisation (mind. 9 LP) |                                                  |        |           |  |
|-----------------------------------------------------------|--------------------------------------------------|--------|-----------|--|
| T-WIWI-102630                                             | Organisationsmanagement                          | 3,5 LP | Lindstädt |  |
| T-WIWI-102871                                             | Problemlösung, Kommunikation und Leadership      | 2 LP   | Lindstädt |  |
| T-WIWI-102629                                             | Unternehmensführung und Strategisches Management | 3,5 LP | Lindstädt |  |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die einzelnen Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestabforderung an LP erfüllt wird. Die Prüfungen werden jedes Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Note der einzelnen Teilprüfungen entspricht der jeweiligen Klausurnote.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

# Qualifikationsziele

- Der/die Studierende beschreibt sowohl zentrale Konzepte des strategischen Managements als auch Konzepte und Modelle für die Gestaltung organisationaler Strukturen.
- Er/sie bewertet die Stärken und Schwächen existierender organisationaler Strukturen und Regelungen anhand systematischer Kriterien.
- Die Steuerung organisationaler Veränderungen diskutieren und überprüfen die Studierenden anhand von Fallbeispielen, inwieweit sich die Modelle in der Praxis einsetzen lassen und welche Bedingungen dafür gelten müssen.
- Zudem planen die Studierenden den Einsatz von IT zur Unterstützung der Unternehmensführung.

#### Inhalt

Das Modul ist praxisnah und handlungsorientiert aufgebaut und vermittelt dem Studierenden einen aktuellen Überblick grundlegender Konzepte und Modelle des strategischen Managements und ein realistisches Bild von Möglichkeiten und Grenzen rationaler Gestaltungsansätze der Organisation. Im Mittelpunkt stehen erstens interne und externe strategische Analyse, Konzept und Quellen von Wettbewerbsvorteilen, Formulierung von Wettbewerbs- und von Unternehmensstrategien sowie Strategiebewertung und -implementierung. Zweitens werden Stärken und Schwächen organisationaler Strukturen und Regelungen anhand systematischer Kriterien beurteilt. Dabei werden Konzepte für die Gestaltung organisationaler Strukturen, die Regulierung organisationaler Prozesse und die Steuerung organisationaler Veränderungen vorgestellt.

#### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3,5 Leistungspunkten ca. 105 Stunden und für Lehrveranstaltungen mit 2 Leistungspunkten 60 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.88 Modul: Strömungslehre [M-MACH-102565]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: Anwendungsfach / Maschinenbau (Wahlbereich Maschinenbau)

Leistungspunkte<br/>8Turnus<br/>Jedes SommersemesterDauer<br/>2 SemesterSprache<br/>Deutsch/EnglischLevel<br/>3Version<br/>1

| Pflichtbestandteile |                    |      |            |
|---------------------|--------------------|------|------------|
| T-MACH-105207       | Strömungslehre 1&2 | 8 LP | Frohnapfel |

#### Erfolgskontrolle(n)

gemeinsame Erfolgskontrolle der LV "Strömungslehre I" und "Strömungslehre II"; schriftliche Prüfung, 3. Std. (benotet)

#### Qualifikationsziele

Nach Abschluss dieses Moduls ist der/die Studierende in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, herzuleiten und auf Beispiele anzuwenden. Er/Sie kann die charakteristischen Eigenschaften von Fluiden benennen und Strömungszustände unterscheiden. Der/Die Studierende ist in der Lage, Strömungsgrößen für grundlegende Anwendungsfälle zu bestimmen. Dies beinhaltet die Berechnung von

- statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken
- · zweidimensionalen viskosen Strömungen
- · verlustfreien inkompressiblen und kompressiblen Strömungen (Stromfadentheorie)
- · verlustbehafteten technischen Rohrströmungen

# Zusammensetzung der Modulnote

Note der Prüfung

### Voraussetzungen

Keine

# Inhalt

Eigenschaften von Fluiden, Oberflächenspannung, Hydro- und Aerostatik, Kinematik, Stromfadentheorie (kompressibel und inkompressibel), Verluste in Rohrströmungen, Dimensionsanalyse, dimensionslose Kennzahlen

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton'scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

# **Anmerkungen**

Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

#### **Arbeitsaufwand**

Präsenzzeit: 64 StundenSelbststudium: 176 Stunden

# **Lehr- und Lernformen**

Vorlesungen + Übungen

#### Literatur

Zirep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg

Kuhlmann, H.: Strömungsmechanik, Pearson Studium

Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag

Kundu, P.K., Cohen, K.M.: Fluid Mechanics, Elsevier 2008



# 2.89 Modul: Supply Chain Management [M-WIWI-101421]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache          | Level | Version |
|-----------------|----------------|------------|------------------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch/Englisch | 3     | 9       |

| Pflichtbestandteile  |                                                           |        |                   |  |  |
|----------------------|-----------------------------------------------------------|--------|-------------------|--|--|
| T-WIWI-109936        | Platform Economy                                          | 4,5 LP | Dorner, Weinhardt |  |  |
| Wahlpflichtblock: Er | Wahlpflichtblock: Ergänzungsangebot (1 Bestandteil)       |        |                   |  |  |
| T-WIWI-102704        | Standortplanung und strategisches Supply Chain Management | 4,5 LP | Nickel            |  |  |
| T-WIWI-102714        | Taktisches und operatives Supply Chain Management         | 4,5 LP | Nickel            |  |  |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

#### Qualifikationsziele

Die Studierenden

- verstehen und bewerten aus strategischer und operativer Sicht die Steuerung von unternehmensübergreifenden Lieferketten.
- analysieren die Koordinationsprobleme innerhalb der Lieferketten,
- identifizieren und integrieren geeignete Informationssystemlandschaften zur Unterstützung der Lieferketten,
- · wenden theoretische Methoden aus dem Operations Research und dem Informationsmanagement an,
- erarbeiten Lösungen in Teams.

# Voraussetzungen

Die Teilleistung T-WIWI-107506 "Plattformökonomie" ist Pflicht im Modul.

#### Inhalt

Das Modul Supply Chain Management" vermittelt einen Überblick über die gegenseitigen Abhängigkeiten von unternehmensübergreifenden Lieferketten und Informationssystemen. Aus den Spezifika der Lieferketten und deren Informationsbedarf ergeben sich besondere Anforderungen an das betriebliche Informationsmanagement. In der Kernveranstaltung "Plattformökonomie" wird insbesondere auf den Austausch zweier Handelspartner über einen Intermediär auf Internetplattformen eingegangen. Themen sind Netzwerkeffekte, Peer-To-Peer Märkte, Blockchains und Marktmechanismen. Über den englischsprachigen Vorlesungsteil hinaus vermittelt der Kurs das Wissen anhand einer Fallstudie, in der die Studierenden selbst eine Plattform analysieren sollen.

Das Teilmodul wird durch ein Wahlfach abgerundet, welches geeignete Optimierungsmethoden für das Supply Chain Management bzw. moderne Logistikansätze adressiert.

# **Anmerkungen**

Das geplante Vorlesungsangebot in den nächsten Semestern finden Sie auf den Webseiten der einzelnen Institute IISM, IFL und IOR.

#### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 6 Leistungspunkten ca. 180 Stunden, für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.90 Modul: Systemdynamik und Regelungstechnik [M-ETIT-102181]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Anwendungsfach / Elektrotechnik und Informationstechnik (Wahlpflichtbereich Elektrotechnik und

Informationstechnik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 2       |

| Pflichtbestandteile |                                    |      |         |
|---------------------|------------------------------------|------|---------|
| T-ETIT-101921       | Systemdynamik und Regelungstechnik | 6 LP | Hohmann |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

#### **Oualifikationsziele**

- Ziel ist die Vermittlung theoretischer Grundlagen der Regelungstechnik, daher können die Studierenden grundsätzliche regelungstechnische Problemstellungen erkennen und bearbeiten.
- Die Studierenden sind in der Lage, reale Prozesse formal zu beschreiben und Anforderungen an Regelungsstrukturen abzuleiten.
- Sie können die Dynamik von Systemen mit Hilfe graphischer und algebraischer Methoden analysieren.
- Die Studierenden können Reglerentwurfsverfahren für Eingrößensysteme benennen, anhand von Kriterien auswählen, sowie die Entwurfsschritte durchführen und die entworfene Regelung beurteilen, ferner können Sie Störungen durch geeignete Regelkreisstrukturen kompensieren.
- Die Studierenden kennen relevante Fachbegriffe der Regelungstechnik und können vorgeschlagene Lösungen beurteilen und zielorientiert diskutieren.
- Sie kennen computergestützte Hilfsmittel zur Bearbeitung systemtheoretischer Fragestellungen und können diese einsetzen.

#### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

# Voraussetzungen

keine

# Inhalt

Die Grundlagenvorlesung Systemdynamik und Regelungstechnik vermittelt den Studierenden Kenntnisse auf einem Kerngebiet der Ingenieurwissenschaften. Sie werden vertraut mit den Elementen sowie der Struktur und dem Verhalten dynamischer Systeme. Die Studenten lernen grundlegende Begriffe der Regelungstechnik kennen und gewinnen einen Einblick in die Aufgabenstellungen beim Reglerentwurf und in entsprechende Lösungsmethoden im Frequenz- und Zeitbereich. Dies versetzt sie in die Lage, mathematische Methoden zur Analyse und Synthese dynamischer Systeme systematisch anzuwenden

# Anmerkungen

wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten.

#### **Arbeitsaufwand**

Jeder Leistungspunkt (Credit Point) entspricht 30h Arbeitsaufwand (des Studierenden). Unter den Arbeitsaufwand fallen

- 1. Präsenzzeit in Vorlesung/Übung (2+2 SWS: 60h2 LP)
- 2. Vor-/Nachbereitung von Vorlesung/Übung/Tutorium(optional) (105h3.5 LP)
- 3. Vorbereitung/Präsenzzeit schriftliche Prüfung (15h0.5 LP)



# 2.91 Modul: Technische Mechanik I [M-MACH-100279]

**Verantwortung:** Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Anwendungsfach / Maschinenbau (Pflichtbestandteil)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 7               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 2       |

| Pflichtbestandteile |                                  |      |                  |  |
|---------------------|----------------------------------|------|------------------|--|
| T-MACH-100282       | Technische Mechanik I            | 7 LP | Böhlke, Langhoff |  |
| T-MACH-100528       | Übungen zu Technische Mechanik I | 0 LP | Böhlke, Langhoff |  |

#### Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 Minuten; benotet

Prüfungsvorleistung in TM I (siehe Teilleistung T-MACH-100528 - Übungen zu Technische Mechanik I): Testate sind in den folgenden vier Kategorien zu erbringen: schriftliche Pflicht-Hausaufgaben, schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien.

Die Teilleistung T-MACH-100528 ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als drei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik I" (siehe Teilleistung T-MACH-100282).

#### Qualifikationsziele

Die Studenten können

- die grundlegenden mathematischen Berechnungen der Vektorrechnung und Differential- und Integralrechnung in Anwendung auf mechanische Systemeim Ingenieurwesen ausführen
- ausgehend vom Kraftbegriff verschiedene Gleichgewichtssysteme analysieren, darunter ebene und räumliche Kräftegruppen am starren Körper
- innere Schnittgrößen an ebenen und räumlichen Tragwerken berechnen
- zusätzlich zum Gleichgewichtsaxiom das Prinzip der virtuellen Verschiebungen der analytischen Mechanik anwenden
- · die Stabilität von Gleichgewichtslagen untersuchen
- Linien-, Flächen-, Volumen- und Massenmittelpunkte für homogene und inhomogene Körper in 1D, 2D und 3D berechnen
- · die Statik undehnbarer Seile analysieren
- Systeme mit Haftreibung berechnen
- im Rahmen der Statik gerader Stäbe innere Beanspruchungen mittels linear elastischer und linear thermoelastischer Stoffgesetze berechnen

#### Voraussetzungen

keine

#### Inhalt

Grundzüge der Vektorrechnung, Kraftsysteme, Statik starrer Körper, Schnittgrößen in Stäben u. Balken, Schwerpunkt u. Massenmittelpunkt, Arbeit, Energie, Prinzip der virtuellen Verschiebungen, Elastostatik der Zug-Druck-Stäbe, Statik der undehnbaren Seile, Haftung und Gleitreibung

# **Empfehlungen**

keine

# Anmerkungen

keine

# **Arbeitsaufwand**

Präsenzzeit: 21,5 Stunden Selbststudium: 188,5 Stunden

# **Lehr- und Lernformen**

Vorlesungen, Übungen, Kleingruppenübungen am Rechner, Bewertung bearbeiteter Übungsblätter, Kolloquien, Sprechstunden (freiwillige Teilnahme)

# Literatur

wird in der Vorlesung "Technische Mechanik I" bekanntgegeben



# 2.92 Modul: Technische Mechanik II [M-MACH-100284]

**Verantwortung:** Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Anwendungsfach / Maschinenbau (Pflichtbestandteil)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Sommersemester | 1 Semester | Deutsch | 3     | 2       |

| Pflichtbestandteile |                                   |      |                  |  |
|---------------------|-----------------------------------|------|------------------|--|
| T-MACH-100283       | Technische Mechanik II            | 6 LP | Böhlke, Langhoff |  |
| T-MACH-100284       | Übungen zu Technische Mechanik II | 0 LP | Böhlke, Langhoff |  |

#### Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 Minuten; benotet

Prüfungsvorleistung in TM II (siehe Teilleistung T-MACH-100284 - Übungen zu Technische Mechanik II): Testate sind in den folgenden vier Kategorien zu erbringen: schriftliche Pflicht-Hausaufgaben, schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien.

Die Teilleistung T-MACH-100284 ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als zwei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik II" (siehe Teilleistung T-MACH-100283).

#### Qualifikationsziele

Die Studierenden können

- Spannungs- und Verzerrungsverteilungen für die Grundlastfälle im Rahmen der linearen Elastizität und linearen Thermoelastizität bewerten
- · 3D-Spannungs- und Verzerrungszustände berechnen und bewerten
- · das Prinzip der virtuellen Verschiebungen der analytischen Mechanik anwenden
- Energiemethoden anwenden und Näherungslösungen bewerten
- die Stabilität von Gleichgewichtslagen bewerten
- Übungsaufgaben zu den Themen der Vorlesungen unter Verwendung des Computeralgebrasystems MAPLE lösen

# Voraussetzungen

Keine

#### Inhalt

Balkenbiegung; Querkraftschub;Torsionstheorie; Spannungs- und Verzerrungszustand in 3D; Hooke'sches Gesetz in 3D; Elastizitätstheorie in 3D; Energiemethoden der Elastostatik; Näherungsverfahren; Stabilität ealstischer Stäbe

# **Empfehlungen**

keine

#### **Anmerkungen**

keine

### **Arbeitsaufwand**

Präsenzzeit: 21,5 Stunden Selbststudium: 158,5 Stunden

### Lehr- und Lernformen

Vorlesungen, Übungen, Kleingruppenübungen am Rechner, Bewertung bearbeiteter Übungsblätter, Kolloquien, Sprechstunden (freiwillige Teilnahme)

# Literatur

wird in der Vorlesung "Technische Mechanik II" bekanntgegeben



# 2.93 Modul: Technische Mechanik III und IV [M-MACH-102382]

**Verantwortung:** Prof. Dr.-Ing. Wolfgang Seemann **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Anwendungsfach / Maschinenbau (Pflichtbestandteil)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 10              | Jedes Semester | 2 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                    |       |         |  |
|---------------------|------------------------------------|-------|---------|--|
| T-MACH-105201       | Technische Mechanik III & IV       | 10 LP | Seemann |  |
| T-MACH-105202       | Übungen zu Technische Mechanik III | 0 LP  | Seemann |  |
| T-MACH-105203       | Übungen zu Technische Mechanik IV  | 0 LP  | Seemann |  |

# Voraussetzungen

keine



# 2.94 Modul: Theoretische Grundlagen der Informatik [M-INFO-101172]

Verantwortung: Prof. Dr. Jörn Müller-Quade

Prof. Dr. Peter Sanders Dr. rer. nat. Torsten Ueckerdt Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Anwendungsfach / Informatik (Wahlbereich Informatik)

| Leistungspunkte | Turnus               | Dauer      | Sprache | Level | Version |
|-----------------|----------------------|------------|---------|-------|---------|
| 6               | Jedes Wintersemester | 1 Semester | Deutsch | 3     | 1       |

| Pflichtbestandteile |                                        |      |                 |
|---------------------|----------------------------------------|------|-----------------|
| T-INFO-103235       | Theoretische Grundlagen der Informatik | 6 LP | Müller-Quade,   |
|                     |                                        |      | Sanders, Wagner |

#### Erfolgskontrolle(n)

Siehe Teilleistung

#### **Oualifikationsziele**

Der/die Studierende besitzt einen vertieften Einblick in die Grundlagen der Theoretischen Informatik und hat grundlegende Kenntnis in den Bereichen Berechenbarkeitstheorie, Komplexitätstheorie, formale Sprachen und Informationstheorie. Er/sie kann die Beziehungen dieser Gebiete erörtern und in einen Gesamtzusammenhang bringen. Außerdem kennt er/sie die fundamentalen Definitionen und Aussagen aus diesen Bereichen und ist in der Lage geführte Beweise zu verstehen sowie Wissen über erlangte Beweistechniken auf ähnliche Probleme anzuwenden.

Er/sie versteht die Grenzen und Möglichkeiten der Informatik in Bezug auf die Lösung von definierbaren aber nur bedingt berechenbare Probleme. Hierzu beherrscht er verschiedene Berechnungsmodelle, wie die der Turingmaschine, des Kellerautomaten und des endlichen

Automaten. Er/sie kann deterministische von nicht-deterministischen Modellen unterscheiden und deren Mächtigkeit gegeneinander abschätzen. Der/die Studierende kann die Äquivalenz aller hinreichend mächtigen Berechnungsmodelle (Churchsche These), Nichtberechenbarkeit wichtiger Funktionen (z.B. Halteproblem) und Gödels Unvollständigkeitssatz erläutern.

Er/sie besitzt einen Überblick über die wichtigsten Klassen der Komplexitätstheorie. Darüber hinaus kann er/sie ausgewählte Probleme mittels formaler Beweisführung in die ihm/ihr bekannten Komplexitätsklassen zuordnen. Insbesondere kennt er/sie die Komplexitätsklassen P und NP sowie das Konzept NP-vollständiger Probleme (polynomielle Reduktion). Er/sie kann erste grundlegende Techniken anwenden, um NP-schwere Probleme zu analysieren. Diese

Techniken umfassen unter anderem polynomielle Näherungsverfahren (Approximationsalgorithmen mit absoluter/relativer Güte, Approximationsschemata) als auch exakte Verfahren (Ganzzahlige Programme).

Im Bereich der formalen Sprachen ist es ihm/ihr möglich Sprachen als Grammatiken zu formulieren und diese in die Chomsky-Hierarchie einzuordnen. Zudem kann er/sie die ihm/ihr bekannten Berechnungsmodelle den

einzelnen Typen der Chomsky-Hierarchie zuordnen, sodass er/sie die Zusammenhänge zwischen formalen Sprachen und Berechnungstheorie identifizieren kann.

Der/die Studierende besitzt einen grundlegenden Überblick über die Informationstheorie und kennt damit Entropie, Kodierungsschemata sowie eine formale Definition für Information. Er/sie besitzt zudem die Fähigkeit dieses Wissen anzuwenden.

# Voraussetzungen

Siehe Teilleistung

#### Inhalt

Es gibt wichtige Probleme, deren Lösung sich zwar klar definieren läßt aber die man niemals wird systematisch berechnen können. Andere Probleme lassen sich "vermutlich" nur durch systematisches Ausprobieren lösen. Die meisten Ergebnisse dieser Vorlesung werden rigoros bewiesen. Die dabei erlernten Beweistechniken sind wichtig für die Spezifikation von Systemen der Informatik und für den systematischen Entwurf von Programmen und Algorithmen.

Das Modul gibt einen vertieften Einblick in die Grundlagen und Methoden der Theoretischen Informatik. Insbesondere wird dabei eingegangen auf grundlegende Eigenschaften Formaler Sprachen als Grundlagen von Programmiersprachen und Kommunikationsprotokollen (regulär, kontextfrei, Chomsky-Hierarchie), Maschinenmodelle (endliche Automaten, Kellerautomaten, Turingmaschinen, Nichtdeterminismus, Bezug zu Familien formaler Sprachen), Äquivalenz aller hinreichend mächtigen Berechnungsmodelle (Churchsche These), Nichtberechenbarkeit wichtiger Funktionen (Halteproblem,...), Gödels Unvollständigkeitssatz und Einführung in die Komplexitätstheorie (NP-vollständige Probleme und polynomiale Reduktionen).

# Anmerkungen

Siehe Teilleistung.

#### **Arbeitsaufwand**

Vorlesung mit 3 SWS + 1 SWS Übung.

6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung



# 2.95 Modul: Topics in Finance I [M-WIWI-101465]

Verantwortung: Prof. Dr. Martin Ruckes

Prof. Dr. Marliese Uhrig-Homburg

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache          | Level | Version |
|-----------------|----------------|------------|------------------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch/Englisch | 3     | 8       |

| Wahlpflichtblock: Wahlpflichtangebot (9 LP) |                                                        |        |                   |  |
|---------------------------------------------|--------------------------------------------------------|--------|-------------------|--|
| T-WIWI-102643                               | Derivate                                               | 4,5 LP | Uhrig-Homburg     |  |
| T-WIWI-110797                               | eFinance: Informationssysteme für den Wertpapierhandel | 4,5 LP | Weinhardt         |  |
| T-WIWI-107505                               | Financial Accounting for Global Firms                  | 4,5 LP | Luedecke          |  |
| T-WIWI-102623                               | Finanzintermediation                                   | 4,5 LP | Ruckes            |  |
| T-WIWI-102626                               | Geschäftspolitik der Kreditinstitute                   | 3 LP   | Müller            |  |
| T-WIWI-108711                               | Grundlagen der Unternehmensbesteuerung                 | 4,5 LP | Gutekunst, Wigger |  |
| T-WIWI-102646                               | Internationale Finanzierung                            | 3 LP   | Uhrig-Homburg     |  |
| T-WIWI-110511                               | Strategic Finance and Technoloy Change                 | 1,5 LP | Ruckes            |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2) SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an LP erfüllt wird. Die Teilprüfungen werden zu Beginn der vorlesungsfreien Zeit des Semesters angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

# Qualifikationsziele

Der/die Studierende

- besitzt weiterführende Kenntnisse in moderner Finanzwirtschaft
- wendet diese Kenntnisse in den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken in der beruflichen Praxis an.

### Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul *Essentials in Finance* zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Zudem kann das Modul Topics in Finance II gewählt werden.

#### Inhalt

Das Modul Topics in Finance I baut inhaltlich auf dem Modul Essentials of Finance auf. In den Veranstaltungen werden weiterführende Fragestellungen aus den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken aus theoretischer und praktischer Sicht behandelt.

# Anmerkungen

Die Teilleistung T-WIWI-102790 "Spezielle Steuerlehre" wird ab Wintersemester 2018/2019 nicht mehr im Modul angeboten.

#### **Arbeitsaufwand**

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden, für Lehrveranstaltungen mit 3 Leistungspunkten ca. 90 Stunden und für Lehrveranstaltungen mit 1,5 Leistungspunkten 45 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.



# 2.96 Modul: Topics in Finance II [M-WIWI-101423]

Verantwortung: Prof. Dr. Martin Ruckes

Prof. Dr. Marliese Uhrig-Homburg

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache          | Level | Version |
|-----------------|----------------|------------|------------------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch/Englisch | 3     | 9       |

| Wahlpflichtblock: Wahlpflichtangebot (9 LP) |                                                        |        |                   |  |
|---------------------------------------------|--------------------------------------------------------|--------|-------------------|--|
| T-WIWI-102643                               | Derivate                                               | 4,5 LP | Uhrig-Homburg     |  |
| T-WIWI-110797                               | eFinance: Informationssysteme für den Wertpapierhandel | 4,5 LP | Weinhardt         |  |
| T-WIWI-102623                               | Finanzintermediation                                   | 4,5 LP | Ruckes            |  |
| T-WIWI-107505                               | Financial Accounting for Global Firms                  | 4,5 LP | Luedecke          |  |
| T-WIWI-102626                               | Geschäftspolitik der Kreditinstitute                   | 3 LP   | Müller            |  |
| T-WIWI-108711                               | Grundlagen der Unternehmensbesteuerung                 | 4,5 LP | Gutekunst, Wigger |  |
| T-WIWI-102646                               | Internationale Finanzierung                            | 3 LP   | Uhrig-Homburg     |  |
| T-WIWI-110511                               | Strategic Finance and Technoloy Change                 | 1,5 LP | Ruckes            |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2) SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Die einzelnen Lehrveranstaltungen des Moduls werden je durch eine 60min. Klausur, die Lehrveranstaltung *Derivate* [2530550] durch eine 75min. Klausur zu Beginn der vorlesungsfreien Zeit des Semesters geprüft. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

### Qualifikationsziele

Der/die Studierende

- · besitzt weiterführende Kenntnisse in moderner Finanzwirtschaft
- kann diese Kenntnisse in den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken in der beruflichen Praxis anwenden.

### Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul *Essentials in Finance* zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Zudem kann das Modul Topics in Finance I gewählt werden.

#### Inhalt

Das Modul Topics in Finance II baut inhaltlich auf dem Modul Essentials of Finance auf. In den Veranstaltungen werden weiterführende Fragestellungen aus den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken aus theoretischer und praktischer Sicht behandelt.

#### **Anmerkungen**

Die Teilleistung T-WIWI-102790 "Spezielle Steuerlehre" wird ab Wintersemester 2018/1019 nicht mehr im Modul angeboten.

### **Arbeitsaufwand**

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



# 2.97 Modul: Vertiefung Informatik [M-WIWI-101399]

Verantwortung: Prof. Dr. Andreas Oberweis

Prof. Dr. Ali Sunyaev Prof. Dr. York Sure-Vetter Prof. Dr. Melanie Volkamer

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Level | Version |
|-----------------|----------------|------------|-------|---------|
| 9               | Jedes Semester | 1 Semester | 3     | 11      |

| Wahlpflichtblock: W | Wahlpflichtblock: Wahlpflichtangebot (5 LP)                                      |        |                                                     |  |  |
|---------------------|----------------------------------------------------------------------------------|--------|-----------------------------------------------------|--|--|
| T-WIWI-102747       | Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java            | 4,5 LP | Ratz, Zöllner                                       |  |  |
| T-WIWI-102748       | Programmierung kommerzieller Systeme - Einsatz betrieblicher<br>Standardsoftware | 4,5 LP | Klink, Oberweis                                     |  |  |
| Wahlpflichtblock: E | rgänzungsangebot (zwischen 4 und 5 LP)                                           |        |                                                     |  |  |
| T-WIWI-102652       | Angewandte Informatik I - Modellierung                                           | 5 LP   | Oberweis, Sure-Vetter                               |  |  |
| T-WIWI-109445       | Angewandte Informatik II – Internet Computing                                    | 5 LP   | Sunyaev                                             |  |  |
| T-WIWI-109263       | Anwendungen der Künstlichen Intelligenz                                          | 5 LP   | Sure-Vetter                                         |  |  |
| T-WIWI-102660       | Datenbanksysteme                                                                 | 5 LP   | Oberweis                                            |  |  |
| T-WIWI-104679       | Grundlagen für mobile Business                                                   | 4,5 LP | Oberweis                                            |  |  |
| T-WIWI-108387       | Informationssicherheit                                                           | 5 LP   | Volkamer                                            |  |  |
| T-WIWI-100809       | Software Engineering                                                             | 4 LP   | Oberweis                                            |  |  |
| T-WIWI-110108       | Visual Computing                                                                 | 4,5 LP | Landesberger von<br>Antburg                         |  |  |
| T-WIWI-110711       | Ergänzung Angewandte Informatik                                                  | 4,5 LP | Professorenschaft des<br>Fachbereichs<br>Informatik |  |  |

### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von zwei Teilprüfungen (nach §4 (2) SPO) über die gewählten Lehrveranstaltungen des Moduls. In jeder der gewählten Teilprüfungen, also Teilprüfung 1 und Teilprüfung 2, müssen zum Bestehen die jeweiligen Mindestanforderungen erreicht werden.

Die Prüfungen werden jedes Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Wenn jede der Teilprüfungen bestanden ist, wird die Gesamtnote des Moduls aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

### Qualifikationsziele

Der/die Studierende

- hat die F\u00e4higkeit des praktischen Umgangs mit der in vielen Anwendungsbereichen dominierenden Programmiersprache Java bzw. alternativ die F\u00e4higkeit zur Konfiguration, Parametrisierung und Einf\u00fchrung betrieblicher Standardsoftware zur Erm\u00f6glichung, Unterst\u00fctzung und Automatisierung von Gesch\u00e4ftsprozessen,
- kennt Methoden und Systeme eines Kerngebietes bzw. eines Kernanwendungsbereichs der Informatik,
- kann diese Methoden und Systeme situationsangemessen auswählen, gestalten und zur Problemlösung einsetzen,
- ist in der Lage, selbstständig strategische und kreative Antworten bei der Suche nach Lösungen für genau definierte, konkrete und abstrakte Probleme zu finden.

#### Voraussetzungen

Eine der beiden Teilleistungen "Programmierung kommerzieller Systeme – Anwendungen in Netzen mit Java" oder "Programmierung kommerzieller Systeme – Einsatz betrieblicher Standardsoftware" muss im Modul gewählt werden.

#### Inhalt

In diesem Modul wird die objektorientierte Programmierung mit der Programmiersprache Java weiter vertieft. Alternativ werden wichtige Grundlagen betrieblicher Informationssysteme vermittelt, die neue Formen von Geschäftsprozessen und Organisationsformen ermöglichen, unterstützen und beschleunigen. Anhand eines Kernanwendungsbereichs werden grundlegende Methoden und Verfahren der Informatik vorgestellt.

#### **Arbeitsaufwand**

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.



# 2.98 Modul: Wahrscheinlichkeitstheorie [M-MATH-101322]

**Verantwortung:** Prof. Dr. Nicole Bäuerle **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Grundlagen Angewandte Mathematik (Wahlpflichtmodul Grundlagen Angewandte Mathematik)

Mathematische Vertiefung (Gebiet Stochastik)

| Leistungspunkte | Turnus               | Dauer      | Level | Version |
|-----------------|----------------------|------------|-------|---------|
| 6               | Jedes Sommersemester | 1 Semester | 3     | 1       |

| Pflichtbestandteile |                            |  |                                                        |  |
|---------------------|----------------------------|--|--------------------------------------------------------|--|
| T-MATH-102257       | Wahrscheinlichkeitstheorie |  | Bäuerle, Fasen-<br>Hartmann, Henze,<br>Hug, Klar, Last |  |

# Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

#### Qualifikationsziele

Absolventinnen und Absolventen können

- grundlegende wahrscheinlichkeitstheoretische Methoden nennen, erörtern und anwenden,
- · einfache Vorgänge stochastisch modellieren,
- · selbstorganisiert und reflexiv arbeiten.

### Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

### Voraussetzungen

Keine

#### Inhalt

- Maß-Integral
- · Monotone und majorisierte Konvergenz
- Lemma von Fatou
- · Nullmengen u. Maße mit Dichten
- · Satz von Radon-Nikodym
- Produkt-sigma-Algebra
- · Familien von unabhängigen Zufallsvariablen
- Transformationssatz für Dichten
- Schwache Konvergenz
- · Charakteristische Funktion
- · Zentraler Grenzwertsatz
- · Bedingte Erwartungswerte
- Zeitdiskrete Martingale und Stoppzeiten

# **Empfehlungen**

Das Modul "Wahrscheinlichkeitstheorie" ist Grundlage aller weiterführenden Module in der Stochastik. Die Module "Analysis 3" und "Einführung in die Stochastik" sollten bereits absolviert sein.

# **Arbeitsaufwand**

Gesamter Arbeitsaufwand: 180 Stunden

Präsenzzeit: 60 Stunden

• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherch
- · Vorbereitung auf die studienbegleitende Modulprüfung



# 2.99 Modul: Weitere Leistungen [M-MATH-103943]

**Einrichtung:** Universität gesamt **Bestandteil von:** Zusatzleistungen

LeistungspunkteTurnusDauerSpracheLevelVersion30Jedes Semester2 SemesterDeutsch31

Voraussetzungen

Keine



# 2.100 Modul: Wirtschaftspolitik I [M-WIWI-101668]

Verantwortung: Prof. Dr. Ingrid Ott

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache | Level | Version |
|-----------------|----------------|------------|---------|-------|---------|
| 9               | Jedes Semester | 1 Semester | Deutsch | 3     | 9       |

| Pflichtbestandteile |                                               |        |         |  |
|---------------------|-----------------------------------------------|--------|---------|--|
| T-WIWI-103213       | Einführung in die Wirtschaftspolitik          | 4,5 LP | Ott     |  |
| Wahlpflichtblock: W | ahlpflichtangebot (1 Bestandteil)             |        |         |  |
| T-WIWI-109121       | Macroeconomic Theory                          | 4,5 LP | Brumm   |  |
| T-WIWI-102739       | Öffentliche Einnahmen                         | 4,5 LP | Wigger  |  |
| T-WIWI-102908       | Personalpolitik und Arbeitsmarktinstitutionen | 4,5 LP | Nieken  |  |
| T-WIWI-100005       | Wettbewerb in Netzen                          | 4,5 LP | Mitusch |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Erfolgskontrollen (§4(2),1 SPO) über die gewählten Teilleistungen des Moduls. Die Erfolgskontrolle erfolgt für jede Teilleistung separat und wird dort beschrieben. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

Die Noten der Teilleistungen entsprechen jeweils den Noten der bestandenen Erfolgskontrollen. Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilleistungen gebildet.

#### **Oualifikationsziele**

Der/ die Studierende

- Kann sein/ihr vertieftes Verständnis mikro- und makroökonomischer Theorien auf wirtschaftspolitische Fragestellungen anwenden,
- kann darlegen, wie aus wohlfahrtsökonomischer Perspektive Staatseingriffe in das Marktgeschehen legitimiert werden können.
- kann benennen, wie theoriegestützte Politikempfehlungen abgeleitet werden.

# Voraussetzungen

Die Teilleistung "Einführung in die Wirtschaftspolitik" ist Pflicht im Modul.

### Inhalt

- · Markteingriffe: mikroökonomische und makroökonomische Perspektive
- Institutionenökonomische Aspekte
- Wirtschaftspolitik und Wohlfahrtsökonomik
- · Träger der Wirtschaftspolitik: Politökonomische Aspekte

# **Empfehlungen**

Es werden grundlegende mikro- und makroökonomische Kenntnisse vorausgesetzt, wie sie insbesondere in den Veranstaltungen Volkswirtschaftslehre I [2610012] und Volkswirtschaftslehre II [2600014] vermittelt werden.

#### **Arbeitsaufwand**

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden. Die Aufteilung erfolgt gemäß den Leistungspunkten der Teilleistungen des Moduls.



# 2.101 Modul: Wirtschaftstheorie [M-WIWI-101501]

Verantwortung: Prof. Dr. Clemens Puppe

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Anwendungsfach / Wirtschaftswissenschaften (Wahlmodule Wirtschaftswissenschaften)

| Leistungspunkte | Turnus         | Dauer      | Sprache          | Level | Version |
|-----------------|----------------|------------|------------------|-------|---------|
| 9               | Jedes Semester | 2 Semester | Deutsch/Englisch | 3     | 3       |

| Wahlpflichtblock: Wahlpflichtangebot (9 LP) |                                    |        |             |  |
|---------------------------------------------|------------------------------------|--------|-------------|--|
| T-WIWI-102609                               | Advanced Topics in Economic Theory | 4,5 LP | Mitusch     |  |
| T-WIWI-102876                               | Auction & Mechanism Design         | 4,5 LP | Szech       |  |
| T-WIWI-102892                               | Economics and Behavior             | 4,5 LP | Szech       |  |
| T-WIWI-102850                               | Einführung in die Spieltheorie     | 4,5 LP | Puppe, Reiß |  |
| T-WIWI-102844                               | Industrieökonomie                  | 4,5 LP | Reiß        |  |
| T-WIWI-109121                               | Macroeconomic Theory               | 4,5 LP | Brumm       |  |
| T-WIWI-102610                               | Wohlfahrtstheorie                  | 4,5 LP | Puppe       |  |

#### Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

# Qualifikationsziele

Der/die Studierende

- · beherrscht den Umgang mit fortgeschrittenen Konzepten der mikroökonomischen Theorie beispielsweise der allgemeinen Gleichgewichtstheorie oder der Preistheorie - und kann diese auf reale Probleme, z. B. der Allokation auf Faktor- und Gütermärkten, anwenden. (Lehrveranstaltung "Fortgeschrittene Mikroökonomische Theorie"),
- versteht Konzepte und Methoden der Wohlfahrtstheorie und kann sie auf Probleme der Verteilungsgerechtigkeit. Chancengleichheit und gesellschaftliche Fairness anwenden, (Lehrveranstaltung "Wohlfahrtstheorie")
- erlangt fundierte Kenntnisse in der Theorie strategischer Entscheidungen. Ein Hörer der Vorlesung "Einführung in die Spieltheorie" soll in der Lage sein, allgemeine strategische Fragestellungen systematisch zu analysieren und gegebenenfalls Handlungsempfehlungen für konkrete volkswirtschaftliche Entscheidungssituationen (wie kooperatives vs. egoistisches Verhalten) zu geben. (Lehrveranstaltung "Einführung in die Spieltheorie").

# Voraussetzungen

Keine

#### Inhalt

Inhaltlicher Schwerpunkt der Vorlesung Einführung in die Spieltheorie sind die Grundlagen der nicht-kooperativen Spieltheorie. Modellannahmen, Lösungskonzepte und Anwendungen werden sowohl für simultane (Normalformspiele) als auch für sequenzielle Spiele (Extensivformspiele) detailliert besprochen. Klassische Gleichgewichtskonzepte wie das Nash-Gleichgewicht oder das teilspielperfekte Gleichgewicht, aber auch fortgeschrittene Konzepte werden ausführlich diskutiert. Es wird zudem ggf. ein kurzer Einblick in die kooperative

Spieltheorie gegeben.

Die Veranstaltung Auction & Mechanism Design beginnt mit der grundlegenden Theorie des Gleichgewichtsverhaltens und des Ertragsmanagements in Einobjekt-Standardauktionen. Nachdem das Ertrags-Äquivalenz Theorem für Standardauktionen eingeführt wird, verschiebt sich der Schwerpunkt auf Mechanismusdesign und dessen Anwendungen für Einobjekt-Auktionen und bilateralen Austausch.

Die Veranstaltung Economics and Behavior führt inhaltlich und methodisch in grundlegende Themen der Verhaltensökonomie ein. Die Studierenden erhalten zudem Einblick in das Design ökonomischer Experimentalstudien. Die Studierenden werden darüber hinaus an das Lesen von und die kritische Auseinandersetzung mit aktuellen Forschungsarbeiten aus der Verhaltensökonomie herangeführt.

# Empfehlungen

Keine

# Anmerkungen

Bitte beachten Sie, dass die Teilleistung T-WIWI-102609 - Advanced Topics in Economic Theory derzeit nicht angeboten wird.

# 3 Teilleistungen



# 3.1 Teilleistung: Advanced Topics in Economic Theory [T-WIWI-102609]

Verantwortung: Prof. Dr. Kay Mitusch

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101501 - Wirtschaftstheorie

| Teilleistungsart             | Leistungspunkte | Turnus       | Version |
|------------------------------|-----------------|--------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Unregelmäßig | 1       |

| Lehrveranstaltungen |         |                                             |       |                   |                |
|---------------------|---------|---------------------------------------------|-------|-------------------|----------------|
| SS 2021             | 2520527 | Advanced Topics in Economic<br>Theory       | 2 SWS | Vorlesung (V) / 🖥 | Mitusch, Brumm |
| SS 2021             | 2520528 | Übung zu Advanced Topics in Economic Theory | 1 SWS | Übung (Ü) / 🖥     | Pegorari       |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Erfolgskontrolle erfolgt an zwei Terminen am Ende der Vorlesungszeit bzw. zu Beginn des Folgesemesters.

#### Voraussetzungen

Keine

#### **Empfehlungen**

This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.



## 3.2 Teilleistung: Algebra [T-MATH-102253]

Prof. Dr. Frank Herrlich **Verantwortung:** 

Dr. Stefan Kühnlein

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-101315 - Algebra

| Teilleistungsart          | Leistungspunkte | Version |
|---------------------------|-----------------|---------|
| Prüfungsleistung mündlich | 8               | 1       |

| Lehrveranstaltungen |         |                              |       |                   |                      |
|---------------------|---------|------------------------------|-------|-------------------|----------------------|
| WS 20/21            | 0102200 | Algebra                      | 4 SWS | Vorlesung (V) / 🗯 | Kühnlein             |
| WS 20/21            | 0102210 | Übungen zu 0102200 (Algebra) | 2 SWS | Übung (Ü) / 🗯     | Kühnlein, Kohlmüller |

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♣ Präsenz, 🗙 Abgesagt

**Erfolgskontrolle(n)** Mündliche Prüfung (ca. 30 min).

#### Voraussetzungen

keine



## 3.3 Teilleistung: Algebraische Topologie [T-MATH-105915]

**Verantwortung:** Dr. Holger Kammeyer

Prof. Dr Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102948 - Algebraische Topologie

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich8Unregelmäßig1

| Lehrveranstaltungen |         |                                              |       |               |       |
|---------------------|---------|----------------------------------------------|-------|---------------|-------|
| SS 2021             | 0157400 | Algebraic Topology                           | 4 SWS | Vorlesung (V) | Sauer |
| SS 2021             | 0157410 | Tutorial for 0157400 (Algebraic<br>Topology) | 2 SWS | Übung (Ü)     | Sauer |

#### Voraussetzungen



## 3.4 Teilleistung: Algorithmen I [T-INFO-100001]

Verantwortung: Prof. Dr. Peter Sanders

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100030 - Algorithmen I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |       |               |       |                               |                               |
|---------------------|-------|---------------|-------|-------------------------------|-------------------------------|
| SS 2021             | 24500 | Algorithmen I | 4 SWS | Vorlesung / Übung<br>(VÜ) / ■ | Dachsbacher, Kleine<br>Büning |

Legende: Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Abschlussprüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von 120 Minuten.

Der Dozent kann für gute Leistungen in der <u>Übung</u> zur Lehrveranstaltung *Algorithmen I* einen Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben.

Dieser Notenbonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.



## 3.5 Teilleistung: Algorithmen II [T-INFO-102020]

**Verantwortung:** Prof. Dr. Hartmut Prautzsch

Prof. Dr. Peter Sanders Prof. Dr. Dorothea Wagner

**Einrichtung:** KIT-Fakultät für Informatik **Bestandteil von:** M-INFO-101173 - Algorithmen II

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |       |                |       |                   |                             |
|---------------------|-------|----------------|-------|-------------------|-----------------------------|
| WS 20/21            | 24079 | Algorithmen II | 4 SWS | Vorlesung (V) / 🖥 | Sanders, Heuer,<br>Seemaier |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

#### Voraussetzungen



## 3.6 Teilleistung: Analysis 1 - Klausur [T-MATH-106335]

**Verantwortung:** Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger

Prof. Dr. Roland Schnaubelt KIT-Fakultät für Mathematik

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-101306 - Analysis 1 und 2

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich9Jedes Semester1

| Lehrveranstaltungen |         |            |       |                   |             |
|---------------------|---------|------------|-------|-------------------|-------------|
| WS 20/21            | 0100100 | Analysis I | 4 SWS | Vorlesung (V) / 🗯 | Schnaubelt, |
|                     |         |            |       |                   | Schmoeger   |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Voraussetzungen

Der Übungsschein aus Analysis 1 muss bestanden sein.

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-102235 - Analysis 1 Übungsschein muss erfolgreich abgeschlossen worden sein.



## 3.7 Teilleistung: Analysis 1 Übungsschein [T-MATH-102235]

**Verantwortung:** Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger

Prof. Dr. Roland Schnaubelt

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-101306 - Analysis 1 und 2

**Teilleistungsart** Leistungspunkte Version
Studienleistung 0 1

| Lehrveranstaltungen |         |                     |       |                   |                          |
|---------------------|---------|---------------------|-------|-------------------|--------------------------|
| WS 20/21            | 0100200 | Übungen zu 0100100  | 2 SWS | Übung (Ü) / 🗯     | Schnaubelt,<br>Schmoeger |
| WS 20/21            | 0190010 | Tutorium Analysis I | 2 SWS | Tutorium (Tu) / 🗣 | Schnaubelt,<br>Schmoeger |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

#### Voraussetzungen

keine



### 3.8 Teilleistung: Analysis 2 - Klausur [T-MATH-106336]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger Prof. Dr. Roland Schnaubelt

**Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich9Jedes Semester1

| Lehrveranstaltungen |         |            |       |               |            |
|---------------------|---------|------------|-------|---------------|------------|
| SS 2021             | 0150100 | Analysis 2 | 4 SWS | Vorlesung (V) | Schnaubelt |

#### Voraussetzungen

Der Übungsschein aus Analysis 2 muss bestanden sein.

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-102236 - Analysis 2 Übungsschein muss erfolgreich abgeschlossen worden sein.



## 3.9 Teilleistung: Analysis 2 Übungsschein [T-MATH-102236]

**Verantwortung:** Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

**Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2

**Teilleistungsart** Studienleistung

Leistungspunkte

0

**Version** 1

| Lehrveranstaltungen |         |                    |       |           |            |
|---------------------|---------|--------------------|-------|-----------|------------|
| SS 2021             | 0150200 | Übungen zu 0150100 | 2 SWS | Übung (Ü) | Schnaubelt |

#### Voraussetzungen

keine



## 3.10 Teilleistung: Analysis 3 - Klausur [T-MATH-102245]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger

Prof. Dr. Roland Schnaubelt

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-101318 - Analysis 3

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich9Jedes Semester2

| Lehrveranstaltungen |         |                    |       |                   |      |
|---------------------|---------|--------------------|-------|-------------------|------|
| WS 20/21            | 0100400 | Analysis III       | 4 SWS | Vorlesung (V) / 🖥 | Lamm |
| WS 20/21            | 0100500 | Übungen zu 0100400 | 2 SWS | Übung (Ü) / 🗯     | Lamm |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

#### Voraussetzungen

keine



## 3.11 Teilleistung: Analysis 4 - Prüfung [T-MATH-106286]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger Prof. Dr. Roland Schnaubelt

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-103164 - Analysis 4

**Teilleistungsart** Prüfungsleistung schriftlich

**Leistungspunkte** 8 **Turnus** Jedes Semester **Version** 1

| Lehrveranstaltungen |         |                    |       |               |      |
|---------------------|---------|--------------------|-------|---------------|------|
| SS 2021             | 0163900 | Analysis 4         | 4 SWS | Vorlesung (V) | Lamm |
| SS 2021             | 0164000 | Übungen zu 0163900 | 2 SWS | Übung (Ü)     | Lamm |

#### Erfolgskontrolle(n)

Schriftliche Prüfung (120 min).

#### Voraussetzungen



## 3.12 Teilleistung: Angewandte Informatik I - Modellierung [T-WIWI-102652]

**Verantwortung:** Prof. Dr. Andreas Oberweis

Prof. Dr. York Sure-Vetter

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101399 - Vertiefung Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 5               | Jedes Wintersemester | 4       |

| Lehrveranstaltungen |         |                                                    |       |                   |                              |
|---------------------|---------|----------------------------------------------------|-------|-------------------|------------------------------|
| WS 20/21            | 2511030 | Angewandte Informatik -<br>Modellierung            | 2 SWS | Vorlesung (V) / 🖥 | Oberweis, Käfer,<br>Schiefer |
| WS 20/21            | 2511031 | Übungen zu Angewandte<br>Informatik - Modellierung | 1 SWS | Übung (Ü) / 🖥     | Oberweis, Käfer,<br>Schiefer |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

#### Voraussetzungen



## 3.13 Teilleistung: Angewandte Informatik II – Internet Computing [T-WIWI-109445]

Verantwortung: Prof. Dr. Ali Sunyaev

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101399 - Vertiefung Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 5               | Jedes Sommersemester | 3       |

| Lehrveranstaltungen |         |                                                          |       |               |                              |
|---------------------|---------|----------------------------------------------------------|-------|---------------|------------------------------|
| SS 2021             | 2511032 | Angewandte Informatik - Internet<br>Computing            | 2 SWS | Vorlesung (V) | Sunyaev                      |
| SS 2021             | 2511033 | Übungen zu Angewandte<br>Informatik - Internet Computing | 1 SWS | Übung (Ü)     | Sunyaev, Teigeler,<br>Beyene |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Min.) nach §4(2),1 SPO.

Die erfolgreiche Lösung der Aufgaben im Übungsbetrieb ist empfohlen für die Klausur, welche jeweils zum Ende des Wintersemesters und zum Ende des Sommersemesters angeboten wird.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

#### Voraussetzungen



## 3.14 Teilleistung: Anwendungen der Künstlichen Intelligenz [T-WIWI-109263]

Verantwortung: Prof. Dr. York Sure-Vetter

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101399 - Vertiefung Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 5               | Jedes Wintersemester | 3       |

| Lehrveranstaltungen |         |                                                                                  |       |                 |                       |
|---------------------|---------|----------------------------------------------------------------------------------|-------|-----------------|-----------------------|
| WS 20/21            | 2511314 | Angewandte Informatik -<br>Anwendungen der Künstlichen<br>Intelligenz            | 2 SWS | Vorlesung (V) / | Färber, Käfer         |
| WS 20/21            | 2511315 | Übungen zu Angewandte<br>Informatik - Anwendungen der<br>Künstlichen Intelligenz | 1 SWS | Übung (Ü) / 🖥   | Färber, Käfer, Nguyen |

Legende: 🖥 Online, 😂 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) oder einer mündlichen Prüfung (20 min) (nach §4(2), 1 o. 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine.

#### **Empfehlungen**

Grundkenntnisse in Logik und Graphentheorie, wie sie z.B. in Grundlagen der Informatik erworben wurden, sind erforderlich.



### 3.15 Teilleistung: Auction & Mechanism Design [T-WIWI-102876]

Verantwortung: Prof. Dr. Nora Szech

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101499 - Angewandte Mikroökonomik

M-WIWI-101501 - Wirtschaftstheorie

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                          |       |                   |              |
|---------------------|---------|------------------------------------------|-------|-------------------|--------------|
| SS 2021             | 2560550 | Auction and Mechanism Design             | 2 SWS | Vorlesung (V) / 🖥 | Szech        |
| SS 2021             | 2560551 | Übung zu Auction and Mechanism<br>Design | 1 SWS | Übung (Ü) / 🖥     | Szech, Huber |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Die Note ist die Note der schriftlichen Prüfung.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Grundkenntnisse in Mikroökonomie und Statistik sind wünschenswert. Ein Hintergrund in Spieltheorie ist hilfreich, aber nicht zwingend notwendig.

#### Anmerkungen

Die Lehrveranstaltung wird in englischer Sprache gehalten.



## 3.16 Teilleistung: Bachelorarbeit [T-MATH-107476]

**Verantwortung:** Dr. Sebastian Grensing **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103701 - Modul Bachelorarbeit

TeilleistungsartLeistungspunkteTurnusVersionAbschlussarbeit12Jedes Semester1

#### Voraussetzungen

Modulprüfungen im Umfang von 100 LP müssen erfolgreich abgelegt sein.

#### **Abschlussarbeit**

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 183 Tage
Maximale Verlängerungsfrist 31 Tage
Korrekturfrist 6 Wochen



### 3.17 Teilleistung: Bauökologie I [T-WIWI-102742]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101467 - Bauökologie

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                        |       |                   |             |
|---------------------|---------|------------------------|-------|-------------------|-------------|
| WS 20/21            | 2586404 | Bauökologie I          | 2 SWS | Vorlesung (V) / 🖥 | Lützkendorf |
| WS 20/21            | 2586405 | Übung zu Bauökologie I | 1 SWS | Übung (Ü) / 🖥     | N.N.        |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Wintersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Eine Kombination mit dem Modul*Real Estate Management*und mit einem ingenieurwissenschaftlichem Modul aus den Bereichen Bauphysik oder Baukonstruktion wird empfohlen.



## 3.18 Teilleistung: Bauökologie II [T-WIWI-102743]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101467 - Bauökologie

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                         |       |                   |             |
|---------------------|---------|-------------------------|-------|-------------------|-------------|
| SS 2021             | 2585403 | Übung zu Bauökologie II | 1 SWS | Übung (Ü) / 🖥     |             |
| SS 2021             | 2585404 | Bauökologie II          | 2 SWS | Vorlesung (V) / 🖥 | Lützkendorf |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als 60-minütige (reine Bearbeitungszeit) Upload-Klausur (Open Book Exam @ Home) (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Es wird eine Kombination mit dem Modul Real Estate Management und mit einem ingenieurwissenschaftlichem Modul aus den Bereichen Bauphysik oder Baukonstruktion empfohlen.



### 3.19 Teilleistung: Betriebssysteme [T-INFO-101969]

**Verantwortung:** Prof. Dr.-Ing. Frank Bellosa **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-103454 - Betriebssysteme

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 2       |

| Lehrveranstaltungen |       |                 |       |                   |                      |
|---------------------|-------|-----------------|-------|-------------------|----------------------|
| WS 20/21            | 24009 | Betriebssysteme | 4 SWS | Vorlesung (V) / 🗯 | Bellosa, Rittinghaus |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 180 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

#### Voraussetzungen

Keine.

#### **Anmerkungen**

Studierende, die das Modul bis inkl. SS 2019 angefangen haben (bereits die Haupt- oder Scheinklasur angetreten haben) und noch nicht abgeschlossen haben, haben die Möglichkeit die zwei Prüfungen aus dem Modul im WS 2019 / 2020 erneut abzulegen oder auf die neue Version des Moduls mit der neuen Erfolgskontrolle umzusteigen. Dafür müssen Studierende eine E-Mail an beratung-informatik@informatik.kit.edu.



## 3.20 Teilleistung: Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen [T-WIWI-102819]

**Verantwortung:** Prof. Dr. Martin Ruckes

Prof. Dr. Marliese Uhrig-Homburg

Prof. Dr. Marcus Wouters

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101494 - Grundlagen BWL 1

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4               | Jedes Wintersemester | 1       |

| Lehrverans | Lehrveranstaltungen |                                                                                    |       |                   |                 |  |
|------------|---------------------|------------------------------------------------------------------------------------|-------|-------------------|-----------------|--|
| WS 20/21   | 2610026             | Betriebswirtschaftslehre:<br>Finanzwirtschaft und<br>Rechnungswesen                | 2 SWS | Vorlesung (V) / 🗣 | Ruckes, Wouters |  |
| WS 20/21   | 2610029             | Tutorien zu<br>Betriebswirtschaftslehre:<br>Finanzwirtschaft und<br>Rechnungswesen | 2 SWS | Tutorium (Tu) / 🗯 | Strych          |  |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO).

Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen



## 3.21 Teilleistung: Betriebswirtschaftslehre: Produktionswirtschaft und Marketing [T-WIWI-102818]

Verantwortung: Prof. Dr. Wolf Fichtner

Prof. Dr. Martin Klarmann

Prof. Dr.-Ing. Thomas Lützkendorf

Prof. Dr. Martin Ruckes Prof. Dr. Frank Schultmann

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101578 - Grundlagen BWL 2

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                                     |       |                   |                                   |
|---------------------|---------|---------------------------------------------------------------------|-------|-------------------|-----------------------------------|
| SS 2021             | 2500025 | Tutorien zu BWL PM                                                  | 2 SWS | Tutorium (Tu) / 🖥 | Klarmann, Strych,<br>Assistenten  |
| SS 2021             | 2600024 | Betriebswirtschaftslehre:<br>Produktionswirtschaft und<br>Marketing | 2 SWS | Vorlesung (V) /   | Klarmann,<br>Schultmann, Fichtner |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen



## 3.22 Teilleistung: Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft [T-WIWI-102817]

Verantwortung: Prof. Dr. Petra Nieken

Prof. Dr. Martin Ruckes

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101494 - Grundlagen BWL 1

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 3               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |  |                                                                                |       |                 |                                 |
|---------------------|--|--------------------------------------------------------------------------------|-------|-----------------|---------------------------------|
| WS 20/21            |  | Betriebswirtschaftslehre:<br>Unternehmensführung und<br>Informationswirtschaft | 2 SWS | Vorlesung (V) / | Weinhardt, Strych,<br>Lindstädt |

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen



## 3.23 Teilleistung: Compressive Sensing [T-MATH-105894]

**Verantwortung:** Prof. Dr. Andreas Rieder **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102935 - Compressive Sensing

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung mündlich5Unregelmäßig1

| Lehrveranstaltungen |         |                     |       |               |        |
|---------------------|---------|---------------------|-------|---------------|--------|
| SS 2021             | 0154000 | Compressive Sensing | 2 SWS | Vorlesung (V) | Rieder |

#### Voraussetzungen



## 3.24 Teilleistung: Datenbanksysteme [T-INFO-101497]

**Verantwortung:** Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101178 - Kommunikation und Datenhaltung

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |       |                             |       |                   |             |
|---------------------|-------|-----------------------------|-------|-------------------|-------------|
| SS 2021             | 24516 | Datenbanksysteme            | 2 SWS | Vorlesung (V) / 🖥 | Böhm, Mülle |
| SS 2021             | 24522 | Übungen zu Datenbanksysteme | 1 SWS | Übung (Ü) / 🖥     | Böhm, Mülle |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Durch die erfolgreiche Teilnahme am Übungsbetrieb als Erfolgskontrolle anderer Art (§4(2), 3 SPO 2007) bzw. Studienleistung (§4(3) SPO 2015) kann ein Bonus erworben werden. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus.

#### Voraussetzungen

Keine.

#### **Empfehlungen**

Der Besuch von Vorlesungen zu Rechnernetzen, Systemarchitektur und Softwaretechnik wird empfohlen, aber nicht vorausgesetzt.



## 3.25 Teilleistung: Datenbanksysteme [T-WIWI-102660]

Verantwortung: Prof. Dr. Andreas Oberweis

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101399 - Vertiefung Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 5               | Jedes Sommersemester | 3       |

| Lehrveranstaltungen |         |                                                        |       |                 |        |
|---------------------|---------|--------------------------------------------------------|-------|-----------------|--------|
| SS 2021             |         | Angewandte Informatik -<br>Datenbanksysteme            | 2 SWS | Vorlesung (V) / | Sommer |
| SS 2021             | 2511201 | Übungen zu Angewandte<br>Informatik - Datenbanksysteme | 1 SWS | Übung (Ü) / 🖥   | Sommer |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

#### Voraussetzungen



## 3.26 Teilleistung: Derivate [T-WIWI-102643]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101402 - eFinance

M-WIWI-101423 - Topics in Finance II M-WIWI-101465 - Topics in Finance I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                   |       |                 |                     |
|---------------------|---------|-------------------|-------|-----------------|---------------------|
| SS 2021             | 2530550 | Derivate          | 2 SWS | Vorlesung (V) / | Uhrig-Homburg       |
| SS 2021             | 2530551 | Übung zu Derivate | 1 SWS | Übung (Ü) / 🖥   | Uhrig-Homburg, Eska |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75 Minuten) nach §4(2), 1 SPO. Die Prüfung findet in der vorlesungsfreien Zeit des Semesters statt. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Keine .



## 3.27 Teilleistung: Dienstleistungs- und B2B Marketing [T-WIWI-102806]

Verantwortung: Dr. Sven Feurer

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101424 - Grundlagen des Marketing

| Teilleistungsart             | Leistungspunkte | Turnus            | Version |
|------------------------------|-----------------|-------------------|---------|
| Prüfungsleistung schriftlich | 3               | siehe Anmerkungen | 1       |

| Lehrveranstaltungen |         |                                        |       |                   |        |
|---------------------|---------|----------------------------------------|-------|-------------------|--------|
| WS 20/21            | 2572158 | Dienstleistungs- und B2B-<br>Marketing | 2 SWS | Vorlesung (V) / 🖥 | Feurer |

Legende: Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Prüfung wird für Erstschreiber letztmals im Sommersemester 2021 angeboten.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

#### Voraussetzungen

Keine

#### **Anmerkungen**

Die Lehrveranstaltung "Dienstleistungs- und B2B Marketing" wird letztmalig im Wintersemester 2020/21 angeboten. Wir strukturieren das Veranstaltungsangebot im Modul "Grundlagen des Marketing" gerade um. Über die neuen Angebote ab dem Wintersemester 2021/22 werden wir Sie baldmöglichst informieren.

Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).

.



## 3.28 Teilleistung: Differentialgeometrie [T-MATH-102275]

Verantwortung: Dr. Sebastian Grensing

Prof. Dr. Enrico Leuzinger Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

**Bestandteil von:** M-MATH-101317 - Differentialgeometrie

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich8Jedes Sommersemester1

| Lehrveranstaltungen |         |                                              |       |               |           |
|---------------------|---------|----------------------------------------------|-------|---------------|-----------|
| SS 2021             | 0100300 | Differential Geometry                        | 4 SWS | Vorlesung (V) | Leuzinger |
| SS 2021             | 0100310 | Tutorial for 0100300 (Differential Geometry) | 2 SWS | Übung (Ü)     | Leuzinger |

#### Voraussetzungen

keine



## 3.29 Teilleistung: Digital Services [T-WIWI-109938]

**Verantwortung:** Prof. Dr. Gerhard Satzger

Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

**Bestandteil von:** M-WIWI-101434 - eBusiness und Service Management

M-WIWI-102752 - Fundamentals of Digital Service Systems

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 4       |

| Lehrveranstaltungen |         |                                             |       |                   |                             |
|---------------------|---------|---------------------------------------------|-------|-------------------|-----------------------------|
| SS 2021             | 2595466 | Digital Services: Foundations               | 2 SWS | Vorlesung (V) / 🖥 | Satzger, Weinhardt,<br>Kühl |
| SS 2021             | 2595467 | Übungen zu Digital Services:<br>Foundations | 1 SWS | Übung (Ü) / 🖥     | Kühl, Schöffer,<br>Badewitz |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Studierende, die sich im Erstversuch für die Prüfung im Sommersemester 2019 anmelden möchten, wählen bitte die Prüfung "Foundations of Digital Services A" (siehe Anmerkung).

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (§4(2), 1 SPOs).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

#### Voraussetzungen

siehe "Modellierte Voraussetzungen"

Voraussetzung für WINF angepasst (Wiesner, 20.09.2019)

#### Anmerkungen

Diese Teilleistung ersetzt T-WIWI-105771 "Foundations of Digital Services A" ab Wintersemester 2019/2020.

Studierende, die sich im Erstversuch für die Prüfung im Sommersemester 2019 anmelden möchten, wählen bitte die Prüfung "Foundations of Digital Services A".



## 3.30 Teilleistung: Digitaltechnik [T-ETIT-101918]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102102 - Digitaltechnik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                   |       |                   |        |
|---------------------|---------|-----------------------------------|-------|-------------------|--------|
| WS 20/21            | 2311615 | Digitaltechnik                    | 3 SWS | Vorlesung (V) / 🗣 | Becker |
| WS 20/21            | 2311617 | Übungen zu 2311615 Digitaltechnik | 1 SWS | Übung (Ü) / 🖥     | Kempf  |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

#### Voraussetzungen

keine



## 3.31 Teilleistung: Economics and Behavior [T-WIWI-102892]

Verantwortung: Prof. Dr. Nora Szech

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101499 - Angewandte Mikroökonomik

M-WIWI-101501 - Wirtschaftstheorie

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                 |       |                   |                      |
|---------------------|---------|---------------------------------|-------|-------------------|----------------------|
| WS 20/21            | 2560137 | <b>Economics and Behavior</b>   | 2 SWS | Vorlesung (V) / 🖥 | Szech, Ehrlich, Zhao |
| WS 20/21            | 2560138 | Übung zu Economics and Behavior | 1 SWS | Übung (Ü) / 🖥     | Szech, Zhao, Huber   |

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Der Prüfungsmodus im WS20/21 kann derzeit Corona-bedingt noch nicht festgelegt werden. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Grundkenntnisse in Mikroökonomie und Statistik sind wünschenswert. Ein Hintergrund in Spieltheorie ist hilfreich, aber nicht zwingend notwendig.

#### Anmerkungen

Die Veranstaltung wird auf Englisch stattfinden.



## 3.32 Teilleistung: eFinance: Informationssysteme für den Wertpapierhandel [T-WIWI-110797]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101402 - eFinance

M-WIWI-101423 - Topics in Finance II

M-WIWI-101434 - eBusiness und Service Management

M-WIWI-101465 - Topics in Finance I

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich4,5Jedes Wintersemester1

| Lehrveranstaltungen |         |                                                                         |       |                   |                      |
|---------------------|---------|-------------------------------------------------------------------------|-------|-------------------|----------------------|
| WS 20/21            | 2540454 | eFinance: Informationssysteme<br>für den Wertpapierhandel               | 2 SWS | Vorlesung (V) / 🖥 | Weinhardt, Notheisen |
| WS 20/21            | 2540455 | Übungen zu eFinance:<br>Informationssysteme für den<br>Wertpapierhandel | 1 SWS | Übung (Ü) / 😘     | Jaquart              |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch laufende Ausarbeitungen und Präsentationen von Aufgaben und eine Klausur (60 Minuten) am Ende der Vorlesungszeit. Das Punkteschema für die Gesamtbewertung wird zu Beginn der Lehrveranstaltung bekannt gegeben.

#### Voraussetzungen

siehe "Modellierte Voraussetzungen"

#### **Anmerkungen**

Der Kurs "eFinance: Informationssysteme für den Wertpapierhandel" behandelt eingehend verschiedene Akteure und ihre Funktion in der Finanzindustrie und beleuchtet die wichtigsten Trends in modernen Finanzmärkten, wie z.B. Distributed Ledger Technology, Sustainable Finance und künstliche Intelligenz. Wertpapierpreise entwickeln sich durch eine große Anzahl bilateraler Geschäfte, die von Marktteilnehmern mit spezifischen, gut regulierten und institutionalisierten Rollen ausgeführt werden. Die Marktmikrostruktur ist das Teilgebiet der Finanzwirtschaft, das den Preisbildungsprozess untersucht. Dieser Prozess wird maßgeblich durch Regulierung beeinflusst und durch technologische Innovation vorangetrieben. Unter Verwendung von theoretischen ökonomischen Modellen werden in diesem Kurs Erkenntnisse über das strategische Handelsverhalten einzelner Marktteilnehmer überprüft, und die Modelle werden mit Marktdaten versehen. Analytische Werkzeuge und empirische Methoden der Marktmikrostruktur helfen, viele rätselhafte Phänomene auf Wertpapiermärkten zu verstehen.



## 3.33 Teilleistung: Einführung in Algebra und Zahlentheorie [T-MATH-102251]

**Verantwortung:** Prof. Dr. Frank Herrlich

Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101314 - Einführung in die Algebra und Zahlentheorie

| Teilleistungsart             | Leistungspunkte | Version |
|------------------------------|-----------------|---------|
| Prüfungsleistung schriftlich | 8               | 1       |

| Lehrverans | Lehrveranstaltungen |                                                              |       |               |          |
|------------|---------------------|--------------------------------------------------------------|-------|---------------|----------|
| SS 2021    | 0153100             | Einführung in Algebra und<br>Zahlentheorie                   | 4 SWS | Vorlesung (V) | Hartnick |
| SS 2021    | 0153200             | Übungen zu 0153100 (Einführung in Algebra und Zahlentheorie) | 2 SWS | Übung (Ü)     | Hartnick |
| SS 2021    | 0195310             | Tutorium zu Einführung in Algebra<br>und Zahlentheorie       | 2 SWS | Tutorium (Tu) | Hartnick |

#### Erfolgskontrolle(n)

Schriftliche Prüfung (120 min).

#### Voraussetzungen

keine



# 3.34 Teilleistung: Einführung in das Wissenschaftliche Rechnen [T-MATH-105837]

Verantwortung: Prof. Dr. Willy Dörfler

Prof. Dr. Marlis Hochbruck Prof. Dr Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102889 - Einführung in das Wissenschaftliche Rechnen

| Teilleistungsart          | Leistungspunkte | Version |
|---------------------------|-----------------|---------|
| Prüfungsleistung mündlich | 8               | 2       |

| Lehrveranstaltungen |         |                                                                    |       |               |         |
|---------------------|---------|--------------------------------------------------------------------|-------|---------------|---------|
| SS 2021             | 0165000 | Einführung in das<br>Wissenschaftliche Rechnen                     | 3 SWS | Vorlesung (V) | Dörfler |
| SS 2021             | 0166000 | Praktikum zu 0165000 (Einführung in das Wissenschaftliche Rechnen) |       | Praktikum (P) | Dörfler |

#### Voraussetzungen



## 3.35 Teilleistung: Einführung in die Energiewirtschaft [T-WIWI-102746]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101464 - Energiewirtschaft

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 5,5             | Jedes Sommersemester | 4       |

| Lehrveranstaltungen |         |                                                   |       |                   |                                         |
|---------------------|---------|---------------------------------------------------|-------|-------------------|-----------------------------------------|
| SS 2021             | 2581010 | Einführung in die<br>Energiewirtschaft            | 2 SWS | Vorlesung (V) / 🖥 | Fichtner                                |
| SS 2021             | 2581011 | Übungen zu Einführung in die<br>Energiewirtschaft | 2 SWS | Übung (Ü) / 🖥     | Lehmann, Sandmeier,<br>Ardone, Fichtner |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) nach § 4 Abs. 2 Nr. 1 SPO.

#### Voraussetzungen



## 3.36 Teilleistung: Einführung in die Finanzwissenschaft [T-WIWI-102877]

Verantwortung: Prof. Dr. Berthold Wigger

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101403 - Finanzwissenschaft

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                         |       |                 |        |
|---------------------|---------|-----------------------------------------|-------|-----------------|--------|
| WS 20/21            | 2560131 | Einführung in die<br>Finanzwissenschaft | 3 SWS | Vorlesung (V) / | Wigger |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.).

#### Voraussetzungen



## 3.37 Teilleistung: Einführung in die Spieltheorie [T-WIWI-102850]

Verantwortung: Prof. Dr. Clemens Puppe

Prof. Dr. Johannes Philipp Reiß

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101499 - Angewandte Mikroökonomik

M-WIWI-101501 - Wirtschaftstheorie

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 2       |

| Lehrveranstaltungen |         |                                              |       |                   |              |
|---------------------|---------|----------------------------------------------|-------|-------------------|--------------|
| SS 2021             | 2520525 | Einführung in die Spieltheorie               | 2 SWS | Vorlesung (V) / 🖥 | Reiß         |
| SS 2021             | 2520526 | Übungen zu Einführung in die<br>Spieltheorie | 1 SWS | Übung (Ü) / 🖥     | Peters, Reiß |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Es werden Grundkenntnisse in Mathematik und Statistik vorausgesetzt.



# 3.38 Teilleistung: Einführung in die Stochastik [T-MATH-102256]

Verantwortung: Prof. Dr. Nicole Bäuerle

Prof. Dr. Vicky Fasen-Hartmann Prof. Dr. Norbert Henze

Prof. Dr. Daniel Hug PD Dr. Bernhard Klar Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101321 - Einführung in die Stochastik

**Teilleistungsart Lei** Prüfungsleistung schriftlich

Leistungspunkte

Version 1

| Lehrveranstaltungen |         |                                                 |       |                   |     |
|---------------------|---------|-------------------------------------------------|-------|-------------------|-----|
| WS 20/21            | 0107100 | Einführung in die Stochastik                    | 3 SWS | Vorlesung (V) / 🗯 | Hug |
| WS 20/21            | 0107200 | Übungen zu 0107100 (Einf. in die<br>Stochastik) | 1 SWS | Übung (Ü) / 😘     | Hug |
| WS 20/21            | 0190710 | Tutorium Einführung in die<br>Stochastik        | 2 SWS | Tutorium (Tu)     | Hug |

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

#### Voraussetzungen

keine



# 3.39 Teilleistung: Einführung in die Stochastische Optimierung [T-WIWI-106546]

Verantwortung: Prof. Dr. Steffen Rebennack

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

M-WIWI-103278 - Optimierung unter Unsicherheit

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrverans | Lehrveranstaltungen |                                                              |       |                 |                   |
|------------|---------------------|--------------------------------------------------------------|-------|-----------------|-------------------|
| SS 2021    | 2550470             | Einführung in die Stochastische<br>Optimierung               | 2 SWS | Vorlesung (V) / | Rebennack         |
| SS 2021    | 2550471             | Übung zur Einführung in die<br>Stochastische Optimierung     | 1 SWS | Übung (Ü) / 🖥   | Rebennack, Sinske |
| SS 2021    | 2550474             | Rechnerübung zur Einführung in die Stochastische Optimierung | 2 SWS | Übung (Ü) / 🖥   | Rebennack, Sinske |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO). Die Prüfung wird jedes Semester angeboten.

#### Voraussetzungen



# 3.40 Teilleistung: Einführung in die Wirtschaftspolitik [T-WIWI-103213]

Verantwortung: Prof. Dr. Ingrid Ott

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101668 - Wirtschaftspolitik I

| Teilleistungsart             | Leistungspunkte | Turnus            | Version |
|------------------------------|-----------------|-------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | siehe Anmerkungen | 1       |

| Lehrveranstaltungen |         |                                                     |       |               |                  |
|---------------------|---------|-----------------------------------------------------|-------|---------------|------------------|
| SS 2021             | 2560280 | Einführung in die<br>Wirtschaftspolitik             | 2 SWS | Vorlesung (V) | Ott              |
| SS 2021             | 2560281 | Übungen zur Einführung in die<br>Wirtschaftspolitik | 1 SWS | Übung (Ü)     | Ott, Scheu, Bälz |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Es werden grundlegende mikro- und makroökonomische Kenntnisse vorausgesetzt, wie sie insbesondere in den Veranstaltungen Volkswirtschaftslehre I [2610012] und Volkswirtschaftslehre II [2600014] vermittelt werden.

#### **Anmerkungen**

Bitte beachten Sie, dass die Vorlesung im Sommersemester 2021 nicht gehalten wird. Die Prüfung wird hingegen regulär angeboten.

#### Beschreibung:

Theorie der allgemeinen Wirtschaftspolitik und Diskussion aktueller wirtschaftspolitischer Themen:

- · Ziele der Wirtschaftspolitik,
- · Instrumente und Institutionen der Wirtschaftspolitik,
- · Dreiklang regionaler, nationaler und europäischer Wirtschaftspolitik,
- spezielle Felder der Wirtschaftspolitik, insbesondere Wachstum, Beschäftigung, Ausstattung mit öffentlicher Infrastruktur und Klimapolitik.

#### Lernziele:

Studierende lernen:

- Grundlegende Konzepte mikro- und makroökonomischer Theorien auf wirtschaftspolitische Fragestellungen anzuwenden
- Argumente zu entwickeln, wie man aus wohlfahrtsökonomischer Perspektive Staatseingriffe in das Marktgeschehen legitimieren kann
- Theoriegestützte Politikempfehlungen abzuleiten.

#### Lehrinhalt:

- · Markteingriffe: mikroökonomische Perspektive
- Markteingriffe: makroökonomische Perspektive
- Institutionenökonomische Aspekte
- · Wirtschaftspolitik und Wohlfahrtsökonomik
- · Träger der Wirtschaftspolitik: Politökonomische Aspekte

#### **Arbeitsaufwand:**

- · Gesamtaufwand bei 4.5 LP: ca. 135 Stunden
- Präsenzzeit: ca. 30 Stunden
- · Selbststudium: ca. 105 Stunden

#### Medien:

Siehe Veranstaltungsankündigung

#### Literaturhinweise:

Siehe Veranstaltungsankündigung



### 3.41 Teilleistung: Einführung in Python [T-MATH-106119]

Verantwortung: Dr. Daniel Weiß

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103998 - Schlüsselqualifikationen

| Teilleistungsart | Leistungspunkte | Turnus       | Version |
|------------------|-----------------|--------------|---------|
| Studienleistung  | 3               | Unregelmäßig | 1       |

| Lehrveranstaltungen |         |                      |       |                   |      |
|---------------------|---------|----------------------|-------|-------------------|------|
| SS 2021             | 0169000 | Einführung in Python | 1 SWS | Vorlesung (V) / 🖥 | Weiß |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Unbenotetes Abschlussprojekt in Form einer umfangreicheren Programmieraufgabe (selbständig in Kleingruppen bis zu drei Studierende)

#### Voraussetzungen

Keine

#### **Empfehlungen**

Grundkenntnisse der Programmierung

#### Anmerkungen

Gesamter Arbeitsaufwand 90 Stunden

Präsenzzeit: 30 Stunden

- Lehrveranstaltung und Bearbeitung von Übungsaufgaben

Selbststudium: 60 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung des Abschlussprojekts

Absolventinnen und Absolventen können

- 1. mit grundlegenden, Python spezifischen Techniken der Programmierung umgehen.
- 2. Python-Programme in Hinblick auf Effizienz implementieren und optimieren.
- 3. naturwissenschaftliche und technische Anwendungen mit graphischer Oberfläche realisieren.

#### Programmieren mit Python:

- 1. Laufzeitmodell (Speicherverwaltung)
- 2. Elementare Datentypen
- 3. Funktionen, Namensräume
- 4. Objektorientierung
- 5. Modularisierung
- 6. parallele Programmierung
- 7. Fehlerbehandlung
- 8. Graphische Oberflächen
- 9. Wissenschaftliches Rechnen mit Python
- 10. Iterator- und Generatorkonzept

In den Praktika besteht Anwesenheitspflicht.



# 3.42 Teilleistung: Einführung in Rechnernetze [T-INFO-102015]

**Verantwortung:** Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101178 - Kommunikation und Datenhaltung

M-INFO-103455 - Einführung in Rechnernetze

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |       |                                        |       |                   |                                        |
|---------------------|-------|----------------------------------------|-------|-------------------|----------------------------------------|
| SS 2021             | 24519 | Einführung in Rechnernetze             | 2 SWS | Vorlesung (V) / 🖥 | Friebe, Jung,<br>Schneider, Zitterbart |
| SS 2021             | 24521 | Übung zu Einführung in<br>Rechnernetze | 1 SWS | Übung (Ü) / 🖥     | Friebe, Jung,<br>Schneider, Zitterbart |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Kenntnisse aus den Vorlesungen Betriebssysteme und Softwaretechnik I werden empfohlen.



# 3.43 Teilleistung: Elektromagnetische Felder [T-ETIT-109078]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104428 - Elektromagnetische Felder

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                  |       |                  |             |
|---------------------|---------|--------------------------------------------------|-------|------------------|-------------|
| SS 2021             | 2306004 | Elektromagnetische Felder                        | 2 SWS | Vorlesung (V)    | Doppelbauer |
| SS 2021             | 2306005 | Übung zu 2306004<br>Elektromagnetische Felder    | 2 SWS | Übung (Ü)        | Menger      |
| SS 2021             | 2306006 | Tutorium zu 2306004<br>Elektromagnetische Felder | SWS   | Zusatzübung (ZÜ) | Doppelbauer |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

#### Voraussetzungen

keine



# 3.44 Teilleistung: Elektromagnetische Wellen [T-ETIT-109245]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

**Bestandteil von:** M-ETIT-104515 - Elektromagnetische Wellen

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                               |       |                   |              |
|---------------------|---------|-----------------------------------------------|-------|-------------------|--------------|
| WS 20/21            | 2309475 | Elektromagnetische Wellen                     | 2 SWS | Vorlesung (V) / 🗯 | Randel, Koos |
| WS 20/21            | 2309477 | Übung zu 2309475<br>Elektromagnetische Wellen | 2 SWS | Übung (Ü) / 🖥     | Randel, Koos |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

#### Voraussetzungen

keine

#### **Empfehlungen**

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden vorausgesetzt.



# 3.45 Teilleistung: Elektronische Schaltungen [T-ETIT-101919]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102164 - Elektronische Schaltungen

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                  |       |                  |        |
|---------------------|---------|--------------------------------------------------|-------|------------------|--------|
| SS 2021             | 2312655 | Elektronische Schaltungen                        | 3 SWS | Vorlesung (V)    | Ulusoy |
| SS 2021             | 2312657 | Übungen zu 2312655 Elektronische<br>Schaltungen  | 1 SWS | Übung (Ü)        | Ulusoy |
| SS 2021             | 2312658 | Tutorien zu 2312655 Elektronische<br>Schaltungen | SWS   | Zusatzübung (ZÜ) | Ulusoy |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle findet im Rahmen einer schriftlichen Gesamtprüfung von 2 Stunden statt.

Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).

#### Voraussetzungen

Keine

#### **Empfehlungen**

Der erfolgreiche Abschluss von LV "Lineare elektrische Netze" ist erforderlich, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.

#### Anmerkungen

Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).



# 3.46 Teilleistung: Elementare Geometrie - Prüfung [T-MATH-103464]

**Verantwortung:** Dr. Sebastian Grensing

Prof. Dr. Tobias Hartnick Prof. Dr. Frank Herrlich Dr. Stefan Kühnlein Prof. Dr. Enrico Leuzinger Dr. Gabriele Link

Prof. Dr Roman Sauer

Prof. Dr. Wilderich Tuschmann

**Einrichtung:** KIT-Fakultät für Mathematik

**Bestandteil von:** M-MATH-103152 - Elementare Geometrie

| Teilleistungsart             | Leistungspunkte | Turnus         | Version |
|------------------------------|-----------------|----------------|---------|
| Prüfungsleistung schriftlich | 8               | Jedes Semester | 1       |

| Lehrveranstaltungen |         |                                              |       |                   |                 |
|---------------------|---------|----------------------------------------------|-------|-------------------|-----------------|
| WS 20/21            | 0103100 | Übungen zu 0103000 (Elementare<br>Geometrie) | 2 SWS | Übung (Ü) / 🗯     | Leuzinger, Grau |
| WS 20/21            | 0190300 | Tutorium Elementare Geometrie                | 2 SWS | Tutorium (Tu) / 🗯 | Leuzinger       |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Voraussetzungen



# 3.47 Teilleistung: Energiepolitik [T-WIWI-102607]

Verantwortung: Prof. Dr. Martin Wietschel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101464 - Energiewirtschaft

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 3,5             | Jedes Sommersemester | 3       |

| Lehrveranstaltungen |         |                |       |                 |           |
|---------------------|---------|----------------|-------|-----------------|-----------|
| SS 2021             | 2581959 | Energiepolitik | 2 SWS | Vorlesung (V) / | Wietschel |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach §4(2), 1 SPO.

#### Voraussetzungen



## 3.48 Teilleistung: Entscheidungstheorie [T-WIWI-102792]

Verantwortung: Prof. Dr. Karl-Martin Ehrhart

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101499 - Angewandte Mikroökonomik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                 |       |                   |         |
|---------------------|---------|---------------------------------|-------|-------------------|---------|
| SS 2021             | 2520365 | Entscheidungstheorie            | 2 SWS | Vorlesung (V) / 🖥 | Ehrhart |
| SS 2021             | 2520366 | Übungen zu Entscheidungstheorie | 1 SWS | Übung (Ü) / 🖥     | Ehrhart |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach §4(2), 1 SPO) im Umfang von 60 min. Bei geringer Teilnehmerzahl kann auch eine mündliche Prüfung (nach §4 (2), 2 SPO) angeboten werden.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Es werden Vorkenntnisse im Bereich Statistik und Mathematik erwartet.



### 3.49 Teilleistung: Ergänzung Angewandte Informatik [T-WIWI-110711]

Verantwortung: Professorenschaft des Fachbereichs Informatik
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101399 - Vertiefung Informatik

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich4,5Jedes Semester1

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) oder ggf. mündlichen Prüfung (30 min.) nach §4(2) der Studien- und Prüfungsordnung.

Abhängig von der jeweiligen Veranstaltung, die mit dieser Platzhalter-Teilleistung verknüpft ist, ist es möglich, dass durch bestimmte Leistungen ein Notenbonus erzielt werden kann.

#### Voraussetzungen

Keine

#### Anmerkungen

Die Platzhalter-Teilleistung "Ergänzung Angewandte Informatik" ist mit Vorlesungen verknüpft, die nur temporär angeboten werden.

Die Teilleistung kann aber auch für die Anrechnung von externen Lehrveranstaltungen genutzt werden, deren Inhalt in den Bereich der Angewandten Informatik fällt, aber nicht einer anderen Lehrveranstaltung aus diesem Themenbereich zugeordnet werden kann. Eine Anrechnung ist jedoch nur dann möglich, wenn es sich um Leistungen aus einem vorangegangenen Studiengang oder aus einem Zeitstudium im Ausland handelt.



# 3.50 Teilleistung: Extremale Graphentheorie [T-MATH-105931]

**Verantwortung:** Prof. Dr. Maria Aksenovich **Einrichtung:** KIT-Fakultät für Mathematik

**Bestandteil von:** M-MATH-102957 - Extremale Graphentheorie

| Teilleistungsart          | Leistungspunkte | Turnus         | Version |
|---------------------------|-----------------|----------------|---------|
| Prüfungsleistung mündlich | 8               | Jedes Semester | 1       |

| Lehrveranstaltungen |         |                                                 |       |               |                      |
|---------------------|---------|-------------------------------------------------|-------|---------------|----------------------|
| SS 2021             | 0150400 | Extremal Graph Theory                           | 4 SWS | Vorlesung (V) | Yuditsky, Aksenovich |
| SS 2021             | 0150410 | Tutorial for 0150400 (Extremal<br>Graph Theory) | 2 SWS | Übung (Ü)     | Aksenovich, Yuditsky |

#### Voraussetzungen



## 3.51 Teilleistung: Financial Accounting for Global Firms [T-WIWI-107505]

Verantwortung: Dr. Torsten Luedecke

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101423 - Topics in Finance II

M-WIWI-101465 - Topics in Finance I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                                   |       |                   |          |
|---------------------|---------|---------------------------------------------------|-------|-------------------|----------|
| WS 20/21            | 2530242 | Financial Accounting for Global Firms             | 2 SWS | Vorlesung (V) / 🖥 | Luedecke |
| WS 20/21            | 2530243 | Übung zu Financial Accounting for<br>Global Firms | 1 SWS | Übung (Ü) / 🖥     | Luedecke |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Die Note ist das Ergebnis der schriftlichen Prüfung.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Grundkenntnisse in Finanzwirtschaft und Rechnungswesen.

#### **Anmerkungen**

Die Teilleistung wird zum Wintersemester 2017/18 neu angeboten.



## 3.52 Teilleistung: Financial Management [T-WIWI-102605]

Verantwortung: Prof. Dr. Martin Ruckes

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101435 - Essentials of Finance

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                               |       |                   |                  |
|---------------------|---------|-------------------------------|-------|-------------------|------------------|
| SS 2021             | 2530216 | Financial Management          | 2 SWS | Vorlesung (V) / 🖥 | Ruckes           |
| SS 2021             | 2530217 | Übung zu Financial Management | 1 SWS | Übung (Ü) / 🖥     | Ruckes, Wiegratz |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Kenntnisse aus der Veranstaltung Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen [25026/25027] sind sehr hilfreich.



## 3.53 Teilleistung: Finanzintermediation [T-WIWI-102623]

Verantwortung: Prof. Dr. Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101423 - Topics in Finance II

M-WIWI-101465 - Topics in Finance I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                               |       |                   |                     |
|---------------------|---------|-------------------------------|-------|-------------------|---------------------|
| WS 20/21            | 2530232 | Finanzintermediation          | 2 SWS | Vorlesung (V) / 🖥 | Ruckes              |
| WS 20/21            | 2530233 | Übung zu Finanzintermediation | 1 SWS | Übung (Ü) / 🖥     | Ruckes, Hoang, Benz |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### **Empfehlungen**



# 3.54 Teilleistung: Finanzmathematik in diskreter Zeit [T-MATH-105839]

Verantwortung: Prof. Dr. Nicole Bäuerle

Prof. Dr. Vicky Fasen-Hartmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102919 - Finanzmathematik in diskreter Zeit

| Teilleistungsart             | Leistungspunkte | Version |
|------------------------------|-----------------|---------|
| Prüfungsleistung schriftlich | 8               | 1       |

| Lehrveranstaltungen |         |                                       |       |                   |         |
|---------------------|---------|---------------------------------------|-------|-------------------|---------|
| WS 20/21            | 0108400 | Finanzmathematik in diskreter<br>Zeit | 4 SWS | Vorlesung (V) / 🕃 | Bäuerle |
| WS 20/21            | 0108500 | Übungen zu 0108400                    | 2 SWS | Übung (Ü) / 🖥     | Bäuerle |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von ca. 120 Minuten.

#### Voraussetzungen

keine



# 3.55 Teilleistung: Foundations of Interactive Systems [T-WIWI-109816]

Verantwortung: Prof. Dr. Alexander Mädche

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

**Bestandteil von:** M-WIWI-101434 - eBusiness und Service Management

M-WIWI-102752 - Fundamentals of Digital Service Systems

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung anderer Art | 4,5             | Jedes Sommersemester | 2       |

| Lehrveranstaltungen |         |                                       |       |                   |        |
|---------------------|---------|---------------------------------------|-------|-------------------|--------|
| SS 2021             | 2540560 | Foundations of Interactive<br>Systems | 3 SWS | Vorlesung (V) / 🖥 | Mädche |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer einstündigen Klausur und der Durchführung eines Capstone Projektes.

Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

#### Voraussetzungen

Keine

#### **Empfehlungen**



# 3.56 Teilleistung: Funktionalanalysis [T-MATH-102255]

**Verantwortung:** Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger Prof. Dr. Roland Schnaubelt

**Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101320 - Funktionalanalysis

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich8Jedes Wintersemester2

| Lehrveranstaltungen |         |                                            |       |                   |                              |
|---------------------|---------|--------------------------------------------|-------|-------------------|------------------------------|
| WS 20/21            | 0104800 | Functional Analysis                        | 4 SWS | Vorlesung (V) / 🗯 | Hundertmark,<br>Anapolitanos |
| WS 20/21            | 0104810 | Tutorial for 0104800 (Functional Analysis) | 2 SWS | Übung (Ü) / 🗯     | Hundertmark                  |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

#### Voraussetzungen

keine



# 3.57 Teilleistung: Geometrische Analysis [T-MATH-105892]

**Verantwortung:** Prof. Dr. Tobias Lamm **Einrichtung:** KIT-Fakultät für Mathematik

**Bestandteil von:** M-MATH-102923 - Geometrische Analysis

| Teilleistungsart          | Leistungspunkte | Turnus       | Version |
|---------------------------|-----------------|--------------|---------|
| Prüfungsleistung mündlich | 8               | Unregelmäßig | 1       |

| Lehrveranstaltungen |         |                       |       |               |      |
|---------------------|---------|-----------------------|-------|---------------|------|
| SS 2021             | 0154600 | Geometrische Analysis | 4 SWS | Vorlesung (V) | Lamm |
| SS 2021             | 0154610 | Übungen zu 0154600    | 2 SWS | Übung (Ü)     | Lamm |

#### Erfolgskontrolle(n)

Mündliche Prüfung im Umfang von ca. 30 Minuten.

#### Voraussetzungen

keine



# 3.58 Teilleistung: Geometrische Gruppentheorie [T-MATH-105842]

**Verantwortung:** Prof. Dr. Frank Herrlich

Prof. Dr. Enrico Leuzinger Dr. Gabriele Link

Prof. Dr. Roman Sauer Prof. Dr. Wilderich Tuschmann

KIT-Fakultät für Mathematik

**Bestandteil von:** M-MATH-102867 - Geometrische Gruppentheorie

**Teilleistungsart**Prüfungsleistung schriftlich

Leistungspunkte
8

**Turnus** Unregelmäßig Version 1

| Lehrveranstaltungen |         |                                                  |       |               |                |
|---------------------|---------|--------------------------------------------------|-------|---------------|----------------|
| SS 2021             | 0153300 | <b>Geometric Group Theory</b>                    | 4 SWS | Vorlesung (V) | Llosa Isenrich |
| SS 2021             |         | Tutorial for 0153300 (Geometric<br>Group Theory) | 2 SWS | Übung (Ü)     | Llosa Isenrich |

#### Voraussetzungen

**Einrichtung:** 

Version

**Turnus** 



# 3.59 Teilleistung: Geschäftspolitik der Kreditinstitute [T-WIWI-102626]

Verantwortung: Prof. Dr. Wolfgang Müller

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101423 - Topics in Finance II M-WIWI-101465 - Topics in Finance I

Teilleistungsart Leistungspunkte

|        | Prulung   | steistung schriftlich | 3 | jedes | wintersemester  |       |   |
|--------|-----------|-----------------------|---|-------|-----------------|-------|---|
|        |           |                       |   |       |                 |       |   |
| erans/ | taltungen |                       |   |       |                 |       |   |
| 0/21   | 2530299   | Geschäftspolitik der  | r | 2 SWS | Vorlesung (V) / | Mülle | r |

| Lehrveranstaltungen |         |                                         |       |                   |        |
|---------------------|---------|-----------------------------------------|-------|-------------------|--------|
| WS 20/21            | 2530299 | Geschäftspolitik der<br>Kreditinstitute | 2 SWS | Vorlesung (V) / 🗣 | Müller |
| SS 2021             | 2530299 | Geschäftspolitik der<br>Kreditinstitute | 2 SWS | Vorlesung (V) / 🗣 | Müller |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO)
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### **Empfehlungen**



### 3.60 Teilleistung: Globale Optimierung I [T-WIWI-102726]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

M-WIWI-101414 - Methodische Grundlagen des OR

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                       |       |                   |       |
|---------------------|---------|-----------------------|-------|-------------------|-------|
| SS 2021             | 2550134 | Globale Optimierung I | 2 SWS | Vorlesung (V) / 🖥 | Stein |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Bitte beachten Sie: aufgrund des Forschungssemesters von Prof. Dr. Stein wird die Vorlesung im Sommersemester 2020 nicht angeboten.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs).

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung II" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

#### Voraussetzungen

Keine

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-103638 - Globale Optimierung I und II darf nicht begonnen worden sein.

#### **Empfehlungen**

Keine

#### Anmerkungen

Teil I und II der Vorlesung werden nacheinander im **selben** Semester gelesen.



### 3.61 Teilleistung: Globale Optimierung I und II [T-WIWI-103638]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 9               | Jedes Sommersemester | 1       |

| Lehrverans | Lehrveranstaltungen |                                          |       |                   |                             |  |
|------------|---------------------|------------------------------------------|-------|-------------------|-----------------------------|--|
| SS 2021    | 2550134             | Globale Optimierung I                    | 2 SWS | Vorlesung (V) / 🖥 | Stein                       |  |
| SS 2021    | 2550135             | Übung zu Globale Optimierung I<br>und II | 2 SWS | Übung (Ü) / 🖥     | Stein, Neumann,<br>Schwarze |  |
| SS 2021    | 2550136             | Globale Optimierung II                   | 2 SWS | Vorlesung (V) / 🖥 | Stein                       |  |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Bitte beachten Sie: aufgrund des Forschungssemesters von Prof. Dr. Stein werden die beiden Vorlesungen im Sommersemester 2020 nicht angeboten.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPOs).

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

#### Voraussetzungen

Keine

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-WIWI-102726 Globale Optimierung I darf nicht begonnen worden sein.
- 2. Die Teilleistung T-WIWI-102727 Globale Optimierung II darf nicht begonnen worden sein.

#### **Empfehlungen**

Keine

#### **Anmerkungen**

Teil I und II der Vorlesung werden nacheinander im **selben** Semester gelesen.



### 3.62 Teilleistung: Globale Optimierung II [T-WIWI-102727]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 2       |

| Lehrveranstaltungen |         |                        |       |                   |       |
|---------------------|---------|------------------------|-------|-------------------|-------|
| SS 2021             | 2550136 | Globale Optimierung II | 2 SWS | Vorlesung (V) / 🖥 | Stein |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Bitte beachten Sie: aufgrund des Forschungssemesters von Prof. Dr. Stein wird die Vorlesung im Sommersemester 2020 nicht angeboten.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs).

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung I" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

#### Voraussetzungen

Keine

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-103638 - Globale Optimierung I und II darf nicht begonnen worden sein.

#### Anmerkungen

Teil I und II der Vorlesung werden nacheinander im **selben** Semester gelesen.



# 3.63 Teilleistung: Graphentheorie [T-MATH-102273]

Verantwortung: Prof. Dr. Maria Aksenovich
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101336 - Graphentheorie

| Teilleistungsart             | Leistungspunkte | Turnus       | Version |
|------------------------------|-----------------|--------------|---------|
| Prüfungsleistung schriftlich | 8               | Unregelmäßig | 1       |

| Lehrveranstaltungen |         |                                        |       |               |            |
|---------------------|---------|----------------------------------------|-------|---------------|------------|
| WS 20/21            | 0104500 | Graph Theory                           | 4 SWS | Vorlesung (V) | Aksenovich |
| WS 20/21            | 0104510 | Tutorial for 0104500 (Graph<br>Theory) | 2 SWS | Übung (Ü)     | Aksenovich |

#### Voraussetzungen



# 3.64 Teilleistung: Grundbegriffe der Informatik [T-INFO-101964]

Verantwortung: Dr. Sebastian Stüker

**Thomas Worsch** 

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-103456 - Grundbegriffe der Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |       |                              |       |                   |        |
|---------------------|-------|------------------------------|-------|-------------------|--------|
| WS 20/21            | 24001 | Grundbegriffe der Informatik | 3 SWS | Vorlesung (V) / 🗯 | Worsch |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von i.d.R. zwei Stunden.

#### Anmerkungen

Achtung: Diese Teilleistung ist für den Bachelor Studiengang der Informatik, Informatik Lehramt und Informationswirtschaft Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO.Die Prüfung ist bis zum Ende des 2. Fachsemesters anzutreten und bis zum Ende des 3. Fachsemesters zu bestehen.



# 3.65 Teilleistung: Grundlagen der Mess- und Regelungstechnik [T-MACH-104745]

**Verantwortung:** Prof. Dr.-Ing. Christoph Stiller **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-102564 - Mess- und Regelungstechnik

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich7Jedes Wintersemester3

| Lehrveranstaltungen |         |                                                         |       |                   |                         |
|---------------------|---------|---------------------------------------------------------|-------|-------------------|-------------------------|
| WS 20/21            | 2137301 | Grundlagen der Mess- und<br>Regelungstechnik            | 3 SWS | Vorlesung (V) / 😘 | Stiller                 |
| WS 20/21            | 2137302 | Übungen zu Grundlagen der Mess-<br>und Regelungstechnik | 1 SWS | Übung (Ü) / 🗯     | Stiller, Fischer, Pauls |
| WS 20/21            | 3137020 | Measurement and Control<br>Systems                      | 3 SWS | Vorlesung (V) / 🛱 | Stiller                 |
| WS 20/21            | 3137021 | Measurement and Control<br>Systems (Tutorial)           | 1 SWS | Übung (Ü) / 🗯     | Stiller, Fischer, Pauls |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Schriftliche Prüfung

2,5 Stunden

#### Voraussetzungen

keine



# 3.66 Teilleistung: Grundlagen der Produktionswirtschaft [T-WIWI-102606]

Verantwortung: Prof. Dr. Frank Schultmann

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101437 - Industrielle Produktion I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 5,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                 |       |                 |                   |
|---------------------|---------|-------------------------------------------------|-------|-----------------|-------------------|
| SS 2021             |         | Grundlagen der<br>Produktionswirtschaft         | 2 SWS | Vorlesung (V) / | Schultmann        |
| SS 2021             | 2581951 | Übungen Grundlagen der<br>Produktionswirtschaft | 2 SWS | Übung (Ü) / 🖥   | Stallkamp, Steins |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen



### 3.67 Teilleistung: Grundlagen der Unternehmensbesteuerung [T-WIWI-108711]

Verantwortung: Gerd Gutekunst

Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101403 - Finanzwissenschaft

M-WIWI-101423 - Topics in Finance II M-WIWI-101465 - Topics in Finance I

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich4,5Jedes Wintersemester2

| Lehrveranstaltungen |         |                                           |       |                   |                   |
|---------------------|---------|-------------------------------------------|-------|-------------------|-------------------|
| WS 20/21            | 2560134 | Grundlagen der<br>Unternehmensbesteuerung | 3 SWS | Vorlesung (V) / 🖥 | Wigger, Gutekunst |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (90 min.) Prüfung (nach §4(2), 1 SPO). Die Note ergibt sich aus dem Ergebnis der schriftlichen Prüfung. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Es werden Kenntnisse über die Erhebung staatlicher Einnahmen vorausgesetzt. Daher empfiehlt es sich, die Lehrveranstaltungen"Öffentliche Einnahmen" im Vorfeld zu besuchen.



# 3.68 Teilleistung: Grundlagen für mobile Business [T-WIWI-104679]

Verantwortung: Prof. Dr. Andreas Oberweis

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101399 - Vertiefung Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 4       |

| Lehrveranstaltungen |         |                                              |       |               |                   |
|---------------------|---------|----------------------------------------------|-------|---------------|-------------------|
| SS 2021             | 2511226 | Grundlagen für mobile Business               | 2 SWS | Vorlesung (V) | Schiefer, Frister |
| SS 2021             | 2511227 | Übungen zu Grundlagen für<br>mobile Business | 1 SWS | Übung (Ü)     | Schiefer, Frister |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min) oder ggf. mündlichen Prüfung nach §4(2) der Prüfungsordnung.

#### Voraussetzungen

Keine

#### **Anmerkungen**

Vorlesung und Übung werden integriert durchgeführt.



# 3.69 Teilleistung: Hyperbolische Geometrie - Prüfung [T-MATH-106881]

Verantwortung: Prof. Dr. Enrico Leuzinger

Prof. Dr Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103464 - Hyperbolische Geometrie

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung mündlich8Unregelmäßig1

| Lehrveranstaltungen |         |                                                 |       |               |           |
|---------------------|---------|-------------------------------------------------|-------|---------------|-----------|
| SS 2021             | 0156200 | Hyperbolische Geometrie                         | 4 SWS | Vorlesung (V) | Leuzinger |
| SS 2021             |         | Übungen zu 0156200<br>(Hyperbolische Geometrie) | 2 SWS | Übung (Ü)     | Leuzinger |

#### Voraussetzungen



## 3.70 Teilleistung: Industrieökonomie [T-WIWI-102844]

Verantwortung: Prof. Dr. Johannes Philipp Reiß

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101499 - Angewandte Mikroökonomik

M-WIWI-101501 - Wirtschaftstheorie

| Teilleistungsart             | Leistungspunkte | Turnus       | Version |
|------------------------------|-----------------|--------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Unregelmäßig | 1       |

| Lehrveranstaltungen |         |                            |       |               |              |
|---------------------|---------|----------------------------|-------|---------------|--------------|
| SS 2021             | 2560238 | Industrieökonomie          | 2 SWS | Vorlesung (V) | Reiß, Peters |
| SS 2021             | 2560239 | Übung zu Industrieökonomie | 2 SWS | Übung (Ü)     | Peters, Reiß |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Die Note ist die Note der schriftlichen Prüfung.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Der vorherige Besuch des Moduls Volkswirtschaftslehre [WW1VWL] wird vorausgesetzt.

#### **Anmerkungen**

Diese Lehrveranstaltung wird im Sommersemester 2018 voraussichtlich nicht angeboten werden.



### 3.71 Teilleistung: Informationssicherheit [T-WIWI-108387]

Verantwortung: Prof. Dr. Melanie Volkamer

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101399 - Vertiefung Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 5               | Jedes Sommersemester | 3       |

| Lehrveranstaltungen |         |                                                                 |       |                   |                   |
|---------------------|---------|-----------------------------------------------------------------|-------|-------------------|-------------------|
| SS 2021             | 2511550 | Angewandte Informatik -<br>Informationssicherheit               | 2 SWS | Vorlesung (V) / 🖥 | Ghiglieri , Mayer |
| SS 2021             | 2511551 | Übungen zu Angewandte<br>Informatik -<br>Informationssicherheit | 1 SWS | Übung (Ü) / 🖥     | Berens            |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) oder in Form einer mündlichen Prüfung (30min.) (nach §4(2), 2 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Durch die erfolgreiche Bearbeitung von Übungsaufgaben kann ein Notenbonus erworben werden.

Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

#### Voraussetzungen



# 3.72 Teilleistung: Integralgleichungen [T-MATH-105834]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102874 - Integralgleichungen

| Teilleistungsart          | Leistungspunkte | Turnus       | Version |
|---------------------------|-----------------|--------------|---------|
| Prüfungsleistung mündlich | 8               | Unregelmäßig | 1       |

| Lehrveranstaltungen |         |                                                                        |       |               |       |  |
|---------------------|---------|------------------------------------------------------------------------|-------|---------------|-------|--|
| SS 2021             | 0160510 | Übungen zu 0160500 (Numerische<br>Methoden für<br>Integralgleichungen) | 2 SWS | Übung (Ü) / 🖥 | Arens |  |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

#### Voraussetzungen



## 3.73 Teilleistung: International Marketing [T-WIWI-102807]

Verantwortung: Dr. Sven Feurer

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101424 - Grundlagen des Marketing

| Teilleistungsart             | Leistungspunkte | Turnus            | Version |
|------------------------------|-----------------|-------------------|---------|
| Prüfungsleistung schriftlich | 1,5             | siehe Anmerkungen | 1       |

| Lehrveranstaltungen |         |                         |       |                 |        |
|---------------------|---------|-------------------------|-------|-----------------|--------|
| WS 20/21            | 2572155 | International Marketing | 1 SWS | Vorlesung (V) / | Feurer |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

### Erfolgskontrolle(n)

Die Prüfung wird für Erstschreiber letztmals im Sommersemester 2021 angeboten. Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

### Voraussetzungen

Keine

### **Anmerkungen**

Die Lehrveranstaltung "International Marketing" wird letztmalig im Wintersemester 2020/21 angeboten. Wir strukturieren das Veranstaltungsangebot im Modul "Grundlagen des Marketing" gerade um. Über die neuen Angebote ab dem Wintersemester 2021/22 werden wir Sie baldmöglichst informieren.

Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).



## 3.74 Teilleistung: Internationale Finanzierung [T-WIWI-102646]

**Verantwortung:** Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101402 - eFinance

M-WIWI-101423 - Topics in Finance II M-WIWI-101465 - Topics in Finance I

| Teilleistungsart             | Leistungspunkte | Turnus            | Version |
|------------------------------|-----------------|-------------------|---------|
| Prüfungsleistung schriftlich | 3               | siehe Anmerkungen | 1       |

| Lehrverans | Lehrveranstaltungen |                             |       |                   |                           |
|------------|---------------------|-----------------------------|-------|-------------------|---------------------------|
| WS 20/21   | 2530570             | Internationale Finanzierung | 2 SWS | Vorlesung (V) / 🗣 | Walter, Uhrig-<br>Homburg |
| SS 2021    | 2530570             | Internationale Finanzierung | 2 SWS | Vorlesung (V) / 🖥 | Walter, Uhrig-<br>Homburg |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

## Voraussetzungen

Keine

## **Empfehlungen**

Keine

### **Anmerkungen**

Die Veranstaltung wird nicht wie ursprünglich geplant im Sommersemester 2020 angeboten, sondern erst im Wintersemester 2020/2021.

Die Veranstaltung wird 14-tägig oder als Blockveranstaltung angeboten.



## 3.75 Teilleistung: Inverse Probleme [T-MATH-105835]

Verantwortung: PD Dr. Tilo Arens

Prof. Dr. Roland Griesmaier PD Dr. Frank Hettlich Prof. Dr. Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102890 - Inverse Probleme

| Teilleistungsart          | Leistungspunkte | Version |
|---------------------------|-----------------|---------|
| Prüfungsleistung mündlich | 8               | 1       |

| Lehrveranstaltungen |         |                                          |       |                   |          |
|---------------------|---------|------------------------------------------|-------|-------------------|----------|
| WS 20/21            | 0105100 | Inverse Probleme                         | 4 SWS | Vorlesung (V) / 🖥 | Hettlich |
| WS 20/21            | 0105110 | Übungen zu 0105100 (Inverse<br>Probleme) | 2 SWS | Übung (Ü) / 🖥     | Hettlich |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

## Voraussetzungen

Keine



## 3.76 Teilleistung: Investments [T-WIWI-102604]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101435 - Essentials of Finance

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrveranst | Lehrveranstaltungen |                      |       |                   |                            |
|-------------|---------------------|----------------------|-------|-------------------|----------------------------|
| SS 2021     | 2530575             | Investments          | 2 SWS | Vorlesung (V) / 🖥 | Uhrig-Homburg              |
| SS 2021     | 2530576             | Übung zu Investments | 1 SWS | Übung (Ü) / 🖥     | Uhrig-Homburg,<br>Eberbach |

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

### Voraussetzungen

Keine

### **Empfehlungen**

Kenntnisse aus der Veranstaltung Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen [2610026] sind sehr hilfreich.



## 3.77 Teilleistung: Klassische Experimentalphysik I, Mechanik [T-PHYS-102283]

**Verantwortung:** Prof. Dr. Ulrich Husemann **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103423 - Klassische Experimentalphysik I, Mechanik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 8               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                                         |       |                   |                  |
|---------------------|---------|---------------------------------------------------------|-------|-------------------|------------------|
| WS 20/21            |         | Klassische Experimentalphysik I<br>(Physik I, Mechanik) | 4 SWS | Vorlesung (V) / 🕃 | Husemann         |
| WS 20/21            | 4010012 | Übungen zu Klassische<br>Experimentalphysik I           | 2 SWS | Übung (Ü) / 🗣     | Husemann, Waßmer |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 120 min)

## Voraussetzungen



## 3.78 Teilleistung: Klassische Experimentalphysik II, Elektrodynamik [T-PHYS-102284]

**Verantwortung:** Prof. Dr. Alexey Ustinov **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103424 - Klassische Experimentalphysik II, Elektrodynamik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 7               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                                 |       |               |                  |
|---------------------|---------|-----------------------------------------------------------------|-------|---------------|------------------|
| SS 2021             | 4010021 | Klassische Experimentalphysik II<br>(Physik II, Elektrodynamik) | 3 SWS | Vorlesung (V) | Ustinov          |
| SS 2021             | 4010022 | Übungen zu Klassische<br>Experimentalphysik II                  | 2 SWS | Übung (Ü)     | Ustinov, Fischer |

## Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 120 min)

## Voraussetzungen



## 3.79 Teilleistung: Klassische Experimentalphysik III, Optik und Thermodynamik [T-PHYS-102285]

**Verantwortung:** Prof. Dr. Wulf Wulfhekel **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103425 - Klassische Experimentalphysik III, Optik und Thermodynamik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 9               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                                                               |       |                 |                             |
|---------------------|---------|-------------------------------------------------------------------------------|-------|-----------------|-----------------------------|
| WS 20/21            | 4010031 | Klassische Experimentalphysik III<br>(Physik III, Optik und<br>Thermodynamik) | 5 SWS | Vorlesung (V) / | Wulfhekel, Naber            |
| WS 20/21            | 4010032 | Übungen zu Klassische<br>Experimentalphysik III                               | 2 SWS | Übung (Ü) / 🖥   | Wulfhekel, Guigas,<br>Naber |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 120 min)

## Voraussetzungen



# 3.80 Teilleistung: Klassische Methoden für partielle Differentialgleichungen [T-MATH-105832]

Verantwortung: Prof. Dr. Dorothee Frey

Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Prof. Dr. Roland Schnaubelt

**Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102870 - Klassische Methoden für partielle Differentialgleichungen

| Teilleistungsart             | Leistungspunkte | Version |
|------------------------------|-----------------|---------|
| Prüfungsleistung schriftlich | 8               | 1       |

| Lehrveranstaltungen |         |                                                                                      |       |                   |      |
|---------------------|---------|--------------------------------------------------------------------------------------|-------|-------------------|------|
| WS 20/21            |         | Klassische Methoden für partialle<br>Differentialgleichungen                         | 4 SWS | Vorlesung (V) / 🖥 | Liao |
| WS 20/21            | 0105310 | Übungen zu 0105300 (Klassische<br>Methoden für partialle<br>Differentialgleichungen) | 2 SWS | Übung (Ü) / 🖥     | Liao |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

## Voraussetzungen

Keine



## 3.81 Teilleistung: Klassische Theoretische Physik I, Einführung [T-PHYS-102286]

Prof. Dr. Ulrich Nierste **Verantwortung: Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103426 - Klassische Theoretische Physik I, Einführung

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                                             |       |               |                  |
|---------------------|---------|-------------------------------------------------------------|-------|---------------|------------------|
| WS 20/21            | 4010111 | Klassische Theoretische Physik I<br>(Theorie A, Einführung) | 2 SWS | Vorlesung (V) | Nierste          |
| WS 20/21            | 4010112 | Übungen zu Klassische<br>Theoretische Physik I              | 2 SWS | Übung (Ü)     | Nierste, Ziegler |

**Erfolgskontrolle(n)** Schriftliche Prüfung (in der Regel 120 min)

## Voraussetzungen



## 3.82 Teilleistung: Klassische Theoretische Physik II, Mechanik [T-PHYS-102287]

**Verantwortung:** Prof. Dr. Kirill Melnikov **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103427 - Klassische Theoretische Physik II, Mechanik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                            |       |               |                                        |
|---------------------|---------|------------------------------------------------------------|-------|---------------|----------------------------------------|
| SS 2021             | 4010121 | Klassische Theoretische Physik II<br>(Theorie B, Mechanik) | 2 SWS | Vorlesung (V) | Melnikov                               |
| SS 2021             | 4010122 | Übungen zur Klassischen<br>Theoretischen Physik II         | 2 SWS | Übung (Ü)     | Melnikov, Broennum-<br>Hansen, Behring |

## Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 120 min)

## Voraussetzungen



## 3.83 Teilleistung: Klassische Theoretische Physik III, Elektrodynamik [T-PHYS-102288]

**Verantwortung:** Prof. Dr. Markus Garst **Einrichtung:** KIT-Fakultät für Physik

**Bestandteil von:** M-PHYS-103428 - Klassische Theoretische Physik III, Elektrodynamik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 8               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                                                   |       |                   |                  |
|---------------------|---------|-------------------------------------------------------------------|-------|-------------------|------------------|
| WS 20/21            |         | Klassische Theoretische Physik III<br>(Theorie C, Elektrodynamik) | 4 SWS | Vorlesung (V) / 🖥 | Garst            |
| WS 20/21            | 4010132 | Übungen zu Klassische<br>Theoretische Physik III                  | 2 SWS | Übung (Ü) / 🗣     | Narozhnyy, Garst |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

**Erfolgskontrolle(n)** Schriftliche Prüfung (in der Regel 120 min)

## Voraussetzungen



## 3.84 Teilleistung: Kombinatorik [T-MATH-105916]

Verantwortung: Prof. Dr. Maria Aksenovich
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-102950 - Kombinatorik

| Teilleistungsart             | Leistungspunkte | Turnus       | Version |
|------------------------------|-----------------|--------------|---------|
| Prüfungsleistung schriftlich | 8               | Unregelmäßig | 1       |

| Lehrveranstaltungen |         |                                         |       |               |            |
|---------------------|---------|-----------------------------------------|-------|---------------|------------|
| SS 2021             | 0150300 | Combinatorics                           | 4 SWS | Vorlesung (V) | Aksenovich |
| SS 2021             | 0150310 | Tutorial for 0150300<br>(Combinatorics) | 2 SWS | Übung (Ü)     | Aksenovich |

## Voraussetzungen

Keine



## 3.85 Teilleistung: Lie Gruppen und Lie Algebren [T-MATH-108799]

**Verantwortung:** Prof. Dr. Enrico Leuzinger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-104261 - Lie Gruppen und Lie Algebren

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung mündlich8Unregelmäßig1

| Lehrveranstaltungen |         |                                                      |       |               |           |
|---------------------|---------|------------------------------------------------------|-------|---------------|-----------|
| WS 20/21            | 0106000 | Lie-Gruppen und Lie-Algebren                         | 4 SWS | Vorlesung (V) | Leuzinger |
| WS 20/21            |         | Übungen zu 0106000 (Lie-Gruppen<br>und Lie-Algebren) | 2 SWS | Übung (Ü)     | Leuzinger |

## Voraussetzungen

Keine



## 3.86 Teilleistung: Lineare Algebra 1 - Klausur [T-MATH-106338]

**Verantwortung:** Prof. Dr. Tobias Hartnick

Prof. Dr. Frank Herrlich Prof. Dr. Enrico Leuzinger Prof. Dr Roman Sauer Prof. Dr. Wilderich Tuschmann

KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich9Jedes Semester1

| Lehrverans | taltungen |                   |       |                   |           |
|------------|-----------|-------------------|-------|-------------------|-----------|
| WS 20/21   | 0100700   | Lineare Algebra 1 | 4 SWS | Vorlesung (V) / 🖥 | Tuschmann |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

### Voraussetzungen

**Einrichtung:** 

Der Übungsschein zur Linearen Algebra 1 muss bestanden sein.

### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-102249 - Lineare Algebra 1 - Übungsschein muss erfolgreich abgeschlossen worden sein.

**Einrichtung:** 



## 3.87 Teilleistung: Lineare Algebra 1 - Übungsschein [T-MATH-102249]

**Verantwortung:** Prof. Dr. Tobias Hartnick

Prof. Dr. Frank Herrlich Prof. Dr. Enrico Leuzinger Prof. Dr Roman Sauer Prof. Dr. Wilderich Tuschmann

KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

TeilleistungsartLeistungspunkteVersionStudienleistung01

| Lehrveranstaltungen |         |                                                               |       |                   |                    |
|---------------------|---------|---------------------------------------------------------------|-------|-------------------|--------------------|
| WS 20/21            | 0100800 | Übungen zu 0100700 (Lineare<br>Algebra 1)                     | 2 SWS | Übung (Ü) / 🖥     | Tuschmann, Günther |
| WS 20/21            | 0190070 | Tutorium Lineare Algebra 1 (für<br>Informatik und Mathematik) | 2 SWS | Tutorium (Tu) / 🗣 | Tuschmann, Dahmen  |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

### Voraussetzungen



## 3.88 Teilleistung: Lineare Algebra 2 - Klausur [T-MATH-106339]

**Verantwortung:** Prof. Dr. Tobias Hartnick

Prof. Dr. Frank Herrlich Prof. Dr. Enrico Leuzinger Prof. Dr Roman Sauer Prof. Dr. Wilderich Tuschmann

KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich9Jedes Semester1

| Lehrverans | taltungen |                   |       |                   |           |
|------------|-----------|-------------------|-------|-------------------|-----------|
| SS 2021    | 0150500   | Lineare Algebra 2 | 4 SWS | Vorlesung (V) / 🖥 | Tuschmann |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

### Voraussetzungen

**Einrichtung:** 

Der Übungsschein in Lineare Algebra 2 muss bestanden sein.

## **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-102259 - Lineare Algebra 2 - Übungsschein muss erfolgreich abgeschlossen worden sein.



## 3.89 Teilleistung: Lineare Algebra 2 - Übungsschein [T-MATH-102259]

**Verantwortung:** Prof. Dr. Tobias Hartnick

Prof. Dr. Frank Herrlich Prof. Dr. Enrico Leuzinger Prof. Dr Roman Sauer Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

TeilleistungsartLeistungspunkteVersionStudienleistung01

| Lehrveranst | altungen |                                           |       |           |           |
|-------------|----------|-------------------------------------------|-------|-----------|-----------|
| SS 2021     | 0150600  | Übungen zu 0150500 (Lineare<br>Algebra 2) | 2 SWS | Übung (Ü) | Tuschmann |

## Voraussetzungen



## 3.90 Teilleistung: Lineare Elektrische Netze [T-ETIT-101917]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-101845 - Lineare Elektrische Netze

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 7               | Jedes Wintersemester | 2       |

| Lehrveranstaltungen |         |                                                  |       |                   |            |
|---------------------|---------|--------------------------------------------------|-------|-------------------|------------|
| WS 20/21            | 2305256 | Lineare elektrische Netze                        | 4 SWS | Vorlesung (V) / 🗯 | Dössel     |
| WS 20/21            | 2305258 | Übungen zu 2305256 Lineare<br>elektrische Netze  | 1 SWS | Übung (Ü) / 🗯     | Brenneisen |
| WS 20/21            | 2305581 | Tutorien zu 2305256 Lineare<br>elektrische Netze | SWS   | Übung (Ü) / 🗣     | Brenneisen |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

In einer schriftlichen Prufung im Umfang von 120 Minuten werden die Inhalte der Lehrveranstaltung Lineare Elektrische Netze (7 LP) gepruft. Bei bestandener Prufung können Studierende einen Notenbonus von bis zu 0,4 Notenpunkten erhalten, wenn zuvor semesterbegleitend zwei Projektaufgaben erfolgreich bearbeitet wurden. Die Bearbeitung der Projektaufgaben wird durch die Abgabe einer Dokumentation oder des Projektcodes nachgewiesen.

## Voraussetzungen



## 3.91 Teilleistung: Logistics and Supply Chain Management [T-WIWI-102870]

Verantwortung: Prof. Dr. Frank Schultmann

Dr. Marcus Wiens

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101437 - Industrielle Produktion I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 3,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                   |       |                 |                          |
|---------------------|---------|---------------------------------------------------|-------|-----------------|--------------------------|
| SS 2021             | 2581996 | Logistics and Supply Chain<br>Management          | 2 SWS | Vorlesung (V) / | Wiens, Schultmann        |
| SS 2021             | 2581997 | Übung zu Logistics and Supply<br>Chain Management | 1 SWS | Übung (Ü) / 🖥   | Diehlmann,<br>Lüttenberg |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen (30min.) oder schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

## Voraussetzungen

Keine



## 3.92 Teilleistung: Macroeconomic Theory [T-WIWI-109121]

**Verantwortung:** Prof. Dr. Johannes Brumm

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

**Bestandteil von:** M-WIWI-101501 - Wirtschaftstheorie

M-WIWI-101668 - Wirtschaftspolitik I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 2       |

| Lehrverans | taltungen |                               |       |                   |          |
|------------|-----------|-------------------------------|-------|-------------------|----------|
| WS 20/21   | 2560404   | Macroeconomic Theory          | 2 SWS | Vorlesung (V) / 🖥 | Scheffel |
| WS 20/21   | 2560405   | Übung zu Macroeconomic Theory | 1 SWS | Übung (Ü) / 🖥     | Pegorari |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

## Voraussetzungen

Keine.



## 3.93 Teilleistung: Management Accounting 1 [T-WIWI-102800]

Verantwortung: Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101498 - Controlling (Management Accounting)

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 2       |

| Lehrveranstaltungen |         |                                                |       |                   |         |
|---------------------|---------|------------------------------------------------|-------|-------------------|---------|
| SS 2021             | 2579900 | Management Accounting 1                        | 2 SWS | Vorlesung (V) / 🖥 | Wouters |
| SS 2021             | 2579901 | Übung zu Management Accounting<br>1 (Bachelor) | 2 SWS | Übung (Ü) / 🖥     | Riar    |
| SS 2021             | 2579902 | Übung zu Management Accounting<br>1 (Master)   | 2 SWS | Übung (Ü) / 🖥     | Riar    |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 120-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

## Voraussetzungen

Keine

### Anmerkungen

Bachelorstudierende dürfen nur die betreffende Übung und Prüfung wählen, Masterstudierende und Studierende mit Mastervorzug dürfen nur die betreffende Übung und Prüfung belegen.



## 3.94 Teilleistung: Management Accounting 2 [T-WIWI-102801]

Verantwortung: Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101498 - Controlling (Management Accounting)

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 2       |

| Lehrveranstaltungen |         |                                             |       |                   |         |
|---------------------|---------|---------------------------------------------|-------|-------------------|---------|
| WS 20/21            | 2579903 | Management Accounting 2                     | 2 SWS | Vorlesung (V) / 🖥 | Wouters |
| WS 20/21            | 2579904 | Übung zu Management Accounting 2 (Bachelor) | 2 SWS | Übung (Ü) / 🖥     | Ebinger |
| WS 20/21            | 2579905 | Übung zu Management Accounting 2 (Master)   | 2 SWS | Übung (Ü) / 🖥     | Ebinger |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 120-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

## Voraussetzungen

Keine

## **Empfehlungen**

Empfohlen wird, die LV "Management Accounting1" vorab zu besuchen.

#### Anmerkungen

Bachelorstudierende dürfen nur die betreffende Übung und Prüfung wählen, Masterstudierende und Studierende mit Mastervorzug dürfen nur die betreffende Übung und Prüfung belegen.



## 3.95 Teilleistung: Marketing Mix [T-WIWI-102805]

Verantwortung: Prof. Dr. Martin Klarmann

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101424 - Grundlagen des Marketing

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung anderer Art | 4,5             | Jedes Sommersemester | 2       |

| Lehrveranstaltungen |         |                                      |       |                   |          |
|---------------------|---------|--------------------------------------|-------|-------------------|----------|
| SS 2021             | 2571152 | Marketing Mix                        | 2 SWS | Vorlesung (V) / 🖥 | Klarmann |
| SS 2021             | 2571153 | Übung zu Marketing Mix<br>(Bachelor) | 1 SWS | Übung (Ü) / 🖥     | Pade     |

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (§4(2), 3 SPO) durch die Ausarbeitung und Präsentation einer Case Study (max. 30 Punkte) sowie einer schriftlichen Open Book Klausur (max. 60 Punkte). Insgesamt können in der Veranstaltung maximal 90 Punkte erzielt werden. Im Sommersemester 2021 wird die schriftliche Open Book Klausur abhängig von der weiteren pandemischen Entwicklung entweder in Präsenz oder online stattfinden. Weitere Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

## Voraussetzungen

Keine

### Anmerkungen

Die Teilleistung ist Pflicht im Modul "Grundlagen des Marketing".

Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Vertrieb (marketing.iism.kit.edu).



## 3.96 Teilleistung: Markovsche Ketten [T-MATH-102258]

Verantwortung: Prof. Dr. Nicole Bäuerle

Prof. Dr. Vicky Fasen-Hartmann Prof. Dr. Norbert Henze

Prof. Dr. Daniel Hug PD Dr. Bernhard Klar Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101323 - Markovsche Ketten

**Teilleistungsart Le** Prüfungsleistung schriftlich

Leistungspunkte

Version 1

| Lehrveranstaltungen |         |                    |       |               |         |
|---------------------|---------|--------------------|-------|---------------|---------|
| SS 2021             | 0159600 | Markovsche Ketten  | 3 SWS | Vorlesung (V) | Bäuerle |
| SS 2021             | 0159700 | Übungen zu 0159600 | 1 SWS | Übung (Ü)     | Bäuerle |

## Voraussetzungen



## 3.97 Teilleistung: Maschinenkonstruktionslehre Grundlagen I und II [T-MACH-110363]

**Verantwortung:** Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                              |       |                   |                                 |
|---------------------|---------|----------------------------------------------|-------|-------------------|---------------------------------|
| WS 20/21            | 2145131 | Maschinenkonstruktionslehre<br>Grundlagen I  | 2 SWS | Vorlesung (V) / 😂 | Albers, Matthiesen,<br>Behrendt |
| SS 2021             | 2146131 | Maschinenkonstruktionslehre<br>Grundlagen II | 2 SWS | Vorlesung (V) / 😂 | Albers, Matthiesen,<br>Behrendt |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

## Erfolgskontrolle(n)

Schriftliche Klausur (90min) über die Inhalte von MKLGI und MKLGII.

#### Voraussetzungen

Die Teilleistungen "T-MACH-110364 - Maschinenkonstruktionslehre Grundlagen I, Vorleistung" und "T-MACH-110365 - Maschinenkonstruktionslehre Grundlagen II, Vorleistung" müssen erfolgreich bestanden sein.

### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-MACH-110364 Maschinenkonstruktionslehre Grundlagen I, Vorleistung muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-MACH-110365 Maschinenkonstruktionslehre Grundlagen II, Vorleistung muss erfolgreich abgeschlossen worden sein.



## 3.98 Teilleistung: Maschinenkonstruktionslehre Grundlagen I, Vorleistung [T-MACH-110364]

**Verantwortung:** Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre

Teilleistungsart<br/>StudienleistungLeistungspunkte<br/>1Turnus<br/>Jedes WintersemesterVersion<br/>1

| Lehrveranstaltungen |         |                                                           |       |               |                                              |
|---------------------|---------|-----------------------------------------------------------|-------|---------------|----------------------------------------------|
| WS 20/21            | 2145132 | Übungen zu<br>Maschinenkonstruktionslehre<br>Grundlagen I | 1 SWS | Übung (Ü) / 🖥 | Albers, Matthiesen,<br>Behrendt, Mitarbeiter |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

### Erfolgskontrolle(n)

Zum Bestehen der Vorleistung sind die Anwesenheit bei 3 Workshopsitzungen des MKL1-Getriebeworkshops sowie das Bestehen eines Kolloquiums zu Beginn jedes Workshops Voraussetzung.

## Voraussetzungen

Keine



## 3.99 Teilleistung: Maschinenkonstruktionslehre Grundlagen II, Vorleistung [T-MACH-110365]

**Verantwortung:** Prof. Dr.-Ing. Sven Matthiesen **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre

Teilleistungsart<br/>StudienleistungLeistungspunkte<br/>1Turnus<br/>Jedes SommersemesterVersion<br/>1

| Lehrveranstaltungen |         |                                                            |       |               |                                    |
|---------------------|---------|------------------------------------------------------------|-------|---------------|------------------------------------|
| SS 2021             | 2146132 | Übungen zu<br>Maschinenkonstruktionslehre<br>Grundlagen II | 2 SWS | Übung (Ü) / 😘 | Albers, Matthiesen,<br>Mitarbeiter |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

### Erfolgskontrolle(n)

CIW/ VT/ IP-M/ WiING / NWT/ MATH/ MWT: Zum Bestehen der Vorleistung ist es erforderlich, dass eine Konstruktionsaufgabe als technische Handzeichnung erfolgreich absolviert wird.

MIT: Zum Bestehen der Vorleistung sind die Anwesenheit bei Workshopsitzungen sowie das Bestehen eines Kolloquiums zu Beginn jedes Workshops Voraussetzung.

#### Voraussetzungen

Keine



## 3.100 Teilleistung: Modelle der mathematischen Biologie [T-MATH-111291]

**Verantwortung:** Prof. Dr. Wolfgang Reichel **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-105652 - Modelle der mathematischen Biologie

| Teilleistungsart             | Leistungspunkte | Version |
|------------------------------|-----------------|---------|
| Prüfungsleistung schriftlich | 4               | 1       |

| Lehrveranstaltungen |         |                                                          |       |               |         |
|---------------------|---------|----------------------------------------------------------|-------|---------------|---------|
| SS 2021             | 0167100 | Modelle der mathematischen<br>Biologie                   | 2 SWS | Vorlesung (V) | Reichel |
| SS 2021             |         | Übungen zu 0167100 (Modelle der mathematischen Biologie) | 1 SWS | Übung (Ü)     | Reichel |

## Erfolgskontrolle(n)

Schriftliche Prüfung (60 min.)

## Voraussetzungen

Keine

## **Empfehlungen**

Analysis 1-2, Lineare Algebra 1-2, Analysis 3-4 oder Analysis für das Lehramt



## 3.101 Teilleistung: Modellieren und OR-Software: Einführung [T-WIWI-106199]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung anderer Art | <b>4,</b> 5     | Jedes Sommersemester | 2       |

| Lehrveranstaltungen |         |                                            |       |                   |                       |
|---------------------|---------|--------------------------------------------|-------|-------------------|-----------------------|
| SS 2021             | 2550490 | Modellieren und OR-Software:<br>Einführung | 3 SWS | Praktikum (P) / 🖥 | Nickel, Pomes, Bakker |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfung mit schriftlichem und praktischem Teil (nach §4(2), 1 SPO).

Die Prüfung wird im Semester des Software-Praktikums und dem darauf folgenden Semester angeboten.

## Voraussetzungen

Keine

### **Empfehlungen**

Sichere Kenntnisse des Stoffs aus der Vorlesung Einführung in das Operations Research I [2550040] im Modul Operations Research.

### **Anmerkungen**

Aufgrund der begrenzten Teilnehmerzahl wird um eine Voranmeldung gebeten. Weitere Informationen entnehmen Sie der Internetseite des Software-Praktikums.

Die Lehrveranstaltung wird regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Frühere Bezeichnung bis Sommersemester 2016: Software-Praktikum - OR-Modelle 1



# 3.102 Teilleistung: Moderne Experimentalphysik I, Atome und Kerne [T-PHYS-105132]

**Verantwortung:** Studiendekan Physik **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101704 - Moderne Experimentalphysik I, Atome und Kerne

| Teilleistungsart          | Leistungspunkte | Turnus               | Version |
|---------------------------|-----------------|----------------------|---------|
| Prüfungsleistung mündlich | 8               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                              |       |               |            |
|---------------------|---------|--------------------------------------------------------------|-------|---------------|------------|
| SS 2021             | 4010041 | Moderne Experimentalphysik I<br>(Physik IV, Atome und Kerne) | 4 SWS | Vorlesung (V) | Hunger     |
| SS 2021             | 4010042 | Übungen zu Moderne<br>Experimentalphysik I                   | 2 SWS | Übung (Ü)     | Hunger, NN |

## Erfolgskontrolle(n)

Mündliche Prüfung, ca. 45 min

## Voraussetzungen



# 3.103 Teilleistung: Moderne Experimentalphysik II, Moleküle und Festkörper [T-PHYS-105133]

**Verantwortung:** Studiendekan Physik **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101705 - Moderne Experimentalphysik II, Moleküle und Festkörper

| Teilleistungsart          | Leistungspunkte | Turnus               | Version |
|---------------------------|-----------------|----------------------|---------|
| Prüfungsleistung mündlich | 8               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                                                         |       |                 |                |
|---------------------|---------|-------------------------------------------------------------------------|-------|-----------------|----------------|
| WS 20/21            | 4010051 | Moderne Experimentalphysik II<br>(Physik V, Moleküle und<br>Festkörper) | 4 SWS | Vorlesung (V) / | Wegener        |
| WS 20/21            | 4010052 | Übungen zu Moderne<br>Experimentalphysik II                             | 2 SWS | Übung (Ü) / 🖥   | Wegener, Naber |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

## Erfolgskontrolle(n)

Mündliche Prüfung, ca. 45 min

## Voraussetzungen



# 3.104 Teilleistung: Moderne Experimentalphysik III, Teilchen und Hadronen [T-PHYS-106804]

**Verantwortung:** Studiendekan Physik **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101706 - Moderne Experimentalphysik III, Teilchen und Hadronen

| Teilleistungsart          | Leistungspunkte | Turnus               | Version |
|---------------------------|-----------------|----------------------|---------|
| Prüfungsleistung mündlich | 6               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                                         |         |               |                             |
|---------------------|---------|-------------------------------------------------------------------------|---------|---------------|-----------------------------|
| SS 2021             | 4010061 | Moderne Experimentalphysik III<br>(Physik VI, Teilchen und<br>Hadronen) | 3 SWS   | Vorlesung (V) | Drexlin, Valerius           |
| SS 2021             | 4010062 | Übungen zu Moderne<br>Experimentalphysik III                            | 1.5 SWS | Übung (Ü)     | Drexlin, Valerius,<br>Huber |

## Erfolgskontrolle(n)

Mündliche Prüfung, ca. 45 min

## Voraussetzungen



# 3.105 Teilleistung: Moderne Theoretische Physik I, Quantenmechanik 1 [T-PHYS-105134]

**Verantwortung:** Studiendekan Physik **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103180 - Moderne Theoretische Physik I, Quantenmechanik I

| Teilleistungsart          | Leistungspunkte | Turnus               | Version |
|---------------------------|-----------------|----------------------|---------|
| Prüfungsleistung mündlich | 8               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                                 |       |               |               |
|---------------------|---------|-----------------------------------------------------------------|-------|---------------|---------------|
| SS 2021             | 4010141 | Moderne Theoretische Physik I<br>(Theorie D, Quantenmechanik I) | 4 SWS | Vorlesung (V) | Schmalian     |
| SS 2021             | 4010142 | Übungen zu Moderne<br>Theoretische Physik I                     | 2 SWS | Übung (Ü)     | Schmalian, NN |

## Erfolgskontrolle(n)

Mündliche Prüfung, ca. 45 min

## Voraussetzungen



## 3.106 Teilleistung: Moderne Theoretische Physik II, Quantenmechanik 2 [T-PHYS-106095]

**Verantwortung:** Studiendekan Physik **Einrichtung:** KIT-Fakultät für Physik

**Bestandteil von:** M-PHYS-101708 - Moderne Theoretische Physik II, Quantenmechanik II

| Teilleistungsart          | Leistungspunkte | Turnus               | Version |
|---------------------------|-----------------|----------------------|---------|
| Prüfungsleistung mündlich | 6               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                                                   |       |               |                                 |
|---------------------|---------|-------------------------------------------------------------------|-------|---------------|---------------------------------|
| WS 20/21            |         | Moderne Theoretische Physik II<br>(Theorie E, Quantenmechanik II) | 4 SWS | Vorlesung (V) | Steinhauser                     |
| WS 20/21            | 4010152 | Übungen zu Moderne<br>Theoretische Physik II                      | 1 SWS | Übung (Ü) / 🖥 | Steinhauser, Fael,<br>Schönwald |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

**Erfolgskontrolle(n)** Mündliche Prüfung, ca. 45 min

## Voraussetzungen



## 3.107 Teilleistung: Moderne Theoretische Physik III, Statistische Physik [T-PHYS-106096]

**Verantwortung:** Studiendekan Physik **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101709 - Moderne Theoretische Physik III, Statistische Physik

| Teilleistungsart          | Leistungspunkte | Version |
|---------------------------|-----------------|---------|
| Prüfungsleistung mündlich | 8               | 1       |

| Lehrveranstaltungen |         |                                                                      |       |                 |                          |
|---------------------|---------|----------------------------------------------------------------------|-------|-----------------|--------------------------|
| WS 20/21            | 4010171 | Moderne Theoretische Physik IIIa<br>(Theorie F, Statistische Physik) | 2 SWS | Vorlesung (V) / | Schwetz-Mangold          |
| WS 20/21            | 4010172 | Übungen zu Moderne<br>Theoretische Physik IIIa                       | 1 SWS | Übung (Ü) / 🖥   | Schwetz-Mangold,<br>Zhou |
| SS 2021             | 4010161 | Moderne Theoretische Physik IIIb<br>(Theorie F, Statistische Physik) | 2 SWS | Vorlesung (V)   | Schwetz-Mangold          |
| SS 2021             | 4010162 | Übungen zu Moderne<br>Theoretische Physik IIIb                       | 1 SWS | Übung (Ü)       | Schwetz-Mangold,<br>Zhou |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Mündliche Prüfung, ca. 45 min

## Voraussetzungen



## 3.108 Teilleistung: Nichtlineare Optimierung I [T-WIWI-102724]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

M-WIWI-103278 - Optimierung unter Unsicherheit

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 4       |

| Lehrveranstaltungen |         |                                               |       |                   |       |
|---------------------|---------|-----------------------------------------------|-------|-------------------|-------|
| WS 20/21            | 2550111 | Nichtlineare Optimierung I                    | 2 SWS | Vorlesung (V) / 🖥 | Stein |
| WS 20/21            |         | Übungen zu Nichtlineare<br>Optimierung I + II | SWS   | Übung (Ü) / 🖥     | Stein |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs).

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu *Nichtlineare Optimierung II* [2550113] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

### Voraussetzungen

Die Teilleistung T-WIWI-103637 "Nichtlineare Optimierung I und II" darf nicht begonnen worden sein.

#### Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.



## 3.109 Teilleistung: Nichtlineare Optimierung I und II [T-WIWI-103637]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 9               | Jedes Wintersemester | 6       |

| Lehrveranstaltungen |         |                                               |       |                   |       |
|---------------------|---------|-----------------------------------------------|-------|-------------------|-------|
| WS 20/21            | 2550111 | Nichtlineare Optimierung I                    | 2 SWS | Vorlesung (V) / 🖥 | Stein |
| WS 20/21            |         | Übungen zu Nichtlineare<br>Optimierung I + II | SWS   | Übung (Ü) / 🖥     | Stein |
| WS 20/21            | 2550113 | Nichtlineare Optimierung II                   | 2 SWS | Vorlesung (V) / 🖥 | Stein |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPO).

#### Voraussetzungen

Keine.

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-WIWI-102724 Nichtlineare Optimierung I darf nicht begonnen worden sein.
- 2. Die Teilleistung T-WIWI-102725 Nichtlineare Optimierung II darf nicht begonnen worden sein.

## Anmerkungen

Teil I und II der Vorlesung werden nacheinander im **selben** Semester gelesen.



## 3.110 Teilleistung: Nichtlineare Optimierung II [T-WIWI-102725]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 3       |

| Lehrveranstaltungen |         |                                               |       |                   |       |
|---------------------|---------|-----------------------------------------------|-------|-------------------|-------|
| WS 20/21            |         | Übungen zu Nichtlineare<br>Optimierung I + II | SWS   | Übung (Ü) / 🖥     | Stein |
| WS 20/21            | 2550113 | Nichtlineare Optimierung II                   | 2 SWS | Vorlesung (V) / 🖥 | Stein |

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs).

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu *Nichtlineare Optimierung I* erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

#### Voraussetzungen

Keine.

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-103637 - Nichtlineare Optimierung I und II darf nicht begonnen worden sein.

#### **Anmerkungen**

Teil I und II der Vorlesung werden nacheinander imgleichen Semester gelesen.



# 3.111 Teilleistung: Numerische Mathematik 1 - Klausur [T-MATH-106391]

Verantwortung: Prof. Dr. Willy Dörfler

Prof. Dr. Marlis Hochbruck Prof. Dr Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103214 - Numerische Mathematik 1+2

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich6Jedes Semester1

| Lehrveranstaltungen |         |                                     |       |                   |               |
|---------------------|---------|-------------------------------------|-------|-------------------|---------------|
| WS 20/21            | 0108700 | Numerische Mathematik 1             | 3 SWS | Vorlesung (V) / 🗯 | Jahnke        |
| WS 20/21            | 0108800 | Übungen zu 0108700                  | 1 SWS | Übung (Ü) / 🖥     | Jahnke, Stein |
| WS 20/21            | 0190870 | Tutorium Numerische Mathematik<br>1 | 2 SWS | Tutorium (Tu)     | Jahnke, Stein |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Voraussetzungen



# 3.112 Teilleistung: Numerische Mathematik 2 - Klausur [T-MATH-106394]

**Verantwortung:** Prof. Dr. Willy Dörfler

Prof. Dr. Marlis Hochbruck Prof. Dr Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103214 - Numerische Mathematik 1+2

| Teilleistungsart             | Leistungspunkte | Turnus         | Version |
|------------------------------|-----------------|----------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Semester | 1       |

| Lehrveranstaltungen |         |                                     |       |                   |        |
|---------------------|---------|-------------------------------------|-------|-------------------|--------|
| SS 2021             | 0160200 | Numerische Mathematik 2             | 3 SWS | Vorlesung (V) / 🖥 | Jahnke |
| SS 2021             | 0160300 | Übungen zu 0160200                  | 1 SWS | Übung (Ü) / 🖥     | Jahnke |
| SS 2021             | 0196020 | Tutorium Numerische Mathematik<br>2 | 2 SWS | Tutorium (Tu)     | Jahnke |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

#### Voraussetzungen



# 3.113 Teilleistung: Numerische Methoden für Differentialgleichungen [T-MATH-105836]

Verantwortung: Prof. Dr. Willy Dörfler

Prof. Dr. Marlis Hochbruck Prof. Dr Tobias Jahnke Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102888 - Numerische Methoden für Differentialgleichungen

| Teilleistungsart          | Leistungspunkte | Version |
|---------------------------|-----------------|---------|
| Prüfungsleistung mündlich | 8               | 2       |

| Lehrveranstaltungen |         |                                                    |       |                   |                     |
|---------------------|---------|----------------------------------------------------|-------|-------------------|---------------------|
| WS 20/21            | 0110700 | Numerische Methoden für<br>Differentialgleichungen | 4 SWS | Vorlesung (V) / 🖥 | Dörfler, Molochkova |
| WS 20/21            | 0110800 | Übungen zu 0110700                                 | 2 SWS | Übung (Ü) / 🗣     | Dörfler             |

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

#### Voraussetzungen



# 3.114 Teilleistung: Öffentliche Einnahmen [T-WIWI-102739]

Verantwortung: Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101403 - Finanzwissenschaft

M-WIWI-101499 - Angewandte Mikroökonomik

M-WIWI-101668 - Wirtschaftspolitik I

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich4,5Jedes Sommersemester1

| Lehrveranstaltungen |         |                                |       |                   |        |
|---------------------|---------|--------------------------------|-------|-------------------|--------|
| SS 2021             | 2560120 | Öffentliche Einnahmen          | 2 SWS | Vorlesung (V) / 🖥 | Wigger |
| SS 2021             | 2560121 | Übung zu Öffentliche Einnahmen | 1 SWS | Übung (Ü) / 🖥     | Wigger |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Die Note entspricht der Note der schriftlichen Prüfung.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Es wird Kenntnis der Grundlagen der Finanzwissenschaft vorausgesetzt.



# 3.115 Teilleistung: Öffentliches Finanzwesen [T-WIWI-109590]

Verantwortung: Prof. Dr. Berthold Wigger

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101403 - Finanzwissenschaft

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | <b>4,</b> 5     | Jedes Wintersemester | 2       |

| Lehrveranstaltungen |         |                          |       |                   |              |
|---------------------|---------|--------------------------|-------|-------------------|--------------|
| WS 20/21            | 2560136 | Öffentliches Finanzwesen | 3 SWS | Vorlesung (V) / 🗣 | Wigger, Groh |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.).

#### Voraussetzungen

T-WIWI-107763 "Kommunales Finanzwesen" darf nicht begonnen sein.

#### **Anmerkungen**

Frühere Bezeichnung bis einschließlich Wintersemester 2018/19 "Kommunales Finanzwesen".



## 3.116 Teilleistung: Optimierungsansätze unter Unsicherheit [T-WIWI-106545]

Verantwortung: Prof. Dr. Steffen Rebennack

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

M-WIWI-103278 - Optimierung unter Unsicherheit

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 3       |

| Lehrverans | Lehrveranstaltungen |                                                                |       |                   |                    |
|------------|---------------------|----------------------------------------------------------------|-------|-------------------|--------------------|
| WS 20/21   | 2550464             | Optimierungsansätze unter<br>Unsicherheit                      | SWS   | Vorlesung (V) / 🖥 | Rebennack          |
| WS 20/21   | 2550465             | Übungen zu Optimierungsansätze unter Unsicherheit              | SWS   | Übung (Ü) / 🖥     | Rebennack, Füllner |
| WS 20/21   | 2550466             | Rechnerübungen zu<br>Optimierungsansätze unter<br>Unsicherheit | 2 SWS | Übung (Ü) / 🖥     | Rebennack, Füllner |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO). Die Prüfung wird jedes Semester angeboten.

#### Voraussetzungen



# 3.117 Teilleistung: Optimierungstheorie - Klausur [T-MATH-106401]

**Verantwortung:** Prof. Dr. Roland Griesmaier

PD Dr. Frank Hettlich Prof. Dr. Andreas Rieder Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

**Bestandteil von:** M-MATH-103219 - Optimierungstheorie

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich8Jedes Semester2

| Lehrveranstaltungen |         |                    |       |           |         |
|---------------------|---------|--------------------|-------|-----------|---------|
| SS 2021             | 0155500 | Übungen zu 0155400 | 2 SWS | Übung (Ü) | Wieners |

#### Voraussetzungen



## 3.118 Teilleistung: Organisationsmanagement [T-WIWI-102630]

Verantwortung: Prof. Dr. Hagen Lindstädt

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101425 - Strategie und Organisation

M-WIWI-101513 - Personal und Organisation

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 3,5             | Jedes Wintersemester | 3       |

| Lehrverans | taltungen |                         |       |                   |           |
|------------|-----------|-------------------------|-------|-------------------|-----------|
| WS 20/21   | 2577902   | Organisationsmanagement | 2 SWS | Vorlesung (V) / 🖥 | Lindstädt |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

#### Voraussetzungen



## 3.119 Teilleistung: Personalmanagement [T-WIWI-102909]

Verantwortung: Prof. Dr. Petra Nieken

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101513 - Personal und Organisation

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                             |       |                   |                     |
|---------------------|---------|-----------------------------|-------|-------------------|---------------------|
| WS 20/21            | 2573005 | Personalmanagement          | 2 SWS | Vorlesung (V) / 🖥 | Nieken              |
| WS 20/21            | 2573006 | Übung zu Personalmanagement | 1 SWS | Übung (Ü) / 🖥     | Nieken, Mitarbeiter |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1 Stunde. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

### Voraussetzungen

Keine

#### **Empfehlungen**

Der vorherige Besuch des Moduls Betriebswirtschaftslehre wird empfohlen.

Es werden Grundkenntnisse in Mikroökonomie, Spieltheorie und Statistik empfohlen.



# 3.120 Teilleistung: Personalpolitik und Arbeitsmarktinstitutionen [T-WIWI-102908]

Verantwortung: Prof. Dr. Petra Nieken

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101513 - Personal und Organisation

M-WIWI-101668 - Wirtschaftspolitik I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                             |       |                   |                     |
|---------------------|---------|-------------------------------------------------------------|-------|-------------------|---------------------|
| SS 2021             | 2573001 | Personalpolitik und<br>Arbeitsmarktinstitutionen            | 2 SWS | Vorlesung (V) / 🖥 | Nieken              |
| SS 2021             | 2573002 | Übungen zu Personalpolitik und<br>Arbeitsmarktinstitutionen | 1 SWS | Übung (Ü) / 🖥     | Nieken, Mitarbeiter |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1 Stunde. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Der vorherige Besuch des Moduls Betriebswirtschaftslehre wird empfohlen.

Es werden Grundkenntnisse in Mikroökonomie, Spieltheorie und Statistik empfohlen.



## 3.121 Teilleistung: Platform Economy [T-WIWI-109936]

**Verantwortung:** Dr. Verena Dorner

Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101421 - Supply Chain Management

M-WIWI-101434 - eBusiness und Service Management

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 3       |

| Lehrveranstaltungen |         |                            |       |                   |                 |
|---------------------|---------|----------------------------|-------|-------------------|-----------------|
| WS 20/21            | 2540468 | Platform Economy           | 2 SWS | Vorlesung (V) / 😘 | Dann, Weinhardt |
| WS 20/21            | 2540469 | Übung zur Platform Economy | SWS   | Übung (Ü) / 🗣     | Dann, Richter   |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Details zur Notenbildung werden zu Beginn der Veranstaltung bekannt gegeben.

### Voraussetzungen

siehe "Modellierte Voraussetzungen"

#### **Empfehlungen**

Version

1



# 3.122 Teilleistung: Platzhalter Schlüsselqualifikation 1 [T-MATH-108198]

Einrichtung: Universität gesamt

Bestandteil von: M-MATH-103998 - Schlüsselqualifikationen

TeilleistungsartLeistungspunkteTurnusStudienleistung2Jedes Semester

Voraussetzungen

keine



## 3.123 Teilleistung: Practical Seminar: Digital Services [T-WIWI-110888]

**Verantwortung:** Prof. Dr. Gerhard Satzger

Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-102752 - Fundamentals of Digital Service Systems

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung anderer Art | 4,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                          |       |               |        |
|---------------------|---------|------------------------------------------|-------|---------------|--------|
| WS 20/21            | 2540555 | Practical Seminar: Digital Services (Ba) | 3 SWS | Vorlesung (V) | Mädche |

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch das Ausarbeiten einer schriftlichen Dokumentation, einer Präsentation der Ergebnisse der durchgeführten praktischen Komponenten und der aktiven Beteiligung an den Diskussionen (nach §4(2), 3 SPO).

Bitte beachten Sie, dass auch eine praktische Komponente wie die Durchführung einer Umfrage, oder die Implementierung einer Applikation neben der schriftlichen Ausarbeitung zum regulären Leistungsumfang der Veranstaltung gehört. Die jeweilige Aufgabenstellung entnehmen Sie bitte der Veranstaltungsbeschreibung.

Die Gesamtnote setzt sich zusammen aus den benoteten und gewichteten Erfolgskontrollen (z.B. Dokumentation, mündl. Vortrag, praktische Ausarbeitung sowie aktive Beteiligung).

#### Voraussetzungen

Keine

#### **Empfehlungen**

. Keine

#### **Anmerkungen**

Das aktuelle Angebot der Seminarpraktikathemen wird auf der Webseite www.ksri.kit.edu bekannt gegeben.



# 3.124 Teilleistung: Problemlösung, Kommunikation und Leadership [T-WIWI-102871]

Verantwortung: Prof. Dr. Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101425 - Strategie und Organisation
M-WIWI-101513 - Personal und Organisation

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 2               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                             |       |                   |           |
|---------------------|---------|---------------------------------------------|-------|-------------------|-----------|
| SS 2021             | 2577910 | Problemlösung, Kommunikation und Leadership | 1 SWS | Vorlesung (V) / 🖥 | Lindstädt |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (30min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen



# 3.125 Teilleistung: Produktion und Nachhaltigkeit [T-WIWI-102820]

Verantwortung: Prof. Dr. Frank Schultmann

Dr.-Ing. Rebekka Volk

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101437 - Industrielle Produktion I

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich3,5Jedes Wintersemester1

| Lehrveranstaltungen |         |                               |       |                   |      |
|---------------------|---------|-------------------------------|-------|-------------------|------|
| WS 20/21            | 2581960 | Produktion und Nachhaltigkeit | 2 SWS | Vorlesung (V) / 🖥 | Volk |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt



# 3.126 Teilleistung: Programmieren: Einstieg in die Informatik und algorithmische Mathematik - Klausur [T-MATH-106418]

Verantwortung: Prof. Dr. Willy Dörfler

Dr. rer. nat. Mathias Krause

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103228 - Programmieren: Einstieg in die Informatik und algorithmische Mathematik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                                          |       |                   |                  |
|---------------------|---------|----------------------------------------------------------|-------|-------------------|------------------|
| WS 20/21            |         | Einstieg in die Informatik und algorithmische Mathematik | 2 SWS | Vorlesung (V) / 🖥 | Krause           |
| WS 20/21            | 0101200 | Übungen zu 0101100                                       | 2 SWS | Übung (Ü) / 🖥     | Krause, Veszelka |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

## Voraussetzungen

Prüfungsvorleistung: bestandenes Praktikum.

## **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-106419 - Programmieren: Einstieg in die Informatik und algorithmische Mathematik - Praktikum muss erfolgreich abgeschlossen worden sein.



# 3.127 Teilleistung: Programmieren: Einstieg in die Informatik und algorithmische Mathematik - Praktikum [T-MATH-106419]

Verantwortung: Prof. Dr. Willy Dörfler

Dr. rer. nat. Mathias Krause

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103228 - Programmieren: Einstieg in die Informatik und algorithmische Mathematik

Teilleistungsart Leistungspunkte
Studienleistung praktisch 0 Jedes Wintersemester 1

| Lehrveranstaltungen |         |                             |       |                   |                  |
|---------------------|---------|-----------------------------|-------|-------------------|------------------|
| WS 20/21            | 0101300 | Rechnerpraktikum zu 0101100 | 2 SWS | Praktikum (P) / 🗣 | Krause, Veszelka |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Voraussetzungen



# 3.128 Teilleistung: Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java [T-WIWI-102747]

Verantwortung: Prof. Dr. Dietmar Ratz

Prof. Dr.-Ing. Johann Marius Zöllner

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101399 - Vertiefung Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 3       |

| Lehrveran | staltungen |                                                                                                    |       |                              |                            |
|-----------|------------|----------------------------------------------------------------------------------------------------|-------|------------------------------|----------------------------|
| SS 2021   | 2511020    | Programmierung kommerzieller<br>Systeme - Anwendungen in<br>Netzen mit Java                        | 2 SWS | Vorlesung (V) /              | Ratz                       |
| SS 2021   | 2511021    | Tutorium zu Programmierung<br>kommerzieller Systeme -<br>Anwendungen in Netzen mit Java            | 1 SWS | Tutorium (Tu) / 🖥            | Ratz, Hermann,<br>Hüneberg |
| SS 2021   | 2511023    | Rechnerpraktikum zu<br>Programmierung kommerzieller<br>Systeme - Anwendungen in<br>Netzen mit Java | 2 SWS | Praktische Übung<br>(PÜ) / 🖥 | Ratz, Hermann,<br>Hüneberg |
| SS 2021   | 2511025    | Tutorium zu Programmierung<br>kommerzieller Systeme -<br>Anwendungen in Netzen mit Java            | 1 SWS | Tutorium (Tu) / 🖥            | Ratz, Hermann,<br>Hüneberg |
| SS 2021   | 2511026    | Rechnerpraktikum zu<br>Programmierung kommerzieller<br>Systeme - Anwendungen in<br>Netzen mit Java | 2 SWS | Praktische Übung<br>(PÜ) / 🖥 | Ratz, Hermann,<br>Hüneberg |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Am Ende der Vorlesungszeit wird eine schriftliche Prüfung (90 min.) (nach §4(2), 1 SPO) angeboten, für die - durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters - eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Diese Veranstaltung kann nicht gleichzeitig mit *Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware* [2511026] angerechnet werden.

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-102748 - Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware darf nicht begonnen worden sein.

#### Anmerkungen

Die Anmeldung zur Teilnahme am Rechnerpraktikum (Vorbedingung zur Klausurteilnahme) findet bereits in der ersten Vorlesungswoche statt!



# 3.129 Teilleistung: Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware [T-WIWI-102748]

Verantwortung: Prof. Dr. Stefan Klink

Prof. Dr. Andreas Oberweis

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101399 - Vertiefung Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | <b>4,</b> 5     | Jedes Wintersemester | 2       |

| Lehrverans | Lehrveranstaltungen |                                                                                                         |       |                 |                          |  |  |
|------------|---------------------|---------------------------------------------------------------------------------------------------------|-------|-----------------|--------------------------|--|--|
| WS 20/21   | 2511026             | Programmierung kommerzieller<br>Systeme - Einsatz betrieblicher<br>Standardsoftware                     | 2 SWS | Vorlesung (V) / | Klink                    |  |  |
| WS 20/21   | 2511027             | Übungen zu Programmierung<br>kommerzieller Systeme - Einsatz<br>betrieblicher Standard-Software         | 1 SWS | Übung (Ü) /     | Klink, Forell, Schreiber |  |  |
| WS 20/21   | 2511028             | Rechnerübung zu<br>Programmierung kommerzieller<br>Systeme - Einsatz betrieblicher<br>Standard-Software | 2 SWS | Übung (Ü) / 🖥   | Forell, Schreiber        |  |  |

Legende: 🖥 Online, 😂 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur). Die Klausurdauer beträgt im Wintersemester 2020/21 und im Sommersemester 2021 60 Minuten. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzung für die Teilnahme an der Prüfung ist die erfolgreiche Beteiligung an der Rechnerübung, die im Wintersemester stattfindet. Für einzelne Termine der Rechnerübung besteht Anwesenheitspflicht. Nähere Informationen zur Teilnahme an der Rechnerübung werden in der ersten Vorlesungsstunde und über die Vorlesungshomepage bekannt gegeben.

Eine einmal erworbene Zulassungsberechtigung durch Bestehen der Rechnerübung ist unbegrenzt gültig.

## Voraussetzungen

Diese Veranstaltung kann nicht gleichzeitig mit Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java angerechnet werden.

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-102747 - Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java darf nicht begonnen worden sein.

## **Empfehlungen**

Kenntnisse aus den Vorlesungen Grundlagen der Informatik I und II sind hilfreich.



# 3.130 Teilleistung: Proseminar Mathematik [T-MATH-103404]

Verantwortung: Dr. Stefan Kühnlein

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-101803 - Proseminar

**Teilleistungsart** Studienleistung Leistungspunkte

3

Version

Voraussetzungen

keine



# 3.131 Teilleistung: Rand- und Eigenwertprobleme [T-MATH-105833]

**Verantwortung:** Prof. Dr. Dorothee Frey

Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

**Bestandteil von:** M-MATH-102871 - Rand- und Eigenwertprobleme

**Teilleistungsart**Prüfungsleistung mündlich

Leistungspunkte

8

Version
1

| Lehrveranstaltungen |         |                             |       |                   |      |
|---------------------|---------|-----------------------------|-------|-------------------|------|
| SS 2021             | 0157500 | Rand- und Eigenwertprobleme | 4 SWS | Vorlesung (V) / 🖥 | Liao |
| SS 2021             | 0157510 | Übungen zu 0157500          | 2 SWS | Übung (Ü) / 🖥     | Liao |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Voraussetzungen



# 3.132 Teilleistung: Real Estate Management I [T-WIWI-102744]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101466 - Real Estate Management

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | <b>4,</b> 5     | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                                        |       |                   |                           |
|---------------------|---------|----------------------------------------|-------|-------------------|---------------------------|
| WS 20/21            | 2586400 | Real Estate Management I               | 2 SWS | Vorlesung (V) / 🖥 | Lützkendorf,<br>Worschech |
| WS 20/21            | 2586401 | Übungen zu Real Estate<br>Management I | 2 SWS | Übung (Ü) / 🖥     | Worschech                 |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Wintersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen

Keine

#### Anmerkungen

Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Immobilienwirtschaft und durch Exkursionen ergänzt.



## 3.133 Teilleistung: Real Estate Management II [T-WIWI-102745]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101466 - Real Estate Management

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 1       |

| Lehrverans | Lehrveranstaltungen |                                       |       |                 |                           |
|------------|---------------------|---------------------------------------|-------|-----------------|---------------------------|
| SS 2021    | 2585400             | Real Estate Management II             | 2 SWS | Vorlesung (V) / | Lützkendorf,<br>Worschech |
| SS 2021    | 2585401             | Übung zu Real Estate Management<br>II | 2 SWS | Übung (Ü) / 🖥   | Worschech                 |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als 60-minütige (reine Bearbeitungszeit) Upload-Klausur (Open Book Exam @ Home) (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

#### Voraussetzungen

Keine

#### **Empfehlungen**

Es wird eine Kombination mit dem ModulBauökologielempfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- · Finanzwirtschaft und Banken
- Versicherungen
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion, Facility Management)

#### Anmerkungen

Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Wohnungswirtschaft und durch Exkursionen ergänzt.



## 3.134 Teilleistung: Rechnungswesen [T-WIWI-102816]

**Verantwortung:** Dr. Jan-Oliver Strych

Einrichtung: KIT-Fakultät für Informatik

KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101578 - Grundlagen BWL 2

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |         |                         |       |                   |        |
|---------------------|---------|-------------------------|-------|-------------------|--------|
| WS 20/21            | 2600002 | Rechnungswesen          | 2 SWS | Vorlesung (V) / 🖥 | Strych |
| WS 20/21            | 2600003 | Übung zu Rechnungswesen | 2 SWS | Übung (Ü) / 🖥     | Strych |

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung über 90 Minuten (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

#### Voraussetzungen



# 3.135 Teilleistung: Renewable Energy-Resources, Technologies and Economics [T-WIWI-100806]

Verantwortung: PD Dr. Patrick Jochem

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101464 - Energiewirtschaft

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 3,5             | Jedes Wintersemester | 4       |

| Lehrveranstaltungen |         |                                                             |       |                   |        |
|---------------------|---------|-------------------------------------------------------------|-------|-------------------|--------|
| WS 20/21            | 2581012 | Renewable Energy – Resources,<br>Technologies and Economics | 2 SWS | Vorlesung (V) / 🖥 | Jochem |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min., englisch, Antworten auf deutsch oder englisch möglich).

#### Voraussetzungen



# 3.136 Teilleistung: Seminar Bachelor [T-MATH-106879]

Verantwortung: Dr. Stefan Kühnlein

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-103462 - Seminar

**Teilleistungsart** Studienleistung Leistungspunkte

**Turnus** Jedes Semester Version 1

Voraussetzungen



# 3.137 Teilleistung: Seminar Bachelor 1 [T-MATH-106882]

Verantwortung: Dr. Stefan Kühnlein

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-103465 - Seminar

**Teilleistungsart** Studienleistung Leistungspunkte

**Turnus** Jedes Semester Version 1

Voraussetzungen



# 3.138 Teilleistung: Seminar Bachelor 2 [T-MATH-106883]

Verantwortung: Dr. Stefan Kühnlein

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-103467 - Seminar

**Teilleistungsart** Studienleistung Leistungspunkte

**Turnus** Jedes Semester Version 1

Voraussetzungen



## 3.139 Teilleistung: Signale und Systeme [T-ETIT-101922]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102123 - Signale und Systeme

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 3       |

| Lehrveranstaltungen |         |                                           |       |                   |                 |
|---------------------|---------|-------------------------------------------|-------|-------------------|-----------------|
| WS 20/21            | 2302109 | Signale und Systeme                       | 2 SWS | Vorlesung (V) / 🖥 | Heizmann        |
| WS 20/21            | 2302111 | Übungen zu 2302109 Signale und<br>Systeme | 2 SWS | Übung (Ü) / 🖥     | Leven, Heizmann |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Signale und Systeme.

Notenbildung ergibt sich aus der schriftlichen Prüfung.

## Voraussetzungen

Keine

#### **Empfehlungen**

Höhere Mathematik I + II



# 3.140 Teilleistung: Software Engineering [T-WIWI-100809]

Verantwortung: Prof. Dr. Andreas Oberweis

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101399 - Vertiefung Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4               | Jedes Sommersemester | 3       |

| Lehrveranstaltungen |         |                                                            |       |                   |                  |
|---------------------|---------|------------------------------------------------------------|-------|-------------------|------------------|
| SS 2021             | 2511206 | Angewandte Informatik - Software<br>Engineering            | 2 SWS | Vorlesung (V) / 🖥 | Oberweis         |
| SS 2021             | 2511207 | Übungen zu Angewandte<br>Informatik - Software Engineering | 1 SWS | Übung (Ü) / 🖥     | Oberweis, Forell |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) nach §4(2), 1 SPO. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

## Voraussetzungen



# 3.141 Teilleistung: Softwaretechnik I [T-INFO-101968]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner Prof. Dr. Walter Tichy

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-103453 - Softwaretechnik I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |       |                   |       |                               |                     |
|---------------------|-------|-------------------|-------|-------------------------------|---------------------|
| SS 2021             | 24518 | Softwaretechnik I | 4 SWS | Vorlesung / Übung<br>(VÜ) / ■ | Tichy, Gerking, Hey |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO Informatik im Umfang von i.d.R. 60 Minuten.

#### Voraussetzungen

Keine.

## **Empfehlungen**

Das Modul Programmieren sollte abgeschlossen sein.



# 3.142 Teilleistung: Spektraltheorie - Prüfung [T-MATH-103414]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog

apl. Prof. Dr. Peer Kunstmann Dr. Christoph Schmoeger Prof. Dr. Roland Schnaubelt

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-101768 - Spektraltheorie

**Teilleistungsart** Prüfungsleistung mündlich Leistungspunkte

Version

| Lehrveranstaltungen |         |                                           |       |               |             |
|---------------------|---------|-------------------------------------------|-------|---------------|-------------|
| SS 2021             | 0163700 | Spectral Theory                           | 4 SWS | Vorlesung (V) | Hundertmark |
| SS 2021             | 0163710 | Tutorial for 0163700 (Spectral<br>Theory) | 2 SWS | Übung (Ü)     | Hundertmark |

### Voraussetzungen

keine



# 3.143 Teilleistung: Spezialveranstaltung Wirtschaftsinformatik [T-WIWI-109940]

Verantwortung: Prof. Dr. Christof Weinhardt

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101434 - eBusiness und Service Management

**Teilleistungsart** Prüfungsleistung anderer Art Leistungspunkte 4,5 **Turnus** Jedes Semester Version 2

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch das Ausarbeiten einer schriftlichen Dokumentation, einer Präsentation der Ergebnisse der durchgeführten praktischen Komponenten und der aktiven Beteiligung an den Diskussionen (nach §4(2), 3 SPO).

Bitte beachten Sie, dass auch eine praktische Komponente wie die Durchführung einer Umfrage, oder die Implementierung einer Applikation neben der schriftlichen Ausarbeitung zum regulären Leistungsumfang der Veranstaltung gehört. Die jeweilige Aufgabenstellung entnehmen Sie bitte der Veranstaltungsbeschreibung.

Die Gesamtnote setzt sich zusammen aus den benoteten und gewichteten Erfolgskontrollen (z.B. Dokumentation, mündl. Vortrag, praktische Ausarbeitung sowie aktive Beteiligung).

#### Voraussetzungen

siehe "Modellierte Voraussetzungen"

#### **Empfehlungen**

Keine

#### **Anmerkungen**

Für die Spezialveranstaltung Wirtschaftsinformatik können sich interessierte Studierende initiativ mit einem Themenvorschlag an die Wissenschaftlichen Mitarbeiter des Lehrstuhls von Prof. Weinhardt wenden.

Die Spezialveranstaltung Wirtschaftsinformatik entspricht dem Seminarpraktikum, wie es bisher nur für den Studiengang Wirtschaftsinformatik angeboten wurde. Mit dieser Veranstaltung wird die Möglichkeit, praktische Erfahrungen zu sammeln bzw. wissenschaftliche Arbeitsweise im Rahmen eines Seminarpraktikums zu erlernen, auch Studierenden des Wirtschaftsingenieurwesens und der Technischen Volkswirtschaftslehre zugänglich gemacht.

Die Spezialveranstaltung Wirtschaftsinformatik kann anstelle einer regulären Vorlesung (siehe Modulbeschreibung) gewählt werden. Sie kann aber nur einmal pro Modul angerechnet werden.



# 3.144 Teilleistung: Standortplanung und strategisches Supply Chain Management [T-WIWI-102704]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

M-WIWI-101414 - Methodische Grundlagen des OR M-WIWI-101421 - Supply Chain Management

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 4       |

| Lehrveranstaltungen |         |                                                                 |       |                 |        |
|---------------------|---------|-----------------------------------------------------------------|-------|-----------------|--------|
| WS 20/21            | 2550486 | Standortplanung und<br>strategisches Supply Chain<br>Management | 2 SWS | Vorlesung (V) / | Nickel |
| WS 20/21            | 2550487 | Übungen zu Standortplanung und strategisches SCM                | 1 SWS | Übung (Ü) / 🖥   | Pomes  |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).

Die Prüfung wird jedes Semester angeboten.

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

#### Voraussetzungen

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

#### **Empfehlungen**

Keine

#### **Anmerkungen**

Die Lehrveranstaltung wird in jedem Wintersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.



# 3.145 Teilleistung: Statistik - Klausur [T-MATH-106415]

Verantwortung: PD Dr. Bernhard Klar

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-103220 - Statistik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 10              | Jedes Wintersemester | 3       |

| Lehrveranstaltungen |         |                    |       |                   |      |
|---------------------|---------|--------------------|-------|-------------------|------|
| WS 20/21            | 0106800 | Statistik          | 4 SWS | Vorlesung (V) / 🖥 | Klar |
| WS 20/21            | 0106900 | Übungen zu 0106800 | 2 SWS | Übung (Ü) / 🗯     | Klar |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

# Voraussetzungen

Prüfungsvorleistung: Praktikumsschein

# **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-106416 - Statistik - Praktikum muss erfolgreich abgeschlossen worden sein.



# 3.146 Teilleistung: Statistik - Praktikum [T-MATH-106416]

Verantwortung: PD Dr. Bernhard Klar

**Einrichtung:** KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-103220 - Statistik

| Teilleistungsart          | Leistungspunkte | Turnus               | Version |
|---------------------------|-----------------|----------------------|---------|
| Studienleistung praktisch | 0               | Jedes Wintersemester | 1       |

| Lehrverans | taltungen |                      |       |                   |      |
|------------|-----------|----------------------|-------|-------------------|------|
| WS 20/21   | 0106910   | Praktikum zu 0106800 | 2 SWS | Praktikum (P) / 🖥 | Klar |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

# Voraussetzungen



# 3.147 Teilleistung: Strategic Finance and Technoloy Change [T-WIWI-110511]

Verantwortung: Prof. Dr. Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101423 - Topics in Finance II

M-WIWI-101465 - Topics in Finance I

**Teilleistungsart** Prüfungsleistung schriftlich **Leistungspunkte** 1,5

**Turnus** Jedes Sommersemester **Version** 

# Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Bei einer geringen Anzahl zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung abzuhalten.

# Voraussetzungen

Keine

#### **Empfehlungen**

Der Besuch der Vorlesung "Financial Management" wird dringend empfohlen.



# 3.148 Teilleistung: Strömungslehre 1&2 [T-MACH-105207]

**Verantwortung:** Prof. Dr.-Ing. Bettina Frohnapfel **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-102565 - Strömungslehre

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich8Jedes Sommersemester2

| Lehrverans | Lehrveranstaltungen |                    |       |                               |            |  |
|------------|---------------------|--------------------|-------|-------------------------------|------------|--|
| WS 20/21   | 2153512             | Strömungslehre II  | 3 SWS | Vorlesung / Übung<br>(VÜ) / ■ | Frohnapfel |  |
| WS 20/21   | 3153511             | Fluid Mechanics II | 3 SWS | Vorlesung / Übung<br>(VÜ) / 🖥 | Frohnapfel |  |
| SS 2021    | 2154512             | Strömungslehre I   | 3 SWS | Vorlesung / Übung<br>(VÜ) / ■ | Frohnapfel |  |
| SS 2021    | 3154510             | Fluid Mechanics I  | 3 SWS | Vorlesung / Übung<br>(VÜ) / 🖥 | Frohnapfel |  |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

# Erfolgskontrolle(n)

schriftliche Prüfung 3 Stunden

# Voraussetzungen

keine



# 3.149 Teilleistung: Systemdynamik und Regelungstechnik [T-ETIT-101921]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102181 - Systemdynamik und Regelungstechnik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 2       |

| Lehrverans | Lehrveranstaltungen |                                                              |       |                   |           |  |
|------------|---------------------|--------------------------------------------------------------|-------|-------------------|-----------|--|
| WS 20/21   | 2303155             | Systemdynamik und<br>Regelungstechnik                        | 2 SWS | Vorlesung (V) / 🖥 | Hohmann   |  |
| WS 20/21   | 2303156             | Tutorien zu 2303155<br>Systemdynamik und<br>Regelungstechnik | SWS   | Tutorium (Tu)     |           |  |
| WS 20/21   | 2303157             | Übungen zu 2303155<br>Systemdynamik und<br>Regelungstechnik  | 2 SWS | Übung (Ü) / 🖥     | Schneider |  |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

# Voraussetzungen

keine

# **Anmerkungen**

wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten



# 3.150 Teilleistung: Taktisches und operatives Supply Chain Management [T-WIWI-102714]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

M-WIWI-101421 - Supply Chain Management M-WIWI-103278 - Optimierung unter Unsicherheit

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Sommersemester | 3       |

| Lehrveranstaltungen |         |                                          |       |                   |               |
|---------------------|---------|------------------------------------------|-------|-------------------|---------------|
| SS 2021             | 2550486 | Taktisches und operatives SCM            | 2 SWS | Vorlesung (V) / 🖥 | Nickel        |
| SS 2021             | 2550487 | Übungen zu Taktisches und operatives SCM | 1 SWS | Übung (Ü) / 🖥     | Pomes, Bakker |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

# Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftlichen Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Die Prüfung wird jedes Semester angeboten.

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

## Voraussetzungen

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

#### **Empfehlungen**

Keine

# **Anmerkungen**

Die Lehrveranstaltung wird in jedem Sommersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.



# 3.151 Teilleistung: Technische Mechanik I [T-MACH-100282]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100279 - Technische Mechanik I

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich7Jedes Wintersemester2

| Lehrveranstaltungen |         |                                   |       |                   |                                |
|---------------------|---------|-----------------------------------|-------|-------------------|--------------------------------|
| WS 20/21            | 2161245 | Technische Mechanik I             | 3 SWS | Vorlesung (V) / 🗯 | Böhlke, Kehrer                 |
| WS 20/21            | 3161010 | Engineering Mechanics I (Lecture) | 3 SWS | Vorlesung (V) / 🗯 | Langhoff, Pallicity,<br>Böhlke |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

## Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 min, benotet

# Voraussetzungen

Bestehen der "Übungen zur Technischen Mechanik I" (siehe Teilleistung T-MACH-100528)

# **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100528 - Übungen zu Technische Mechanik I muss erfolgreich abgeschlossen worden sein.



# 3.152 Teilleistung: Technische Mechanik II [T-MACH-100283]

**Verantwortung:** Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100284 - Technische Mechanik II

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Sommersemester | 2       |

| Lehrveranstaltungen |         |                                    |       |                   |          |
|---------------------|---------|------------------------------------|-------|-------------------|----------|
| SS 2021             | 2162250 | Technische Mechanik II             | 3 SWS | Vorlesung (V) / 😘 | Böhlke   |
| SS 2021             | 3162010 | Engineering Mechanics II (Lecture) | 3 SWS | Vorlesung (V) / 🖥 | Langhoff |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

# Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 min, benotet

# Voraussetzungen

Bestehen der "Übungen zur Technischen Mechanik II" (siehe Teilleistung T-MACH-100284)

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100284 - Übungen zu Technische Mechanik II muss erfolgreich abgeschlossen worden sein.



# 3.153 Teilleistung: Technische Mechanik III & IV [T-MACH-105201]

**Verantwortung:** Prof. Dr.-Ing. Wolfgang Seemann **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102382 - Technische Mechanik III und IV

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 10              | Jedes Wintersemester | 2       |

| Lehrveranstaltungen |         |                                        |       |                   |         |
|---------------------|---------|----------------------------------------|-------|-------------------|---------|
| WS 20/21            | 2161203 | Technische Mechanik III                | 2 SWS | Vorlesung (V) / 🖥 | Seemann |
| WS 20/21            | 3161012 | Engineering Mechanics III<br>(Lecture) | 2 SWS | Vorlesung (V) / 🖥 | Seemann |
| SS 2021             | 2162231 | Technische Mechanik IV                 | 2 SWS | Vorlesung (V) / 🗯 | Seemann |
| SS 2021             | 3162012 | Engineering Mechanics 4                | 2 SWS | Vorlesung (V) / 🗯 | Seemann |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Schriftliche Prüfung (3 h), benotet

#### Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in TM III Ü (T-MACH-105202) sowie der Übungsblätter in TM IV Ü (T-MACH-105203).

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

- 1. Die Teilleistung T-MACH-105202 Übungen zu Technische Mechanik III muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung T-MACH-105203 Übungen zu Technische Mechanik IV muss erfolgreich abgeschlossen worden sein.



# 3.154 Teilleistung: Theoretische Grundlagen der Informatik [T-INFO-103235]

Verantwortung: Prof. Dr. Jörn Müller-Quade

Prof. Dr. Peter Sanders Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101172 - Theoretische Grundlagen der Informatik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 6               | Jedes Wintersemester | 1       |

| Lehrveranstaltungen |       |                                           |       |                 |                              |
|---------------------|-------|-------------------------------------------|-------|-----------------|------------------------------|
| WS 20/21            | 24005 | Theoretische Grundlagen der<br>Informatik | 3 SWS | Vorlesung (V) / | Ueckerdt, Sauer,<br>Brückner |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

## Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (i.d.R. 120 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Durch die erfolgreiche Bearbeitung von Übungsaufgaben kann ein Notenbonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

## Voraussetzungen

Keine.

# Anmerkungen



# 3.155 Teilleistung: Übungen zu Technische Mechanik I [T-MACH-100528]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100279 - Technische Mechanik I

| Teilleistungsart | Leistungspunkte | Turnus               | Version |
|------------------|-----------------|----------------------|---------|
| Studienleistung  | 0               | Jedes Wintersemester | 2       |

| Lehrverans | Lehrveranstaltungen |                                     |       |               |                                |
|------------|---------------------|-------------------------------------|-------|---------------|--------------------------------|
| WS 20/21   | 2161246             | Übungen zu Technische Mechanik<br>I | 2 SWS | Übung (Ü) / 🗯 | Dyck, Lang, Böhlke             |
| WS 20/21   | 3161011             | Engineering Mechanics I (Tutorial)  | 2 SWS | Übung (Ü) / 🗯 | Kehrer, Pallicity,<br>Langhoff |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

#### Erfolgskontrolle(n)

Testate sind in den folgenden vier Kategorien zu erbringen: schriftliche Pflicht-Hausaufgaben, schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien.

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als drei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik I" (siehe Teilleistung T-MACH-100282)

#### Voraussetzungen



# 3.156 Teilleistung: Übungen zu Technische Mechanik II [T-MACH-100284]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke

Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100284 - Technische Mechanik II

| Teilleistungsart            | Leistungspunkte | Turnus               | Version |
|-----------------------------|-----------------|----------------------|---------|
| Studienleistung schriftlich | 0               | Jedes Sommersemester | 2       |

| Lehrverans | Lehrveranstaltungen |                                      |       |               |                                |
|------------|---------------------|--------------------------------------|-------|---------------|--------------------------------|
| SS 2021    | 2162251             | Übungen zu Technische Mechanik<br>II | 2 SWS | Übung (Ü) / 🗯 | Dyck, Gajek, Böhlke            |
| SS 2021    | 3162011             | Engineering Mechanics II (Tutorial)  | 2 SWS | Übung (Ü) / 🖥 | Pallicity, Kehrer,<br>Langhoff |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

# Erfolgskontrolle(n)

Testate sind in den folgenden vier Kategorien zu erbringen: schriftliche Pflicht-Hausaufgaben, schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien.

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als zwei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien .

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik II" (siehe Teilleistung T-MACH-100283).

#### Voraussetzungen



# 3.157 Teilleistung: Übungen zu Technische Mechanik III [T-MACH-105202]

**Verantwortung:** Prof. Dr.-Ing. Wolfgang Seemann **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102382 - Technische Mechanik III und IV

| Teilleistungsart            | Leistungspunkte | Turnus               | Version |
|-----------------------------|-----------------|----------------------|---------|
| Studienleistung schriftlich | 0               | Jedes Wintersemester | 2       |

| Lehrveranstaltungen |         |                                         |       |               |                           |
|---------------------|---------|-----------------------------------------|-------|---------------|---------------------------|
| WS 20/21            | 2161204 | Übungen zu Technische Mechanik<br>III   | 2 SWS | Übung (Ü) / 🖥 | Seemann, Altoé,<br>Bitner |
| WS 20/21            | 3161013 | Engineering Mechanics III<br>(Tutorial) | 2 SWS | Übung (Ü) / 🖥 | Seemann, Altoé,<br>Bitner |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

# Erfolgskontrolle(n)

Testate, erfolgreiche Bearbeitung von Übungsblättern

# Voraussetzungen

keine



# 3.158 Teilleistung: Übungen zu Technische Mechanik IV [T-MACH-105203]

**Verantwortung:** Prof. Dr.-Ing. Wolfgang Seemann **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102382 - Technische Mechanik III und IV

| Teilleistungsart            | Leistungspunkte | Turnus               | Version |
|-----------------------------|-----------------|----------------------|---------|
| Studienleistung schriftlich | 0               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                    |       |               |                            |
|---------------------|---------|----------------------------------------------------|-------|---------------|----------------------------|
| SS 2021             | 2162232 | Übungen zu Technische Mechanik<br>4 für mach, tema | 2 SWS | Übung (Ü)     | Seemann, Luo,<br>Schröders |
| SS 2021             | 3162013 | Engineering Mechanics 4 (Tutorial)                 | 2 SWS | Übung (Ü) / 😘 | Seemann, Luo,<br>Schröders |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

# Erfolgskontrolle(n)

Testate, erfolgreiche Bearbeitung von Übungsblättern

# Voraussetzungen

keine



# 3.159 Teilleistung: Unternehmensführung und Strategisches Management [T-WIWI-102629]

Verantwortung: Prof. Dr. Hagen Lindstädt

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101425 - Strategie und Organisation

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 3,5             | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |  |                                                     |       |                   |           |
|---------------------|--|-----------------------------------------------------|-------|-------------------|-----------|
| SS 2021             |  | Unternehmensführung und<br>Strategisches Management | 2 SWS | Vorlesung (V) / 🖥 | Lindstädt |

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

# Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

# Voraussetzungen



# 3.160 Teilleistung: Visual Computing [T-WIWI-110108]

Verantwortung: Dr. Tatiana Landesberger von Antburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101399 - Vertiefung Informatik

**Teilleistungsart** Prüfungsleistung schriftlich **Leistungspunkte** 4,5

**Turnus** Einmalig Version 2

### Erfolgskontrolle(n)

Die Prüfung wird für Erstschreiber ausschließlich im Sommersemester 2019 angeboten. Die Wiederholungsprüfung erfolgt im Wintersemester 2019/2020 (nur für Wiederholer).

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) oder in Form einer mündlichen Prüfung (30min.) (nach §4(2), 2 SPO).

# Voraussetzungen

Keine.

# **Anmerkungen**

Die Vorlesung wird einmalig im Sommersemester 2019 angeboten.



# 3.161 Teilleistung: Volkswirtschaftslehre I: Mikroökonomie [T-WIWI-102708]

Verantwortung: Prof. Dr. Clemens Puppe

Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101398 - Einführung in die Volkswirtschaftslehre

M-WIWI-103396 - Einführung in die Volkswirtschaftslehre: VWL I

TeilleistungsartLeistungspunkteTurnusVersionPrüfungsleistung schriftlich5Jedes Wintersemester1

| Lehrveranst | taltungen |                                           |       |                   |      |
|-------------|-----------|-------------------------------------------|-------|-------------------|------|
| WS 20/21    | 2610012   | Volkswirtschaftslehre I:<br>Mikroökonomie | 3 SWS | Vorlesung (V) / 🗣 | Reiß |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

#### Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) (nach §4(2), 1 SPO).

Die Prüfung (Hauptklausur) wird im Anschluss an die Vorlesung angeboten. Die Nachklausur folgt im gleichen Prüfungszeitraum. Zulassungsberechtigt zur Nachklausur sind i.d.R. nur Wiederholer. Näheres bei den Klausurregelungen des Instituts.

#### Voraussetzungen



# 3.162 Teilleistung: Volkswirtschaftslehre II: Makroökonomie [T-WIWI-102709]

Verantwortung: Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101398 - Einführung in die Volkswirtschaftslehre

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 5               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                            |       |                   |                |
|---------------------|---------|--------------------------------------------|-------|-------------------|----------------|
| SS 2021             | 2600014 | Volkswirtschaftslehre II:<br>Makroökonomie | 4 SWS | Vorlesung (V) / 🖥 | Ott            |
| SS 2021             | 2660015 | Tutorien zu Volkswirtschaftslehre<br>II    | 2 SWS | Tutorium (Tu) / 🖥 | Scheidt, Scheu |

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

# Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min.) nach § 4 Abs. 2 Nr. 1 SPO.

# Voraussetzungen



# 3.163 Teilleistung: Volkswirtschaftslehre III: Einführung in die Ökonometrie [T-WIWI-102736]

Verantwortung: Prof. Dr. Melanie Schienle

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101499 - Angewandte Mikroökonomik

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 5               | Jedes Sommersemester | 1       |

| Lehrveranstaltungen |         |                                                             |       |                   |                            |
|---------------------|---------|-------------------------------------------------------------|-------|-------------------|----------------------------|
| SS 2021             |         | Volkswirtschaftslehre III:<br>Einführung in die Ökonometrie | 2 SWS | Vorlesung (V) / 🖥 | Schienle, Rüter            |
| SS 2021             | 2520017 | Übungen zu VWL III                                          | 2 SWS | Übung (Ü) / 🖥     | Schienle, Rüter,<br>Görgen |

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

#### Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als 90-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) oder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), angeboten.

#### Voraussetzungen



# 3.164 Teilleistung: Wahrscheinlichkeitstheorie [T-MATH-102257]

Verantwortung: Prof. Dr. Nicole Bäuerle

Prof. Dr. Vicky Fasen-Hartmann Prof. Dr. Norbert Henze

Prof. Dr. Daniel Hug PD Dr. Bernhard Klar Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

**Bestandteil von:** M-MATH-101322 - Wahrscheinlichkeitstheorie

**Teilleistungsart** Prüfungsleistung schriftlich

Leistungspunkte

Version 1

| Lehrverans | Lehrveranstaltungen |                                                     |       |               |     |
|------------|---------------------|-----------------------------------------------------|-------|---------------|-----|
| SS 2021    | 0158400             | Wahrscheinlichkeitstheorie                          | 3 SWS | Vorlesung (V) | Hug |
| SS 2021    | 0158500             | Übungen zu<br>Wahrscheinlichkeitstheorie<br>0158400 | 1 SWS | Übung (Ü)     | Hug |

## Voraussetzungen

keine



# 3.165 Teilleistung: Wettbewerb in Netzen [T-WIWI-100005]

Verantwortung: Prof. Dr. Kay Mitusch

**Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101499 - Angewandte Mikroökonomik

M-WIWI-101668 - Wirtschaftspolitik I

| Teilleistungsart             | Leistungspunkte | Turnus               | Version |
|------------------------------|-----------------|----------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | Jedes Wintersemester | 3       |

| Lehrveranstaltungen |         |                               |       |               |                             |
|---------------------|---------|-------------------------------|-------|---------------|-----------------------------|
| WS 20/21            | 2561204 | Wettbewerb in Netzen          | 2 SWS | Vorlesung (V) | Mitusch                     |
| WS 20/21            | 2561205 | Übung zu Wettbewerb in Netzen | 1 SWS | Übung (Ü)     | Wisotzky, Mitusch,<br>Corbo |

# Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60 min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

# Voraussetzungen

Keine.

# **Empfehlungen**

Grundkenntnisse und Fertigkeiten der Mikroökonomie aus einem Bachelorstudium der Ökonomie werden vorausgesetzt.

# **Anmerkungen**

Aufgrund des Forschungssemesters von Prof. Mitusch wird die Lehrveranstaltung zur Teilleistung im Wintersemester 2020/2021 nicht angeboten. Es wird in jedem Semester eine Prüfung angeboten.



# 3.166 Teilleistung: Wohlfahrtstheorie [T-WIWI-102610]

Verantwortung: Prof. Dr. Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

| Teilleistungsart             | Leistungspunkte | Turnus            | Version |
|------------------------------|-----------------|-------------------|---------|
| Prüfungsleistung schriftlich | 4,5             | siehe Anmerkungen | 3       |

| Lehrveranstaltungen |         |                             |       |                   |                 |
|---------------------|---------|-----------------------------|-------|-------------------|-----------------|
| SS 2021             | 2520517 | Wohlfahrtstheorie           | 2 SWS | Vorlesung (V) / 🖥 | Puppe, Rollmann |
| SS 2021             | 2520518 | Übung zur Wohlfahrtstheorie | 1 SWS | Übung (Ü) / 🖥     | Puppe, Rollmann |

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

# Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

#### Voraussetzungen

Die Veranstaltung Volkswirtschaftslehre I (Mikroökonomie) [2610012] muss erfolgreich abgeschlossen sein.

#### **Modellierte Voraussetzungen**

Es müssen die folgenden Bedingungen erfüllt werden:

 Die Teilleistung T-WIWI-102708 - Volkswirtschaftslehre I: Mikroökonomie muss erfolgreich abgeschlossen worden sein.

## **Empfehlungen**

Keine

#### **Anmerkungen**

Die Veranstaltung findet nur jedes zweite Sommersemester statt, der nächste Durchgang ist im Sommersemester 2021 geplant.

## Karlsruher Institut für Technologie

# Studienplan Bachelor Mathematik

14. August 2019

# 1 Qualifikationsziele

Ausbildungsziel des Bachelorstudiengangs Mathematik ist die Qualifizierung für eine berufliche Tätigkeit in der Wirtschaft (insbesondere bei Banken, Versicherungen und Unternehmensberatungen), in der Industrie (insbesondere im Bereich der Simulation bzw. Interpretation von Simulationsergebnissen sowie im Bereich Softwareerstellung für verschiedene Belange) sowie für einen anschließenden Masterstudiengang in Mathematik, Informatik, den Ingenieur- und Naturwissenschaften oder den Wirtschaftswissenschaften.

#### Fachliche Kernkompetenzen:

Die Absolventinnen und Absolventen verfügen über fundierte mathematische Kenntnisse. Sie haben einen breiten Überblick über die grundlegenden **mathematischen Gebiete** Algebra und Geometrie, Analysis, Angewandte und Numerische Mathematik sowie Stochastik und sind in der Lage, Zusammenhänge innerhalb dieser Gebiete und zwischen diesen Gebieten zu benennen. Sie können Probleme mit einem mathematischen Bezug erkennen und mit geeigneten Methoden lösen. Wenn nötig verwenden sie dazu mathematische Software. Absolventinnen und Absolventen sind in der Lage, die gewonnenen Erkenntnisse in andere Teilgebiete der Mathematik oder in Anwendungen zu transferieren. Sie verfügen über Abstraktionsvermögen und die Befähigung zum Erkennen von Analogien und Grundmustern. Sie sind zu konzeptionellem, analytischem und logischem Denken in der Lage.

#### Überfachliche Qualifikationen:

Absolventinnen und Absolventen können Probleme mit mathematischem Bezug einordnen, erkennen, formulieren und lösen. Der Umgang mit dem Fachwissen erfolgt unter Berücksichtigung von gesellschaftlichen, wissenschaftlichen und ethischen Erkenntnissen. Absolventinnen und Absolventen sind in der Lage, relevante Information zu sammeln, zu bewerten und zu interpretieren. Diese Vorgehensweisen können sie selbständig oder auch in internationalen Teams durchführen. Dabei sind sie in der Lage, ihre Entscheidungen zu erläutern und darüber zu diskutieren. Die gewonnenen Ergebnisse können sie eigenständig interpretieren, validieren und illustrieren. Insbesondere können sie souverän mit elektronischen Medien umgehen. Absolventinnen und Absolventen sind in der Lage, Lernstrategien für lebenslanges Lernen umzusetzen, wobei sie ein ausgeprägtes Durchhaltevermögen entwickelt haben.

#### Lernergebnisse:

Die Absolventinnen und Absolventen können mathematische Methoden benennen, erklären und selbständig anwenden. Sie haben ein fundiertes, breites Wissen in den mathematischen Gebieten Algebra und Geometrie, Analysis, Angewandte und Numerische Mathematik und Stochastik.

Je nach Anwendungsfach besitzen die Absolventinnen und Absolventen ein Wissen über spezielle mathematische Modelle und Methoden. Dies befähigt sie, im jeweiligen Bereich Aufgaben zu analysieren und die Ergebnisse zu beurteilen.

# 2 Gliederung des Studiums

Das Studium wird in Fächer und diese in Module gegliedert, wobei die meisten Module aus einer Vorlesung (mit oder ohne Übung) oder einem Seminar bestehen. Für die sogenannten *Basis-* und *Grundmodule* (siehe unten) werden in der Regel zusätzlich Tutorien angeboten. Gewisse Module sind verpflichtend für jeden Studierenden, andere können je nach Vorliebe gewählt werden. Jedes Modul schließt mit einer Leistungskontrolle ab. Der durchschnittliche Arbeitsaufwand wird in Leistungspunkten (LP) gemessen. Im Allgemeinen werden Module benotet. Ausnahmen sind z.B. Seminarmodule, die als unbenotete Studienleistungen nur bestanden oder nicht bestanden werden können. Die Bachelorarbeit besteht aus einem eigenen Modul mit 12 Leistungspunkten. Insgesamt müssen im Bachelorstudium 180 Leistungspunkte erworben werden, etwa gleichmäßig verteilt auf 6 Semester.

Das **1. Studienjahr** ist weitestgehend festgelegt. Basis für alle weiteren Lehrveranstaltungen sind die beiden *verpflichtenden* Basismodule "Lineare Algebra 1+2" und "Analysis 1+2" aus Fach 1 "Mathematische Grundstrukturen", die jeweils aus zwei

1

Vorlesungen (Teil 1 und Teil 2) mit den zugehörigen Übungen und Tutorien bestehen und von denen jeweils der erste Teil im 1. Semester und der zweite Teil im 2. Semester zu belegen ist. Die Module "Lineare Algebra 1+2" und "Analysis 1+2" haben jeweils den Umfang von 18 Leistungspunkten.

Die schriftlichen Modulteilprüfungen zu Lineare Algebra 1 und zu Analysis 1 sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen) und können schon nach dem ersten Semester abgelegt werden. Am Ende des zweiten Semesters können ferner die schriftlichen Teilprüfungen zu Lineare Algebra 2 und zu Analysis 2 abgelegt werden. Es ist aber auch möglich, die Teilprüfungen zu Lineare Algebra 1 und zu Lineare Algebra 2 beziehungsweise die Teilprüfungen zu Analysis 1 und zu Analysis 2 erst am Ende des zweiten Semesters abzulegen.

Neben diesen Basismodulen wird empfohlen, im 1. Semester einen Programmierkurs (Fach 1 "Mathematische Grundstrukturen") im Umfang von 6 Leistungspunkten und im 2. Semester ein Proseminar im Umfang von 3 Leistungspunkten (Fach 3 "Mathematisches Seminar") zu belegen.

Schon am Anfang des Studiums wird ein *Anwendungsfach* gewählt (siehe Fach 4 in Abschnitt 3). Für das erste Studienjahr sind hier etwa 8–10 Leistungspunkte vorgesehen, insgesamt über alle 6 Semester sind im Anwendungsfach 23–31 Leistungspunkte zu erwerben. Insgesamt sollte die Belastung im ersten Studienjahr den Umfang von 60 Leistungspunkten (etwa je 30 Leistungspunkte in den ersten beiden Semestern) erreichen.

Die Stundenpläne des **2. und 3. Studienjahres** sind nicht vollständig festgelegt und können freier gestaltet werden. Es müssen allerdings das verpflichtende Basismodul "Analysis 3" mit 9 Leistungspunkten (Fach 1 "Mathematische Grundstrukturen") sowie im Fach "Grundlagen Angewandte Mathematik" die verpflichtenden *Grundmodule* "Numerische Mathematik 1+2" (12 Leistungspunkte), "Einführung in die Stochastik" (6 Leistungspunkte) sowie eines der Module "Wahrscheinlichkeitstheorie" oder "Markovsche Ketten" (6 Leistungspunkte) bestanden werden. Auch diese Module werden in der Regel in Klausuren geprüft. Es sind weiter ein Proseminar (sofern nicht schon im 2. Semester) und ein Seminar jeweils im Umfang von 3 Leistungspunkten erfolgreich zu absolvieren.

Zusätzlich müssen im Fach 5 "Mathematische Vertiefung" 50–58 Leistungspunkte aus den vier mathematischen Gebieten Algebra und Geometrie, Analysis, Stochastik oder Angewandte und Numerische Mathematik erzielt werden, wobei mindestens je 8 Leistungspunkte aus den Gebieten Algebra und Geometrie *sowie* Analysis kommen müssen.

Ferner sind 6 Leistungspunkte an *überfachlichen Qualifikationen* im (Fach 6 "Überfachliche Qualifikationen") zu erwerben, siehe Abschnitt 3.

# 3 Die Fächer und ihre Module

Wie in Abschnitt 2 schon erwähnt, gibt es die vier mathematischen Gebiete Algebra und Geometrie, Analysis, Stochastik sowie Angewandte und Numerische Mathematik. Im Verlauf des Bachelorstudiums sollen Kenntnisse aus allen Gebieten erworben werden. Aus diesem Grund werden fr das Fach 5 (Mathematische Vertiefung) Nebenbedingungen formuliert, die dies sicherstellen sollen.

Es folgt eine kommentierte Auflistung der in der Studien- und Prüfungsordnung vorgesehenen Fächer und ihrer Module. Wir benutzen hier (und in den folgenden Abschnitten) die folgenden Abkürzungen: SWS=Semesterwochenstunden, LP=Leistungspunkte, Ws=Wintersemester, Ss=Sommersemester

### Fach 1: Mathematische Grundstrukturen, Module im Umfang von 51 LP

Neben den Vorlesungen und Übungen finden zu den Basis- und Grundmodulen in der Regel noch Tutorien statt, die in nachfolgender Tabelle nicht berücksichtigt sind, sich aber in der Berechnung der Leistungspunkte widerspiegeln.

|      | Modulname           | Turnus   | SWS   | LP |
|------|---------------------|----------|-------|----|
|      |                     |          |       |    |
| (B1) | Lineare Algebra 1+2 |          |       |    |
|      | Teil 1:             | jedes Ws | 4+2   | 9  |
|      | Teil 2:             | jedes Ss | 4+2   | 9  |
| (B2) | Analysis 1+2        |          |       |    |
|      | Teil 1:             | jedes Ws | 4+2   | 9  |
|      | Teil 2:             | jedes Ss | 4+2   | 9  |
| (B3) | Analysis 3          | jedes Ws | 4+2   | 9  |
| (B4) | Programmieren       | iedes Ws | 2+2+2 | 6  |

Das Modul (B4) muss inhaltlich dem Modul "Programmieren: Einstieg in die Informatik und algorithmische Mathematik" entsprechen, welches sich aus einer Vorlesung mit 2 SWS, einer Übung mit 2 SWS und einem Praktikum mit 2 SWS zusammensetzt. Alle Module (B1)–(B4) werden in der Regel durch *Klausuren* geprüft. Die genauen Modalitäten sind den Modulbeschreibungen zu entnehmen, die vor jedem Semester veröffentlicht werden.

# Fach 2: Grundlagen Angewandte Mathematik, Module im Umfang von 24 LP

Von den drei **Grundmodulen** des Gebiets Stochastik muss (G1) gehört werden sowie eines der Module (G2) oder (G3). Als Grundlage für die Masterstudiengänge wird (G2) empfohlen.

Das verpflichtende Grundmodul (G4) ist dem Gebiet Angewandte und Numerische Mathematik zugeordnet.

|      | Modulname                    | Turnus   | SWS | LP |
|------|------------------------------|----------|-----|----|
|      |                              |          |     |    |
| (G1) | Einführung in die Stochastik | jedes Ws | 3+1 | 6  |
| (G2) | Wahrscheinlichkeitstheorie   | jedes Ss | 3+1 | 6  |
| (G3) | Markovsche Ketten            | jedes Ss | 3+1 | 6  |
| (G4) | Numerische Mathematik 1+2    |          |     |    |
|      | Teil 1:                      | jedes Ws | 3+1 | 6  |
|      | Teil 2:                      | jedes Ss | 3+1 | 6  |

Die vorgeschriebenen Grundmodule in Stochastik und in Angewandter und Numerischer Mathematik können parallel im 3. und 4. Semester gehört werden, aber auch sequenziell im 3. und 4. sowie im 5. und 6. Semester. Alle Module (G1)–(G4) werden in der Regel durch *Klausuren* geprüft. Die genauen Modalitäten sind den Modulbeschreibungen zu entnehmen, die vor jedem Semester veröffentlicht werden.

## Fach 3: Mathematisches Seminar, Module im Umfang von 6 LP

Es sind jeweils ein Proseminar mit 3 LP und ein Seminar mit 3 LP im Verlauf des Studiums als unbenotete Studienleistung zu bestehen. Die Auswahl eines geeigneten Proseminars oder Seminars kann nach individuellem Interesse aus dem reichhaltigen Angebot des jeweiligen Semesters erfolgen. Nähere Informationen gibt das Modulhandbuch.

## Fach 4: Anwendungsfach, Module im Umfang von 23-31 LP

Im Bachelorstudiengang Mathematik muss ferner (genau) ein Anwendungsfach studiert werden. Zugelassen sind die Fächer

- (a) Informatik
- (b) Physik
- (c) Wirtschaftswissenschaften
- (d) Maschinenbau
- (e) Elektrotechnik und Informationstechnik

Auf Antrag an den Prüfungsausschuss können auch andere Fächer zugelassen werden. Zu Beginn des Studiums wird eines dieser Fächer gewählt und damit festgelegt. Dies geschieht durch die Wahl eines Moduls in einem der Fächer.

Die nachfolgend aufgeführten Module werden von den jeweiligen Fakultäten Informatik, Physik, Wirtschaftswissenschaften, Maschinenbau, Elektrotechnik und Informationstechnik regelmäßig angeboten (jetziger Stand). Bei manchen Modulen ist die Anmeldung zur Prüfung nur dann möglich, wenn bestimmte *Zulassungsvoraussetzungen* erfüllt sind, die im Modulhandbuch spezifiziert werden. Die Spanne von 23–31 LP entsteht, da die Belegung der Leistungspunkte in der Regel von den anbietenden Fakultäten übernommen wird.

### • Informatik:

- Grundbegriffe der Informatik, Ws, 3+1 SWS (6 LP)
- Algorithmen I, Ss, 3+1 SWS (6 LP)
- Softwaretechnik I, Ss, 3+1 SWS (6 LP)
- Theoretische Grundlagen der Informatik, Ws, 3+1 SWS (6 LP)
- Betriebssysteme, Ws, 3+1 SWS (6 LP)
- Kommunikation und Datenhaltung, Ss, 4+2 SWS (8 LP)
- Einführung in Rechnernetze, Ss, 2+1 SWS (4LP)
- Algorithmen II, Ws, 3+1 SWS (6 LP)

Die ersten zwei Module sind verpflichtend, aus den anderen kann gewählt werden. An Stelle dieser optionalen Module können auf Antrag an den Prüfungsausschuss auch andere Module genehmigt werden.

#### • Physik:

- (A) Theoretische Physik
  - \* Klassische Theoretische Physik I (Einführung), Ws, 2+2 SWS (6 LP)
  - \* Klassische Theoretische Physik II (Mechanik), Ss, 2+2 SWS (6 LP)
  - \* Klassische Theoretische Physik III (Elektrodynamik), Ws, 4+2 SWS (8 LP)
  - $\ast\,$  Moderne Theoretische Physik I (Quantenmechanik I), Ss, 4+2 SWS (8 LP)
  - \* Moderne Theoretische Physik II (Quantenmechanik II), Ws, 4+1 SWS (6 LP)
  - \* Moderne Theoretische Physik III (Statistische Physik), Ws, 4+2 SWS (8 LP)
- (B) Experimentalphysik
  - \* Klassische Experimentalphysik I (Mechanik), Ws, 4+2 SWS (8 LP)
  - \* Klassische Experimentalphysik II (Elektrodynamik), Ss, 3+2 SWS (7 LP)
  - \* Klassische Experimentalphysik III (Optik und Thermodynamik), Ws, 5+2 SWS (9 LP)
  - \* Moderne Experimentalphysik I (Atome und Kerne), Ss, 4+2 SWS (8 LP)
  - \* Moderne Experimentalphysik II (Festkörper und Molekle), Ws, 4+2 SWS (8 LP)
  - \* Moderne Experimentalphysik III (Teilchen und Hadronen), Ss, 3+1.5 SWS (6 LP)

Im Fach Physik muss ein Modul aus der Experimentalphysik (Liste (B)) und eines der fünf Module Klassische Theoretische Physik II oder III oder Moderne Theoretische Physik I bis III bestanden werden. Wir empfehlen zu Beginn entweder die Module Klassische Theoretische Physik I und II oder die Module Klassische Experimentalphysik I und II abzulegen.

#### • Wirtschaftswissenschaften:

Unter den zu erbringenden 23-31 LP muss einer der beiden folgenden Blöcke sein (Pflichtbereich):

- Block I: Betriebswirtschaftslehre

Modul: Grundlagen BWL 1:

BWL Finanzwirtschaft und Rechnungswesen (FR), Ws, 2+0+2 SWS (4 LP)

BWL Unternehmensführung und Informationswirtschaft (UI), Ws, 2+0 SWS (3 LP)

Modul: Grundlagen BWL 2:

BWL Produktionswirtschaft und Marketing (PM), Ss, 2+0+2 SWS (4 LP)

Rechnungswesen (ReWe), Ws, 2+2 SWS (4 LP)

- Block II: Einführung in die Volkswirtschaftslehre

Modul: Einführung in die Volkswirtschaftslehre

VWL I (Mikroökonomie), Ws, 3+2 SWS (5 LP)

VWL II (Makroökonomie), Ss, 3+2 SWS (5 LP)

Wahlpflichtbereich: Wurde Block I im Pflichtbereich nicht gewählt, so können die Module BWL I und BWL II im Wahlpflichtbereich einzeln oder beide gewählt werden. Wurde Block II im Pflichtbereich nicht gewählt, dann kann entweder das Modul "Einführung in die Volkswirtschaftslehre" oder das Modul "Einführung in die Volkswirtschaftslehre: VWL I" im Wahlpflichtbereich gewählt werden. Im Wahlpflichtbereich können auch ein oder zwei Module (jeweils mit 9 LP) aus dem Vertiefungsprogramm des Studiengangs Bachelor Wirtschaftsingenieurwesen in einem der Gebiete Betriebswirtschaftslehre, Volkswirtschaftslehre, Informatik oder Operations Research gewählt werden. Eine explizite Auflistung aller zur Auswahl stehenden Module findet sich im Modulhandbuch.

## • Anwendungsfach Maschinenbau:

- Technische Mechanik I, Ws, 3+2 SWS (7 LP)
- Technische Mechanik II, Ss, 2+2 SWS (6 LP)
- Technische Mechanik III/IV (10 LP)

Technische Mechanik III, Ws, 2+2 SWS Technische Mechanik IV, Ss, 2+2 SWS

- Strömungslehre (8 LP)

Strömungslehre Teil 1, Ss, 2+1 SWS Strömungslehre Teil 2, Ws, 2+1 SWS

- Mess- und Regelungstechnik, Ws, 3+1 SWS (7 LP)

4

- Maschinenkonstruktionslehre (8 LP)

Maschinenkonstruktionslehre Grundlagen I, Ws, 2+1 SWS Maschinenkonstruktionslehre Grundlagen II, Ss, 2+1 SWS

Die ersten 3 Module sind verpflichtend, aus den anderen kann gewählt werden. Für diese sind auf Antrag an den Prüfungsausschuss auch andere Module denkbar.

#### Elektrotechnik und Informationstechnik:

- Lineare Elektrische Netze, Ws, 4+1 SWS (7 LP)
- Digitaltechnik, Ws, 3+1 SWS (6 LP)
- Elektronische Schaltungen, Ss, 3+1 SWS (6 LP)
- Elektromagnetische Felder, Ss, 2+2 SWS (6 LP)
- Elektromagnetische Wellen, Ws, 2+2 SWS (6 LP)
- Signale und Systeme, Ws, 2+2 SWS (6 LP)
- Systemdynamik und Regelungstechnik, Ss, 2+2 SWS (6 LP)

Die ersten 3 Module sind verpflichtend, aus den anderen kann gewählt werden. Für diese sind auf Antrag an den Prüfungsausschuss auch andere Module denkbar.

#### Fach 5: Mathematische Vertiefung, Module im Umfang von 50-58 LP

Die Module im Fach 5 "Mathematische Vertiefung" können weitgehend frei gewählt werden. Allerdings müssen 8 LP aus dem Gebiet Algebra und Geometrie und 8 LP aus dem Gebiet Analysis kommen. Die Festlegung der zur Auswahl stehenden Module wird im Modulhandbuch getroffen. Im Anwendungsfach und im Fach Mathematische Vertiefung müssen zusammen 81 LP erzielt werden. Im Fach Mathematische Vertiefung können maximal zwei unbenotete Seminare (mit je 3 LP) eingebracht werden.

|    |                 | Modulname                               | Turnus   | SWS | LP |
|----|-----------------|-----------------------------------------|----------|-----|----|
|    |                 |                                         |          |     | _  |
| (C | i5)             | Optimierungstheorie                     | jedes Ss | 4+2 | 8  |
| (C | <del>i</del> 6) | Elementare Geometrie                    | jedes Ws | 4+2 | 8  |
| (C | <del>i</del> 7) | Einführung in Algebra und Zahlentheorie | jedes Ss | 4+2 | 8  |
| (C | (8              | Analysis 4                              | jedes Ss | 4+2 | 8  |

Das Grundmodul (G5) ist dem Gebiet Angewandte und Numerische Mathematik zugeordnet und wird insbesondere bei Wahl des Anwendungsfachs Wirtschaftswissenschaften empfohlen. Die **Grundmodule** (G6) und (G7) gehören zum Gebiet Algebra und Geometrie, das Grundmodul (G8) ist dem Gebiet Analysis zugeordnet und behandelt Differentialgleichungen und Funktionentheorie.

Die Module (G5)–(G8) werden in der Regel durch *Klausuren* geprüft. Die genauen Modalitäten sind den Modulbeschreibungen zu entnehmen, die vor jedem Semester veröffentlicht werden.

Neben den im letzten Abschnitt aufgeführten Basis- und Grundmodulen gibt es weiterführende Module, sogenannte **Aufbaumodule**. Im Folgenden führen wir nur diejenigen auf, die in der Regel jedes Jahr angeboten werden. Viele weitere werden nur jedes zweite Jahr oder unregelmässig angeboten, dienen aber ebenfalls der Vorbereitung auf die Bachelorarbeit in einem Spezialgebiet. Das Modulhandbuch enthält genaue Angaben zu den angebotenen Modulen insbesondere über Semesterstundenzahl, Leistungspunkte, Voraussetzungen, Prüfungsmodalitäten sowie die Einordnung in die mathematischen Gebiete. Die folgenden Module entsprechen alle einem Arbeitsaufwand von 8 Leistungspunkten (bis auf Statistik).

- Gebiet Algebra und Geometrie
  - Algebra (4+2 SWS, Ws)
  - Differentialgeometrie (4+2 SWS, Ss)
  - Geometrische Gruppentheorie (4+2 SWS, Ss)
- Gebiet Analysis
  - Klassische Methoden für partielle Differentialgleichungen (4+2 SWS, Ws)
  - Rand- und Eigenwertprobleme (4+2 SWS, Ss)
  - Funktionalanalysis (4+2 SWS, Ws)

- Spektraltheorie (4+2 SWS, Ss)
- Gebiet Angewandte und Numerische Mathematik
  - Numerische Methoden für Differentialgleichungen (4+2 SWS, Ws)
  - Einführung in das Wissenschaftliche Rechnen (3+3 SWS, Ss)
  - Inverse Probleme (4+2 SWS, Ws)<sup>1</sup>
- · Gebiet Stochastik
  - Finanzmathematik in diskreter Zeit (4+2 SWS, Ws)
  - Statistik (4+2+2 SWS, 10 Leistungspunkte, Ws)

Die aufgeführten Aufbaumodule, ausgenommen das Modul Statistik, können auch in den Masterstudiengängen gewählt werden, wenn sie im Bachelorbereich noch nicht geprüft worden sind.

# Fach 6: Überfachliche Qualifikationen, Module im Umfang von 6 LP

Teil des Studiums ist auch der Erwerb von überfachlichen Qualifikationen. Zu diesem Bereich zählen überfachliche Veranstaltungen zu gesellschaftlichen Themen, fachwissenschaftliche Ergänzungsangebote, welche die Anwendung des Fachwissens im Arbeitsalltag vermitteln, Kompetenztraining zur gezielten Schulung von Soft Skills sowie Fremdsprachentraining im fachwissenschaftlichen Kontext. Innerhalb des Studiengangs werden bereits überfachliche Qualifikationen integrativ vermittelt wie z.B. Teamarbeit, soziale Kommunikation, Präsentationserstellung und -techniken, Programmierkenntnisse und Englisch als Fachsprache.

Der Bachelorstudiengang Mathematik an der Fakultät für Mathematik zeichnet sich durch einen hohen Grad an Interdisziplinarität aus. So werden schon zu Beginn des Studiums grundlegende Programmierkenntnisse erworben und in diesem Rahmen das algorithmische Denken geschult. Ferner werden durch die Wahl eines Anwendungsfachs verschiedene Wissensbestände integrativer Bestandteil des Studiengangs. Darüber hinaus tragen die Tutorienmodelle der Basis- und Grundmodule wesentlich zur Förderung der Soft Skills bei. Die innerhalb des Studiengangs integrativ vermittelten überfachlichen Qualifikationen lassen sich dabei den folgenden Bereichen zuordnen:

## • Basiskompetenzen (soft skills)

- 1. Teamarbeit, soziale Kommunikation (Arbeit in Kleingruppen, gemeinsames Bearbeiten der Hausaufgaben und Nacharbeiten des Vorlesungsstoffes)
- 2. Präsentationserstellung und -Techniken (Proseminar- und Seminarvorträge)
- Logisches und systematisches Argumentieren und Schreiben (im Tutorium, Seminar bzw. Proseminar, beim Ausarbeiten der Vorträge und Verfassen der Hausaufgaben)
- 4. Englisch als Fachsprache

#### • Orientierungswissen

- 1. Vermittlung von interdisziplinärem Wissen über ein Anwendungsfach
- 2. Medien, Technik und Innovation

Neben der integrativen Vermittlung von überfachlichen Qualifikationen ist der additive Erwerb von überfachlichen Qualifikationen im Umfang von 6 Leistungspunkten vorgesehen. Im Modul Überfachlichen Qualifikationen können neben der Vorlesung Einführung in Python auch Veranstaltungen des House of Competence (HoC), des Sprachenzentrums oder des Zentrums für Angewandte Kulturwissenschaften (ZAK) belegt werden. Das aktuelle Angebot ergibt sich aus dem semesterweise aktualisierten Veranstaltungsprogramm. Die Inhalte werden in den Beschreibungen der Veranstaltungen auf den Internetseiten des HoC (http://www.hoc.kit.edu/studium), des ZAK (http://www.zak.kit.edu/sq) und des Sprachenzentrums (http://www.spz.kit.edu/) detailliert erläutert. In dem hier integrierten Modulhandbuch werden deswegen im Gegensatz zu den fakultätsinternen Lehrveranstaltungen die einzelnen Lehrveranstaltungen nicht aufgeführt, sondern lediglich ein Überblick über die einzelnen Wahlbereiche gegeben.

Module, die diesem Fach zugeordnet sind, können benotet oder unbenotet sein. Bei der Berechnung der Gesamtnote der Bachelorprüfung werden diese Noten jedoch nicht berücksichtigt.

<sup>&</sup>lt;sup>1</sup>Dieses Modul kann wahlweise dem Gebiet Angewandte und Numerische Mathematik oder dem Gebiet Analysis zugeordnet werden.

# Beispiele für Semesterpläne

Nachfolgend werden einige konkrete Beispiele für die Organisation der sechs Semester des Bachelorstudiums vorgestellt. Wir verwenden folgende Abkürzungen: WP=Wahlpflichtmodul, ÜQ=Module zu Überfachlichen Qualifikationen, siehe Abschnitt 3), PL=Prüfungsleistung, SL=Studienleistung. "Stochastik 2" steht für die Lehrveranstaltungen "Wahrscheinlichkeitstheorie" oder "Markovsche Ketten", "Numerik" steht für "Numerische Mathematik".

Die Farbwahl zeigt die Fachzugehörigkeit an: Fach 1, Fach 2, Fach 3, Fach 4, Fach 5, Fach 6.

## **Anwendungsfach Informatik**

| 1. Sem.          | 2. Sem.        | 3. Sem.           | 4. Sem.          | 5. Sem.      | 6. Sem.        |
|------------------|----------------|-------------------|------------------|--------------|----------------|
| Analysis 1       | Analysis 2     | Analysis 3        | WP (Analysis)    | WP (Math.)   | WP (Math.)     |
| (9 LP)           | (9 LP)         | (9 LP)            | (8 LP)           | (8 LP)       | (8 LP)         |
| Lin. Algebra 1   | Lin. Algebra 2 | Einf. Stoch.      | Stochastik 2     | WP (AlgGeom) | WP (Math.)     |
| (9 LP)           | (9 LP)         | (6 LP)            | (6 LP)           | (8 LP)       | (8 LP)         |
| Programmieren    | ÜQ             | Numerik 1         | Numerik 2        | WP (Math.)   |                |
| (6 LP)           | (3 LP)         | (6 LP)            | (6 LP)           | (10 LP)      |                |
|                  | Proseminar     | ÜQ                | Seminar          | WP (Math.)   | Bachelorarbeit |
|                  | (3 LP)         | (3 LP)            | (3 LP)           | (3 LP)       | (12 LP)        |
| Grundbegr. Info. | Algorithmen I  | WP (Betriebssys.) | WP (Softwarete.) |              | WP (Info.)     |
| (6 LP)           | (6 LP)         | (6 LP)            | (6 LP)           |              | (4 LP)         |
| 30 LP            | 30 LP          | 30 LP             | 29 LP            | 29 LP        | 32 LP          |
| 4 PL             | 3 PL, 2 SL     | 4 PL, 1 SL        | 4 PL, 1 SL       | 4 PL         | 4 PL           |

#### Belegungsmöglichkeit:

- 4. Semester: WP (Analysis) (G8)
- 5. Semester: WP Finanzmathematik in diskreter Zeit oder Algebra oder Klassische Methoden für partielle Differentialgleichungen oder Funktionalanalysis oder Numerische Methoden für Differentialgleichungen (je 8 LP), WP (Algebra und Geometrie) (G6) und Statistik (10 LP) sowie ein Seminar (3 LP)
- 6. Semester: WP (G5), WP (G7)

# **Anwendungsfach Physik**

| 1. Sem.          | 2. Sem.           | 3. Sem.            | 4. Sem.       | 5. Sem.          | 6. Sem.        |
|------------------|-------------------|--------------------|---------------|------------------|----------------|
| Analysis 1       | Analysis 2        | Analysis 3         | WP (Analysis) | WP (AlgGeom)     | WP (Math.)     |
| (9 LP)           | (9 LP)            | (9 LP)             | (8 LP)        | (8 LP)           | (8 LP)         |
| Lin. Algebra 1   | Lin. Algebra 2    |                    | WP (Math.)    | WP (Math.)       | WP (Math.)     |
| (9 LP)           | (9 LP)            |                    | (8 LP)        | (10 LP)          | (8 LP)         |
| Programmieren    | ÜQ                | Numerik 1          | Numerik 2     |                  | WP (Math.)     |
| (6 LP)           | (3 LP)            | (6 LP)             | (6 LP)        |                  | (3 LP)         |
|                  | Proseminar        | Einf. Stoch.       | Stochastik 2  | Seminar          | Bachelorarbeit |
|                  | (3 LP)            | (6 LP)             | (6 LP)        | (3 LP)           | (12 LP)        |
| Kl.Theo.Physik I | Kl.Theo.Physik II | Kl.Theo.Physik III | ÜQ            | Kl. Exp.physik I |                |
| (6 LP)           | (6 LP)            | (8 LP)             | (3 LP)        | (8 LP)           |                |
| 30 LP            | 30 LP             | 29 LP              | 31 LP         | 29 LP            | 31 LP          |
| 4 PL             | 3 PL, 2 SL        | 4 PL               | 4 PL, 1 SL    | 3 PL, 1 SL       | 4 PL           |

# Belegungsmöglichkeit:

- 4. Semester: WP (Analysis) (G8)
- 5. Semester: WP (Algebra und Geometrie) (G6), WP Finanzmathematik in diskreter Zeit oder Algebra oder Klassische Methoden für partielle Differentialgleichungen oder Funktionalanalysis oder Numerische Methoden für Differentialgleichungen (je 8 LP) und Statistik (10 LP)
- 6. Semester: WP (G7), (G5) und ein Seminar (3 LP)

# Anwendungsfach Wirtschaftswissenschaften

| 1. Sem.        | 2. Sem.        | 3. Sem.      | 4. Sem.       | 5. Sem.      | 6. Sem.        |
|----------------|----------------|--------------|---------------|--------------|----------------|
| Analysis 1     | Analysis 2     | Analysis 3   | WP (Analysis) | WP (Math.)   | WP (Math.)     |
| (9 LP)         | (9 LP)         | (9 LP)       | (8 LP)        | (8 LP)       | (8 LP)         |
| Lin. Algebra 1 | Lin. Algebra 2 | Einf. Stoch. | Stochastik 2  | WP (AlgGeom) | WP (Math.)     |
| (9 LP)         | (9 LP)         | (6 LP)       | (6 LP)        | (8 LP)       | (8 LP)         |
| Programmieren  | ÜQ             | Numerik 1    | Numerik 2     | WP (Math.)   | WP (Math.)     |
| (6 LP)         | (3 LP)         | (6 LP)       | (6 LP)        | (10 LP)      | (3 LP)         |
|                | Proseminar     |              |               | Seminar      | Bachelorarbeit |
|                | (3 LP)         |              |               | (3 LP)       | (12 LP)        |
| VWL I          | VWL II         | WP (WiWi)    | WP (Wiwi)     | ÜQ           |                |
| (5 LP)         | (5 LP)         | (9 LP)       | (9 LP)        | (3 LP)       |                |
| 29 LP          | 29 LP          | 30 LP        | 29 LP         | 32 LP        | 31 LP          |
| 4 PL           | 3 PL, 2 SL     | 5 PL         | 5 PL          | 3 PL, 2 SL   | 4 PL           |

#### Belegungsmöglichkeit:

- 4. Semester: WP (Analysis) (G8)
- 5. Semester: WP Finanzmathematik in diskreter Zeit oder Algebra oder Klassische Methoden für partielle Differentialgleichungen oder Funktionalanalysis oder Numerische Methoden für Differentialgleichungen (je 8 LP), WP (Algebra und Geometrie) (G6) und dazu Statistik (10 LP)
- 6. Semester: WP (G5), WP (G7) und ein Seminar

# Anwendungsfach Maschinenbau

| 1. Sem.        | 2. Sem.        | 3. Sem.      | 4. Sem.       | 5. Sem.      | 6. Sem.        |
|----------------|----------------|--------------|---------------|--------------|----------------|
| Analysis 1     | Analysis 2     | Analysis 3   | WP (Analysis) | WP (Math.)   | WP (Math.)     |
| (9 LP)         | (9 LP)         | (9 LP)       | (8 LP)        | (8 LP)       | (8 LP)         |
| Lin. Algebra 1 | Lin. Algebra 2 | Einf. Stoch. | Stochastik 2  | WP (AlgGeom) | WP (Math.)     |
| (9 LP)         | (9 LP)         | (6 LP)       | (6 LP)        | (8 LP)       | (8 LP)         |
| Programmieren  | ÜQ             | Numerik 1    | Numerik 2     | WP (Math.)   |                |
| (6 LP)         | (3 LP)         | (6 LP)       | (6 LP)        | (10 LP)      |                |
|                | Proseminar     | ÜQ           | Seminar       |              | Bachelorarbeit |
|                | (3 LP)         | (3 LP)       | (3 LP)        |              | (12 LP)        |
| TM I           | TM II          | TM III       | TM IV         | StrömL       |                |
| (7 LP)         | (6 LP)         | (5 LP)       | (5 LP)        | (8 LP)       |                |
| 31 LP          | 30 LP          | 29 LP        | 28 LP         | 34 LP        | 28 LP          |
| 4 PL           | 3 PL, 2 SL     | 4 PL, 1 SL   | 4 PL, 1 SL    | 4 PL         | 3 PL           |

# Belegungsmöglichkeit:

- 4. Semester: WP (Analysis) (G8)
- 5. Semester: WP Finanzmathematik in diskreter Zeit oder Algebra oder Klassische Methoden für partielle Differentialgleichungen oder Funktionalanalysis oder Numerische Methoden für Differentialgleichungen (je 8 LP), WP (Algebra und Geometrie) (G6) und Statistik (10 LP)
- 6. Semester: WP (G5), WP (G7)

# Anwendungsfach Elektrotechnik und Informationstechnik

| 1. Sem.        | 2. Sem.        | 3. Sem.      | 4. Sem.       | 5. Sem.           | 6. Sem.        |
|----------------|----------------|--------------|---------------|-------------------|----------------|
| Analysis 1     | Analysis 2     | Analysis 3   | WP (Analysis) | WP (AlgGeom)      | WP (Math.)     |
| (9 LP)         | (9 LP)         | (9 LP)       | (8 LP)        | (8 LP)            | (8 LP)         |
| Lin. Algebra 1 | Lin. Algebra 2 |              | WP (Math.)    | WP (Math.)        | WP (Math.)     |
| (9 LP)         | (9 LP)         |              | (8 LP)        | (8 LP)            | (8 LP)         |
| Programmieren  | ÜQ             | Numerik 1    | Numerik 2     | WP (Math.)        | ÜQ             |
| (6 LP)         | (3 LP)         | (6 LP)       | (6 LP)        | (8 LP)            | (3 LP)         |
|                | Proseminar     | Einf. Stoch. | Stochastik 2  |                   | Bachelorarbeit |
|                | (3 LP)         | (6 LP)       | (6 LP)        |                   | (12 LP)        |
| Lin El Ne      | El Sch         | DigiTe       | Seminar       | Signale und Syst. |                |
| (7 LP)         | (6 LP)         | (6 LP)       | (3 LP)        | (6 LP)            |                |
| 31 LP          | 30 LP          | 27 LP        | 31 LP         | 30 LP             | 31 LP          |
| 4 PL           | 3 PL, 2 SL     | 4 PL         | 4 PL, 1 SL    | 4 PL              | 3 PL, 1 SL     |

# Belegungsmöglichkeit:

- 4. Semester: WP (Analysis) (G8), WP (G7)
- 5. Semester: WP (Algebra und Geometrie) (G6), WP Statistik (10 LP), zusätzliches vertiefendes Seminar
- 6. Semester: WP (G5), WP Einführung in das Wissenschaftliche Rechnen oder Rand- und Eigenwertprobleme (je 8 LP)