

Modulhandbuch Technomathematik (M.Sc.)

Sommersemester 2012 Kurzfassung Stand: 30.01.2012

Fakultät für Mathematik

Herausgeber:

Fakultät für Mathematik Karlsruher Institut für Technologie (KIT) 76128 Karlsruhe www.math.kit.edu

Fotograf: Arno Peil

Ansprechpartner: daniel.hug@kit.edu

Inhaltsverzeichnis

1	Studienplan Master Technomathematik	5
	1.1 Ausbildungsziele	5
	1.2 Vorbemerkung	5
	1.3 Gliederung des Studiums	5
	1.4 Einführende Module in den mathematischen Fächern	6
	1.5 Weiterführende Module in den mathematischen Fächern	7
	1.6 Technisches Nebenfach und Informatik	7
	1.7 Schlüsselqualifikationen	8
2	Nützliches und Informatives	9
2		
3	Aktuelle Änderungen	11
4	Module	12
	4.1 Alle Module	12
	Riemannsche Geometrie- MATHMTAG04	12
	Algebra- MATHMTAG05	13
	Diskrete Geometrie- MATHMTAG06	14
	Konvexe Geometrie- MATHMTAG07	15
	Geometrische Maßtheorie- MATHMTAG08	16
	Algebraische Zahlentheorie- MATHMTAG09	17
	Algebraische Geometrie- MATHMTAG10	18
	Geometrie der Schemata- MATHMTAG11	19
	Geometrische Gruppentheorie- MATHMTAG12	20
	Lie Gruppen und Lie Algebren- MATHMTAG13	21
	Metrische Geometrie- MATHMTAG15	22
	Ebene algebraische Kurven- MATHMTAG16	23
	Graphen und Gruppen- MATHMTAG17	24
	Modulräume von Kurven- MATHMTAG18	25
	Symmetrische Räume- MATHMTAG19	26
	Integralgeometrie- MATHMTAG20	27
	Klassenkörpertheorie- MATHAG21	28
	Arithmetik Elliptischer Kurven- MATHAG22	29
	Modulformen- MATHAG23	30
	Geometrische Gruppentheorie II- MATHAG24	31
	Gebäude- MATHAG25	32
	Globale Differentialgeometrie- MATHAG27	33
	Funktionalanalysis-MATHMTAN05	34
	Integralgleichungen- MATHMTAN07	35
	Klassische Methoden für partielle Differentialgleichungen- MATHMTAN08	36
	Rand- und Eigenwertprobleme- MATHMTAN09	37
	Spektraltheorie- MATHMTAN10	38
	Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme- MATHMTAN11	39
	Evolutionsgleichungen- MATHMTAN12	40
	Spieltheorie- MATHMTAN13	41
	Fourieranalysis- MATHMTAN14	42
	Funktionen- und Distributionenräume- MATHMTAN15	43
	Funktionentheorie II- MATHMTAN16	44
	Modelle der mathematischen Physik- MATHMTAN17	45
	Kontrolltheorie- MATHMTAN18	46
	Nichtlineare Evolutionsgleichungen- MATHMTAN19	47
	Potentialtheorie- MATHMTAN20	48
	Randwertprobleme für nichtlineare Differentialgleichungen- MATHMTAN21	49
	Spektraltheorie von Differentialoperatoren- MATHMTAN22	50
	Stabilitäts- und Kontrolltheorie für Evolutionsgleichungen- MATHMTAN23	51
	Stochastische Differentialgleichungen- MATHMTAN24	52
	Variationsrechnung- MATHMTAN25	53

	Streutheorie- MATHMTAN26	54 55
	Maxwellgleichungen- MATHMTAN28	56
	Nichtlineare Funktionalanalysis- MATHAN29	
	Asymptotik von Evolutionsgleichungen- MATHAN30	
	Monotoniemethoden in der Analysis- MATHAN31	
	Banachalgebren- MATHAN32	
	Spezielle Funktionen und Anwendungen in der Potentialtheorie- MATHAN33	
	Numerische Methoden für Differentialgleichungen- MATHMTNM03	
	Einführung in das Wissenschaftliche Rechnen- MATHMTNM05	
	Inverse Probleme- MATHMTNM06	
	Finite Elemente Methoden- MATHMTNM07	65
	Paralleles Rechnen- MATHMTNM08	
	Optimierung und optimale Kontrolle bei Differentialgleichungen- MATHMTNM09	67
	Löser für lineare und nichtlineare Gleichungssysteme- MATHMTNM10	68
	Grundlagen der Kontinuumsmechanik- MATHMTNM11	69
	Numerische Methoden in der Festkörpermechanik- MATHMTNM12	70
	Numerische Methoden in der Elektrodynamik- MATHMTNM13	71
	Wavelets- MATHMTNM14	
	Bildgebende Verfahren in der Medizintechnik- MATHMTNM15	
	Mathematische Methoden in Signal- und Bildverarbeitung- MATHMTNM16	
	Mehrgitter- und Gebietszerlegungsverfahren- MATHMTNM17	75
	Numerische Methoden in der Finanzmathematik- MATHMTNM18	
	Adaptive Finite Elemente Methoden- MATHMTNM19	
	Numerische Methoden für zeitabhängige PDGLn- MATHMTNM20	
	Numerik für gewöhnliche Differentialgleichungen und differentiell-algebraische Systeme- MATHMT-	70
		79
	NM21	
	NM21	80
	NM21	80 81
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26	80 81 82
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27	80 81 82 83
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28	80 81 82 83 84
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06	80 81 82 83 84 85
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07	80 81 82 83 84 85 86
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09	80 81 82 83 84 85 86
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10	80 81 82 83 84 85 86 87 88
	Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11	80 81 82 83 84 85 86 87 88
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12	80 81 82 83 84 85 86 87 88 89
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13	80 81 82 83 84 85 86 87 88 89 90
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13 Räumliche Stochastik- MATHMTST14	80 81 82 83 84 85 86 87 88 89 90 91
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13 Räumliche Stochastik- MATHMTST14 Mathematische Statistik- MATHMTST15	80 81 82 83 84 85 86 87 88 89 90 91 92 93
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13 Räumliche Stochastik- MATHMTST14 Mathematische Statistik- MATHMTST15 Nichtparametrische Statistik- MATHMTST16	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13 Räumliche Stochastik- MATHMTST14 Mathematische Statistik- MATHMTST15 Nichtparametrische Statistik- MATHMTST16 Multivariate Statistik- MATHMTST17	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13 Räumliche Stochastik- MATHMTST14 Mathematische Statistik- MATHMTST15 Nichtparametrische Statistik- MATHMTST16 Multivariate Statistik- MATHMTST17 Zeitreihenanalyse- MATHMTST18	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13 Räumliche Stochastik- MATHMTST14 Mathematische Statistik- MATHMTST15 Nichtparametrische Statistik- MATHMTST16 Multivariate Statistik- MATHMTST17 Zeitreihenanalyse- MATHMTST18 Finanzstatistik- MATHST19	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13 Räumliche Stochastik- MATHMTST14 Mathematische Statistik- MATHMTST15 Nichtparametrische Statistik- MATHMTST16 Multivariate Statistik- MATHMTST17 Zeitreihenanalyse- MATHMTST18 Finanzstatistik- MATHST19 Seminar- MATHMTSE01	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13 Räumliche Stochastik- MATHMTST14 Mathematische Statistik- MATHMTST15 Nichtparametrische Statistik- MATHMTST16 Multivariate Statistik- MATHMTST17 Zeitreihenanalyse- MATHMTST18 Finanzstatistik- MATHMTST18 Finanzstatistik- MATHMTST19 Seminar- MATHMTSE01 Schlüsselqualifikationen- MATHTMSQ01	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
5	NM21 Numerische Methoden in der Strömungsmechanik- MATHMTNM24 Numerische Optimierungsmethoden- MATHMTNM25 Numerische Methoden in der Finanzmathematik II- MATHNM26 Modellbildung und numerische Simulation in der Praxis- MATHNM27 Numerische Methoden für hyperbolische Gleichungen- MATHNM28 Stochastische Geometrie- MATHMTST06 Asymptotische Stochastik- MATHMTST07 Generalisierte Regressionsmodelle- MATHMTST09 Brownsche Bewegung- MATHMTST10 Markovsche Entscheidungsprozesse- MATHMTST11 Steuerung stochastischer Prozesse- MATHMTST12 Perkolation- MATHMTST13 Räumliche Stochastik- MATHMTST14 Mathematische Statistik- MATHMTST15 Nichtparametrische Statistik- MATHMTST16 Multivariate Statistik- MATHMTST17 Zeitreihenanalyse- MATHMTST18 Finanzstatistik- MATHST19 Seminar- MATHMTSE01	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

1 Studienplan Master Technomathematik

1.1 Ausbildungsziele

Der Masterstudiengang Technomathematik vermittelt

- Methoden des wissenschaftlichen Arbeitens in der Mathematik,
- die Kenntnis der vielfältigen interdisziplinären Verzahnungen von Mathematik, technischen Fächern und Informatik,
- die Fähigkeit zur mathematischen Modellbildung für technikorientierte Problemstellungen sowie zur Interpretation der mathematischen Resultate für die jeweilige Anwendung,
- · fundierte Kenntnisse anwendungsorientierter mathematischer Methoden,
- breite Kenntnisse von Verfahren zur numerischen und computergestützten Lösung von Anwendungsproblemen,
- die Fähigkeit, sich selbständig in neue Gebiete einzuarbeiten,
- vertiefte Kenntnisse in selbst gewählten Schwerpunkten in der Mathematik und einem technischen Fach,
- Heranführung an die aktuelle Forschung in einem mathematischen Teilgebiet.

1.2 Vorbemerkung

Dieser Studienplan ergänzt und erläutert die Studien- und Prüfungsordnung des Masterstudiengangs Technomathematik¹. Anhand konkreter Beispiele werden Möglichkeiten zur Organisation des Studiums dargestellt.

1.3 Gliederung des Studiums

Die Lehrveranstaltungen werden in Form von Modulen abgehalten, wobei die meisten Module aus einer Vorlesung (mit oder ohne Übung) oder einem Seminar bestehen. Es gilt grundsätzlich, dass nur solche Module gewählt werden können, die noch nicht im Bachelorstudium verwendet worden sind.² Jedes Modul schließt mit einer Leistungskontrolle ab. Der durchschnittliche Arbeitsaufwand wird in Leistungspunkten (LP) gemessen³. Im Allgemeinen werden Module benotet. Ausnahmen sind z.B. Seminarmodule, die nur bestanden oder nicht bestanden werden können. Die Note geht in die Endnote ein. Die Masterarbeit besteht aus einem eigenen Modul mit 30 LP. Insgesamt müssen im Masterstudium 120 LP erworben werden, etwa gleichmäßig verteilt auf 4 Semester. Es müssen Module der Fakultät für Mathematik, Module im technischen Nebenfach⁴ und Module in der Informatik⁵ belegt werden⁶.

- A) Mathematik: Es gibt die folgenden 4 mathematischen Fächer:
 - 1. Algebra und Geometrie
 - 2. Analysis (mindestens 8 LP)
 - 3. Angewandte und Numerische Mathematik (mindestens 8 LP)
 - 4. Stochastik

Es müssen 40 LP in Vorlesungsmodulen der Mathematik erworben werden, darunter jeweils mindestens 8 LP in den Fächern Analysis sowie Angewandte und Numerische Mathematik (d.h. die Module für die verbleibenden 24 LP können aus den 4 mathematischen Fächern frei gewählt werden).

¹Im Folgenden wird die Studien- und Prüfungsordnung des Masterstudiengangs Technomathematik einfach mit "PO Technomathematik" bezeichnet

²Im Falle von Modulen, die im Bachelorstudium an einer anderen Universität eingebracht worden sind, wird im Rahmen der Zulassung zum Masterstudiengang Technomathematik die Vergleichbarkeit mit den Modulen des Karlsruher Instituts für Technologie festgelegt.

³Die Maßstäbe für die Zuordnung von Leistungspunkten entsprechen dem ECTS (European Credit Transfer System). Ein Leistungspunkt entspricht einem Arbeitsaufwand von etwa 30 Stunden.

⁴Das technische Nebenfach wird zu Beginn des Masterstudiengangs festgelegt, vgl. PO Technomathematik §3(2).

⁵Der Masterstudiengang Technomathematik hat zwei Ergänzungsfächer. Das erste Ergänzungsfach ist ein (wählbares) technisches Nebenfach, das zweite Ergänzungsfach ist immer Informatik.

⁶Die folgende Aufstellung ist der PO Technomathematik §17 entnommen.

- B) Technisches Nebenfach und Informatik: Es müssen 32 LP in Modulen des technischen Nebenfachs und der Informatik erworben werden, darunter mindestens 18 LP im technischen Nebenfach und mindestens 10 LP in Informatik.
- C) Vertiefung / Praktikum: Es sind 8 LP nachzuweisen, die der Vertiefung in Richtung Masterarbeit dienen können, z.B. können weitere Vorlesungsmodule aus A) und B) gewählt werden. Hier kann auch ein Berufspraktikum angerechnet werden⁷.
- D) Seminare: Es müssen zusätzlich zwei Seminarmodule über je 3 Leistungspunkte abgelegt werden, darunter mindestens ein Seminarmodul in Mathematik.
- E) Schlüsselqualifikationen: Weitere 4 LP müssen in Form von "additiven" Modulen abgelegt werden und können z.B. aus dem House of Competence bezogen werden⁸.

1.4 Einführende Module in den mathematischen Fächern

Die folgenden Module eignen sich besonders gut zur Einführung in die mathematischen Fächer des Masterbereichs. Soweit nicht anders angegeben, entsprechen sie einem Arbeitsaufwand von 8 Leistungspunkten. Diese Module werden mindestens in jedem zweiten Jahr abgehalten. Die Veranstaltungen, die auch im Bachelor angeboten werden, werden jährlich gelesen⁹ und werden im Folgenden als Brückenmodule bezeichnet.

· Algebra und Geometrie

Vorlesungen, die auch im Bachelorstudium angeboten werden:

- Algebra (4+2 SWS, Ws)¹⁰
- Riemannsche Geometrie (4+2 SWS, Ss)
- Geometrische Gruppentheorie (4+2 SWS, Ws)

Einführende Vorlesungen im Masterstudium¹¹:

- Symmetrische Räume (4+2 SWS, Riemannsche Geometrie wird vorausgesetzt)
- Algebraische Zahlentheorie (4+2 SWS, Algebra wird vorausgesetzt)
- Algebraische Geometrie (4+2 SWS, Algebra wird vorausgesetzt)
- Globale Differentialgeometrie (4+2 SWS, Riemannsche Geometrie wird vorausgesetzt)
- Stochastische Geometrie¹² (4+2 SWS, das Modul Wahrscheinlichkeitstheorie aus dem Bachelorstudium wird vorausgesetzt)

Analysis

Vorlesungen, die auch im Bachelorstudium angeboten werden:

- Funktionalanalysis (4+2 SWS, Ws)
- Spektraltheorie (4+2 SWS, Ss)
- Klassische Methoden für partielle Differentialgleichungen (4+2 SWS, Ws)
- Rand- und Eigenwertprobleme (4+2 SWS, Ss)

Einführende Vorlesungen im Masterstudium¹³:

- Evolutionsgleichungen (4+2 SWS, Funktionalanalysis wird vorausgesetzt)
- Fourieranalysis (4+2 SWS, Funktionalanalysis wird vorausgesetzt)
- Integralgleichungen (4+2 SWS, Funktionalanalysis wird vorausgesetzt)

⁷vgl. §12 der Prüfungsordnung

⁸vgl. §13 der Prüfungsordnung

⁹ausgenommen die Vorlesung "Löser für lineare und nichtlineare Gleichungssysteme"

¹⁰SWS = Semesterwochenstunde in Vorlesung + Übung, Ws = Wintersemester, Ss = Sommersemester.

¹¹Diese Vorlesungen setzen jeweils mindestens ein Brückenmodul aus der Algebra und Geometrie (bzw. in einem Fall ein Basismodul aus der Stochastik) voraus.

¹²Dieses Modul kann wahlweise dem Fach Stochastik oder dem Fach Algebra und Geometrie zugeordnet werden.

¹³Diese Vorlesungen setzen jeweils mindestens ein Brückenmodul aus der Analysis voraus.

- Modelle der Mathematischen Physik (4+2 SWS, Klassische Methoden für partielle Differentialgleichungen wird vorausgesetzt)
- Randwertprobleme für nichtlineare Differentialgleichungen (4+2 SWS, Rand- und Eigenwertprobleme wird vorausgesetzt)

· Angewandte und Numerische Mathematik

Vorlesungen, die auch im Bachelorstudium angeboten werden:

- Numerische Methoden für Differentialgleichungen (4+2 SWS, Ws)
- Einführung in das Wissenschaftliche Rechnen (3+3 SWS, Ss)
- Löser für lineare und nichtlineare Gleichungssysteme (4+2 SWS, Ss)
- Inverse Probleme (4+2 SWS, Ws)

Einführende Vorlesungen im Masterstudium¹⁴:

- Finite Elemente Methoden (4+2 SWS, Numerische Methoden für Differentialgleichungen wird vorausgesetzt)
- Numerische Optimierungsmethoden (4+2 SWS, Modul Optimierungstheorie aus dem Bachelorstudium wird vorausgesetzt)
- Numerische Methoden für zeitabhängige partielle Differentialgleichungen (4+2 SWS, Numerische Methoden für Differentialgleichungen wird vorausgesetzt)
- Numerische Methoden in der Finanzmathematik (4+2 SWS, Numerische Methoden für Differentialgleichungen wird vorausgesetzt)

Stochastik

Generell wird das Modul "Wahrscheinlichkeitstheorie" aus dem Bachelorstudium vorausgesetzt. Weitere Voraussetzungen werden nicht benötigt.

- Finanzmathematik in stetiger Zeit (4+2 SWS)
- Asymptotische Stochastik (4+2 SWS)
- Räumliche Stochastik (4+2 SWS)
- Stochastische Geometrie¹⁵ (4+2 SWS)
- Brownsche Bewegung (2+1 SWS, 4 LP)
- Perkolation (2+1 SWS, 4 LP)
- Generalisierte Regressionsmodelle (2+1 SWS, 4 LP)

1.5 Weiterführende Module in den mathematischen Fächern

Im Modulhandbuch werden zahlreiche weitere, unregelmäßig angebotene Module aufgeführt. Diese bauen auf den in Abschnitt 1.4 genannten Modulen auf und vertiefen die jeweiligen Arbeitsgebiete. Sie ermöglichen, ergänzt durch den Besuch von Seminaren, die Anfertigung einer Masterarbeit in einem Spezialgebiet.

1.6 Technisches Nebenfach und Informatik

Zu Beginn des Masterstudiums ist das technische Nebenfach aus folgender Liste zu wählen

- (a) Maschinenbau
- (b) Elektrotechnik/Informationstechnik
- (c) Experimentalphysik
- (d) Bauingenieurwesen

¹⁴Diese Vorlesungen setzen jeweils mindestens ein Brückenmodul in der Angewandte und Numerische Mathematik voraus. Zum Teil sind zusätzlich Analysiskenntnisse erforderlich (etwa das Modul (G8) "Differentialgleichungen und Hilberträume" aus dem Bachelorstudiengang), die in den jeweiligen Modulbeschreibungen genauer spezifiziert sind.

¹⁵Dieses Modul kann wahlweise dem Fach Stochastik oder dem Fach Algebra und Geometrie zugeordnet werden.

Andere technische Nebenfächer können vom Prüfungsausschuss genehmigt werden. In der Regel wird das technische Nebenfach aus dem Bachelorstudium fortgeführt. Im technischen Nebenfach und in Informatik können Module aus dem Master- und dem fortgeschrittten Bachelorprogramm der jeweiligen anbietenden Fakultät gewählt werden. Die Module werden durch den Studienberater individuell zugelassen. In Zweifelsfällen entscheidet der Prüfungsausschuss.

1.7 Schlüsselqualifikationen

Teil des Studiums ist auch der Erwerb von Schlüssel- und überfachlichen Qualifikationen. Zu diesem Bereich zählen überfachliche Veranstaltungen zu gesellschaftlichen Themen, fachwissenschaftliche Ergänzungsangebote, welche die Anwendung des Fachwissens im Arbeitsalltag vermitteln, Kompetenztrainings zur gezielten Schulung von Soft Skills sowie Fremdsprachentrainings im fachwissenschaftlichen Kontext.

Der Masterstudiengang Technomathematik an der Fakultät für Mathematik zeichnet sich aus durch einen hohen Grad an Interdisziplinarität: Durch die Wahl eines technischen Nebenfaches ist die Zusammenführung verschiedener Wissensbestände integrativer Bestandteil des Studiengangs. Die innerhalb des Studiengangs integrativ vermittelten Schlüsselkomptetenzen lassen sich dabei den folgenden Bereichen zuordnen:

Basiskompetenzen (soft skills)

- 1. Teamarbeit, soziale Kommunikation (Arbeit in Kleingruppen, gemeinsames Bearbeiten der Hausaufgaben und Nacharbeiten des Vorlesungsstoffes)
- 2. Präsentationserstellung und -techniken (Seminarvorträge)
- 3. Logisches und systematisches Argumentieren und Schreiben (im Tutorium bzw. Seminar, beim Ausarbeiten der Vorträge und Verfassen der Hausaufgaben)
- 4. Englisch als Fachsprache

Orientierungswissen

- 1. Vermittlung von interdisziplinärem Wissen über Anwendungsfach bzw. Informatik
- 2. Medien, Technik und Innovation

Neben der integrativen Vermittlung von Schlüsselqualifikationen ist der additive Erwerb von Schlüsselqualifikationen im Umfang von mindestens 4 Leistungspunkten vorgesehen. Im Modul Schlüsselqualifikationen können Veranstaltungen des House of Competence (HoC) belegt werden. Das aktuelle Angebot des HoC ergibt sich aus dem semesterweise aktualisierten Veranstaltungsprogramm des HoC. Die Inhalte werden in den Beschreibungen der Veranstaltungen auf den Internetseiten des HoC (http://www.hoc.kit.edu/studium) detailliert erläutert. In dem hier integrierten Modulhandbuch werden deswegen im Gegensatz zu den fakultätsinternen Lehrveranstaltungen die einzelnen Lehrveranstaltungen des HoC nicht aufgeführt, sondern lediglich ein Überblick über die einzelnen Wahlbereiche des HoC gegeben.

2 Nützliches und Informatives

Das Modulhandbuch

Grundsätzlich gliedert sich das Studium in das **Fach** Mathematik, ein technisches Nebenfach und das Fach Informatik. Das Lehrangebot dieser Fächer ist in Module aufgeteilt. Jedes **Modul** besteht aus einer oder mehreren aufeinander bezogenen **Lehrveranstaltungen**. Der Umfang jedes Moduls ist durch Leistungspunkte gekennzeichnet, die nach erfolgreichem Absolvieren des Moduls gutgeschrieben werden. Bei der Auswahl der Lehrveranstaltungen besteht eine dem interdisziplinären Charakter des Studiengangs angemessene große Anzahl von individuellen **Wahl- und Vertiefungsmöglichkeiten**. Damit wird es dem Studierenden möglich, das Studium sowohl inhaltlich als auch zeitlich auf die persönlichen Bedürfnisse, Interessen und beruflichen Perspektiven zuzuschneiden.

Das **Modulhandbuch** beschreibt die zum Studiengang gehörigen Module des Faches Mathematik, ihre Zusammensetzung und Größe, ihre Abhängigkeiten untereinander, ihre Lernziele, die Art der Erfolgskontrolle und die Bildung der Note eines Moduls. Es gibt somit die notwendige Orientierung und ist ein hilfreicher Begleiter im Studium.

Das Modulhandbuch ersetzt aber nicht das **Vorlesungsverzeichnis**, das zu jedem Semester über die aktuell stattfindenden Veranstaltungen und die entsprechenden variablen Daten (z.B. Zeit und Ort der Lehrveranstaltung) informiert.

Beginn und Abschluss eines Moduls

Jedes Modul und jede Lehrveranstaltung darf nur jeweils einmal angerechnet werden. Die Entscheidung über die Zuordnung einer Lehrveranstaltung zu einem Gebiet oder Modul trifft der Studierende in dem Moment, in dem er sich zur entsprechenden Prüfung anmeldet. Um zu einer Prüfung in einem Modul zugelassen zu werden, muss beim Studienbüro eine Erklärung über die Wahl des betreffenden Moduls abgegeben werden.

Abgeschlossen bzw. bestanden ist ein Modul dann, wenn die Modulprüfung bestanden wurde (Note min. 4,0) oder wenn alle dem Modul zugeordneten Modulteilprüfungen bestanden wurden (Note min. 4,0).

Gesamt- oder Teilprüfungen

Modulprüfungen können in einer Gesamtprüfung oder in Teilprüfungen abgelegt werden. Wird die **Modulprüfung** als **Gesamtprüfung** angeboten, wird der gesamte Umfang der Modulprüfung zu einem Termin geprüft. Ist die **Modulprüfung in Teilprüfungen** gegliedert, kann die Modulprüfung über mehrere Semester hinweg z.B. in Einzelprüfungen zu den dazugehörigen Lehrveranstaltungen abgelegt werden.

Die Anmeldung zu den jeweiligen Prüfungen erfolgt online über die Selbstbedienungsfunktion im Studierendenportal des KIT. Auf https://studium.kit.edu sind unter anderem folgende Funktionen möglich:

- Prüfung an-/abmelden
- · Prüfungsergebnisse abfragen
- Notenauszüge erstellen

Wiederholung von Prüfungen

Wer eine Prüfung nicht besteht, kann diese grundsätzlich einmal wiederholen. Wenn auch die **Wiederholungsprüfung** (inklusive evtl. vorgesehener mündlicher Nachprüfung) nicht bestanden wird, ist der **Prüfungsanspruch** verloren. Anträge auf eine **Zweitwiederholung** einer Prüfung müssen vom Prüfungsausschuss genehmigt werden. Ein Antrag auf Zweitwiederholung muss gleich nach Verlust des Prüfungsanspruches gestellt werden.

Zusatzleistungen

Eine Zusatzleistung ist eine freiwillige, zusätzliche Prüfung, deren Ergebnis nicht für die Gesamtnote berücksichtigt wird. Sie muss bei Anmeldung zur Prüfung im Studienbüro als solche deklariert werden und kann nachträglich nicht als Pflichtleistung verbucht werden. Zusatzleistungen können im Umfang von höchstens 20 Leistungspunkten erworben werden. Das Ergebnis maximal zweier Module, die jeweils mindestens 9 Leistungspunkte umfassen müssen, können in das Zeugnis mit aufgenommen werden. Im Rahmen der Zusatzmodule können alle im Modulhandbuch definierten Module abgelegt werden. Darüber hinaus kann der Prüfungsausschuss auf Antrag auch Module genehmigen, die dort nicht enthalten sind.

Alles ganz genau ...

Alle Informationen rund um die rechtlichen und amtlichen Rahmenbedingungen des Studiums finden sich in der Studien- und Prüfungsordnung des Studiengangs.

Verwendete Abkürzungen

LP Leistungspunkte/ECTS LV Lehrveranstaltung

Sem. Semester

SPO Studien- und Prüfungsordnung SWS Semesterwochenstunde

Ü Übung

V Vorlesung T Tutorium

3 Aktuelle Änderungen

An dieser Stelle sind hervorgehobene Änderungen zur besseren Orientierung zusammengetragen. Es besteht jedoch kein Anspruch auf Vollständigkeit.

4 Module

4.1 Alle Module

Modul: Riemannsche Geometrie [MATHMTAG04]

Koordination: E. Leuzinger

Studiengang: Technomathematik (M.Sc.) **Fach:** Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
1036	Riemannsche Geometrie	4/2	W	8	E. Leuzinger

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1+2

Einführung in Geometrie und Topologie

Lernziele

Einführung in die Konzepte der Riemannschen Geometrie

- Mannigfaltigkeiten
- · Riemannsche Metriken
- · Affine Zusammenhänge
- · Geodätische
- Krümmung
- · Jacobi-Felder
- · Längen-Metrik
- · Krümmung und Topologie

Modul: Algebra [MATHMTAG05]

Koordination: F. Herrlich

Studiengang: Technomathematik (M.Sc.) **Fach:** Algebra/Geometrie

ECTS-Punkte Zyklus Dauer 8 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP		veranstaltu ntwortliche	ngs-	
1031	Algebra	4/2	W	8	C.	Herrlich, Schmidt, mithüsen	S. G.	Kühnlein, Weitze-

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1+2

Einführung in Algebra und Zahlentheorie

Lernziele

- · Konzepte und Methoden der Algebra
- · Vorbereitung auf Seminare und weiterführende Vorlesungen im Bereich Algebraische Geometrie und Zahlentheorie

Inhalt

· Körper:

Körpererweiterungen, Galoistheorie, Einheitswurzeln und Kreisteilung

· Bewertungen:

Beträge, Bewertungsringe, Betragsfortsetzung, lokale Körper

· Dedekindringe:

ganze Ringerweiterungen, Normalisierung, noethersche Ringe

Modul: Diskrete Geometrie [MATHMTAG06]

Koordination: D. Hug

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
1535	Diskrete Geometrie	4/2		8	D. Hug

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1+2

Lernziele

Die Studierenden

- kennen grundlegende kombinatorische Eigenschaften und Aussagen konvexer Polytope, geometrischer Graphen und Packungen,
- vollziehen metrische, kombinatorische und graphentheoretische Argumentationsweisen nach und wenden diese in abgewandelter Form an.

- Kombinatorische Eigenschaften konvexer Mengen
- · Konvexe Polytope
- Geometrische Graphen
- · Algorithmische Probleme
- · Packungen und Lagerungen
- Gitter

Modul: Konvexe Geometrie [MATHMTAG07]

Koordination: D. Hug

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
1044	Konvexe Geometrie	4/2	W/S	8	D. Hug

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Lernziele

Die Studierenden

- kennen grundlegende Eigenschaften von konvexen Mengen und konvexen Funktionen und wenden diese auf verwandte Problemstellungen an,
- sind mit grundlegenden geometrischen und analytischen Ungleichungen und ihren Anwendungen auf geometrische Extremalprobleme vertraut,
- kennen ausgewählte Integralformeln für konvexe Mengen und die hierfür erforderlichen Grundlagen über invariante Maße.

- 1. Konvexe Mengen
- 1.1. Kombinatorische Eigenschaften
- 1.2. Trennungs- und Stützeigenschaften
- 1.3. Extremale Darstellungen
- 2. Konvexe Funktionen
- 2.1. Grundlegende Eigenschaften
- 2.2. Regularität
- 2.3. Stützfunktion
- 3. Brunn-Minkowski-Theorie
- 3.1. Hausdorff-Metrik
- 3.2. Volumen und Oberfläche
- 3.3. Gemischte Volumina
- 3.4. Geometrische Ungleichungen
- 3.5. Oberflächenmaße
- 3.6. Projektionsfunktionen
- 4. Integralgeometrische Formeln
- 4.1. Invariante Maße
- 4.2. Projektions- und Schnittformeln

Modul: Geometrische Maßtheorie [MATHMTAG08]

Koordination: D. Hug

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
1040	Geometrische Maßtheorie	4/2	W/S	8	D. Hug

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Lernziele

Die Studierenden

- · kennen grundlegende Aussagen und Beweistechniken der geometrischen Maßtheorie,
- sind mit exemplarischen Anwendungen von Methoden der geometrischen Maßtheorie vertraut und wenden diese an.

- · Maß und Integral
- Überdeckungssätze
- Hausdorff-Maße
- · Differentiation von Maßen
- · Lipschitzfunktionen und Rektifizierbarkeit
- · Flächen- und Koflächenformel
- · Ströme
- Anwendungen

Modul: Algebraische Zahlentheorie [MATHMTAG09]

Koordination: C. Schmidt

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG09	Algebraische Zahlentheorie	4/2	W/S	8	S. Kühnlein, C. Schmidt

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Algebra

Lernziele

Einführung in die Strukturen und die Denkweise der Algebraischen Zahlentheorie

Inhalt

Algebraische Zahlkörper, Minkowski-Theorie, Endlichkeit der Klassengruppe, Dirichletscher Einheitensatz,

lokale Körper

Modul: Algebraische Geometrie [MATHMTAG10]

Koordination: F. Herrlich

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG10	Algebraische Geometrie	4/2	W/S	8	F. Herrlich, S. Kühnlein

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Algebra

Lernziele

Vertrautheit mit den Grundkonzepten der Algebraischen Geometrie und den dafür erforderlichen Werkzeugen aus der Algebra

Inhalt

Hilbertscher Basissatz,

Nullstellensatz;

affine und projektive Varietäten;

Morphismen und rationale Abbildungen;

nichtsinguläre Varietäten;

algebraische Kurven;

Satz von Riemann-Roch

Modul: Geometrie der Schemata [MATHMTAG11]

Koordination: F. Herrlich

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG11	Geometrie der Schemata	4/2	W/S	8	F. Herrlich, S. Kühnlein

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Algebraische Geometrie

Lernziele

Vertrautheit mit der Sprache der Garben und Schemata; Anwendungen in der Algebraischen Geometrie

Inhalt

Garben von Moduln;

affine Schemata;

Varietäten und Schemata;

Morphismen;

Kohomologie von Garben

Modul: Geometrische Gruppentheorie [MATHMTAG12]

Koordination: G. Weitze-Schmithüsen
Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer 8 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG12	Geometrische Gruppentheorie	4/2	W	8	O. Baues, F. Herrlich, G. Weitze- Schmithüsen

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Einführung in Algebra und Zahlentheorie

Einführung in Geometrie und Topologie

Lernziele

Verständnis der Wechselwirkung zwischen Geometrie und Gruppentheorie

- Gruppenaktionen auf topologischen und geometrischen Räumen
- Lokalhomogene Räume
- Diskrete und kontinuierliche Symmetriegruppen

Modul: Lie Gruppen und Lie Algebren [MATHMTAG13]

Koordination: O. Baues

Studiengang: Technomathematik (M.Sc.) **Fach:** Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG13	Lie Gruppen und Lie Algebren	4/2	W/S	8	O. Baues

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Einführung in Geometrie und Topologie

Lernziele

Einführung in Lie Gruppen und Lie Algebren; Vorbereitung auf Seminare im Bereich Algebra/Geometrie und weiterführende Vorlesungen im Bereich Algebra/Geometrie

Inhalt

Grundbegriffe,

spezielle Klassen von Lie Gruppen und Lie Algebren,

Strukturtheorie,

alternative und weiterführende Themen

Modul: Metrische Geometrie [MATHMTAG15]

Koordination: E. Leuzinger

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG15	Metrische Geometrie	4/2	W/S	8	E. Leuzinger

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Einführung in Geometrie und Topologie

Lernziele

Einführung in exemplarische Gegenstände und Denkweisen der metrischen Geometrie Vorbereitung auf eigenständige Forschung im Bereich Geometrie

Inhalt

Model-Geometrien,

Längenräume,

CAT(0)-Räume,

Gromov-hyperbolische Räume

Quasi-Isometrien,

(semi)hyperbolische Gruppen,

Wortproblem und isoperimetrische Ungleichungen

Modul: Ebene algebraische Kurven [MATHMTAG16]

Koordination: F. Herrlich

Studiengang: Technomathematik (M.Sc.) **Fach:** Algebra/Geometrie

ECTS-Punkte Zyklus Dauer 8 Einmallig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG16	Ebene algebraische Kurven	4/2	W/S	8	F. Herrlich

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Einführung in Algebra und Zahlentheorie Einführung in Geometrie und Topologie

Lernziele

Beherrschung von algebraischen Techniken zur Untersuchung von geometrischen Eigenschaften am Beispiel ebener Kurven; Vertrautheit mit Eigenschaften ebener algebraischer Kurven

Inhalt

Polynomringe;

affine Kurven, singuläre Punkte, Tangenten, Schnittmultiplizitäten;

projektive Kurven, der Satz von Bezout;

Topologie projektiver Kurven;

elliptische Kurven;

reguläre Funktionen, Funktionenkörper

Modul: Graphen und Gruppen [MATHMTAG17]

Koordination: F. Herrlich

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche			
MATHAG17	Graphen und Gruppen	4/2	W/S	8	F. Sch	Herrlich, mithüsen	G.	Weitze-

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Einführung in Algebra und Zahlentheorie

Einführung in Geometrie und Topologie

Lernziele

Kennenlernen verschiedener Verbindungen von Gruppen- und Graphentheorie;

Vertrautheit mit Konzepten wie Cayleygraph einer Gruppe und Aktion einer Gruppe auf einem Graphen

Inhalt

Graphen und Bäume, Cayleygraphen,

freie Gruppen,

Fundamentalgruppe eines Graphen,

freie Produkte und Amalgame,

Graphen von Gruppen, Bass-Serre-Theorie;

p-adische Zahlen, Bruhat-Tits-Baum;

diskontinuierliche Gruppen

Modul: Modulräume von Kurven [MATHMTAG18]

Koordination: F. Herrlich

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG18	Modulräume von Kurven	4/2	W/S	8	F. Herrlich

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Algebraische Geometrie

Lernziele

Vertrautheit mit algebraischen Klassifikationsproblemen, insbesondere dem Konzept der von einem algebraischen Parameter abhängigen Familie; Kennenlernen von Techniken der modernen Algebraischen Geometrie

Inhalt

Klassifikation elliptischer Kurven;

Modulräume ebener Kurven;

grobe und feine Modulräume;

kanonische Einbettung von Kurven, Hilbert-Schema;

Anfänge der Geometrischen Invariantentheorie

Modul: Symmetrische Räume [MATHMTAG19]

Koordination: E. Leuzinger

Studiengang: Technomathematik (M.Sc.) **Fach:** Algebra/Geometrie

ECTS-Punkte Zyklus Dauer 8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG19	Symmetrische Räume	4/2	W/S	8	E. Leuzinger

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Einführung in Geometrie und Topologie

Lernziele

Einführung in die Theorie der symmetrischen Räume

Inhalt

Homogene Räume, Symmetrische Räume, lokal symmetrische Räume

Modul: Integralgeometrie [MATHMTAG20]

Koordination: D. Hug

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG20	Integralgeometrie	4/2	W/S	8	D. Hug

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Konvexe Geometrie

Lernziele

Die Studierenden

- kennen grundlegende Resultate über invariante Maße und wenden diese auf globale und lokale integralgeometrische Resultate an,
- · sind mit typischen Beweistechniken für integralgeometrische Resultate vertraut,
- kennen Beispiele für Anwendungen von integralgeometrischen Resultaten in der Konvexen Geometrie und in der Stochastischen Geoemtrie.

- · Invariante Maße
- Krümmungsmaße
- · Lokale kinematische Hauptformel
- Croftonformel
- · Projektions- und Summenformeln
- · Integralformeln für Zylinder
- · Fortsetzung auf den Konvexring
- · Translative Integralgeometrie

Modul: Klassenkörpertheorie [MATHAG21]

Koordination: C. Schmidt

Studiengang: Technomathematik (M.Sc.) **Fach:** Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
Klassenkörpertheorie	Klassenkörpertheorie	4+2		8	C. Schmidt

Erfolgskontrolle

schriftliche oder mündliche Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Algebraische Zahlentheorie

Lernziele

Vertieftes Studium zahlentheoretischer Strukturen

Inhali

Adele und Idele,

Klassifikation der Galoiserweiterungen mit abelscher Galoisgruppe,

Reziprozitätsgesetz

Modul: Arithmetik Elliptischer Kurven [MATHAG22]

Koordination: C. Schmidt

Studiengang: Technomathematik (M.Sc.) **Fach:** Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
ArellKurv	Arithmetik Elliptischer Kurven	4+2		8	C. Schmidt

Erfolgskontrolle

schriftliche oder mündliche Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Algebraische Zahlentheorie

Lernziele

Vertieftes Studium in arithmetischer Geometrie

Inhali

Algebraische Kurven,

Elliptische Kurven über endlichen Körpern, lokalen Körpern und globalen Körpern,

Mordell-Weil-Gruppe

Modul: Modulformen [MATHAG23]

Koordination: C. Schmidt

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	Sem. LP Lehrveranstaltungs- verantwortliche	
Modulformen	Modulformen	4+2		8	C. Schmidt

Erfolgskontrolle

schriftliche oder mündliche Prüfung

Bedingunger

Die folgenden Module sollten zuvor belegt worden sein (Empfehlung):

Funktionentheorie

Lernziele

Hinführung zu einem aktuellen Gebiet der algebraischen und analytischen Zahlentheorie

Inhali

Spitzenformen und Eisenstein Reihen,

Hecke-Operatoren,

Petersson-Skalarprodukt,

Atkin-Lehner-Theorie der Neuformen

Modul: Geometrische Gruppentheorie II [MATHAG24]

 $\begin{tabular}{ll} \textbf{Koordination:} & G. \ Weitze-Schmith\"{u}sen \\ \textbf{Studiengang:} & Technomathematik \ (M.Sc.) \\ \end{tabular}$

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer 8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP		rveranstaltur antwortliche	ngs-	
GGTIIVorl	Geometrische Gruppentheorie II	4+2		8	F. Sch	Herrlich, ımithüsen	G.	Weitze-

Erfolgskontrolle

Mündliche Prüfung

Notenbildung: Note der mündlichen Prüfung

Bedingungen

Geometrische Gruppentheorie (Empfehlung)

Lernziele

Exemplarische Vertrautheit mit einigen zentralen Objekten und Konstruktionen der Geometrischen Gruppentheorie.

Inhali

Gromov-hyperbolische Räume Hyperbolische Gruppen Outerspace Translationsflächen

Modul: Gebäude [MATHAG25]

Koordination: E. Leuzinger

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
VGebäude	Gebäude	4+2		8	E. Leuzinger

Erfolgskontrolle

Schriftliche oder mündliche Prüfung Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Lineare Algebra I und II, Einführung in Geometrie und Topologie, Einführung in Algebra und Zahlentheorie (Empfehlung)

Lernziele

Vertieftes Verständnis der Konzepte und Methoden aus der metrischen Geometrie am Beispiel von sphärischen und euklidischen Gebäuden.

- Spiegelungsgruppen
- · Coxeter-Komplexe
- · sphärische Gebäude
- euklidische Gebäude
- · Gebäude und Gruppen

Modul: Globale Differentialgeometrie [MATHAG27]

Koordination: W. Tuschmann

Studiengang: Technomathematik (M.Sc.)

Fach: Algebra/Geometrie

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAG27	Globale Differentialgeometrie	4/2	W/S	8	O. Baues, S. Grensing , E. Leuzinger, G. Link, W. Tuschmann

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Empfehlenswert sind Vorkenntnisse im Rahmen der Vorlesungen "Einführung in die Geometrie und Topologie" und "Differentialgeometrie" oder auch "Riemannsche Geometrie".

Lernziele

Tieferes Verständnis exemplarischer Konzepte und Methoden der Globalen Differentialgeometrie; Vorbereitung auf eigenständige Forschung und

weiterführende Seminare im Gebiet der Differentialgeometrie.

Inhalt

Ausgewählte zentrale Themen der modernen Globalen Differentialgeometrie wie bspw. die globale Geometrie und Topologie von Mannigfaltigkeiten mit Krümmungsschranken und Vergleichsgeometrie.

Modul: Funktionalanalysis [MATHMTAN05]

Koordination: R. Schnaubelt

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
01048	Funktionalanalysis	4/2	W	8	G. Herzog, M. Plum, W. Reichel, C. Schmoeger, R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Lernziele

Einführung in funktionalanalytische Konzepte und Denkweisen

- Metrische Räume (topologische Grundbegriffe, Kompaktheit)
- Stetige lineare Operatoren auf Banachräumen (Prinzip der gleichmäßigen Beschränktheit, Homomorphiesatz)
- · Dualräume mit Darstellungssätzen, Satz von Hahn-Banach, schwache Konvergenz, Reflexivität
- Distributionen, schwache Ableitung, Fouriertransformation, Satz von Plancherel, Sobolevräume in L², partielle Differentialgleichungen mit konstanten Koeffizienten

Modul: Integralgleichungen [MATHMTAN07]

Koordination: F. Hettlich

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik, Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
IG	Integralgleichungen	4/2		8	T. Arens, F. Hettlich, A. Kirsch

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Lernziele

Die Studierenden können

- Integralgleichungen in Standardformen formulieren und klassifizieren,
- Integralgleichungen hinsichtlich Existenz und Eindeutigkeit untersuchen,
- · Anwendungsbeispiele als Integralgleichungen formulieren.

- · Riesz- und Fredholmtheorie
- · Fredholmsche und Volterrasche Integralgleichungen 2. Art
- · Anwendungen in der Potentialtheorie
- Faltungsgleichungen

Modul: Klassische Methoden für partielle Differentialgleichungen [MATHMTAN08]

Koordination: M. Plum

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
KMPD	Klassische Methoden für partielle Differentialgleichungen	4/2	W	8	M. Plum, W. Reichel, R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Lernziele

Einführung in Konzepte und Denkweisen der partiellen Differentialgleichungen

Inhali

- Beispiele partieller Differentialgleichungen aus der Physik
- · Wellengleichung in einer, zwei und drei Raumdimensionen
- · Laplace- und Poisson-Gleichung, harmonische und subharmonische Funktionen
- · Wärmeleitungsgleichung
- · Separation der Variablen
- Typeneinteilung partieller Differentialgleichungen (zweiter Ordnung)
- · Methode der Charakteristiken

Modul: Rand- und Eigenwertprobleme [MATHMTAN09]

Koordination: W. Reichel

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Jedes 2. Semester, Sommersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
RUEP	Rand- und Eigenwertprobleme	4/2	S	8	M. Plum, W. Reichel, R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Differentialgleichungen und Hilberträume

Lernziele

Vertieftes Verständnis der Konzepte und Methoden in den partiellen Differentialgleichungen, vor allem in Hinblick auf Rand- und Eigenwertprobleme.

- · Beispiele von Rand- und Eigenwertproblemen aus der Physik
- · Maximumprinzipien für Gleichungen 2. Ordnung
- Sobolev-Räume
- · Schwache Formulierung linearer elliptischer Randwertprobleme 2. Ordnung
- · Lax-Milgram-Lemma
- Koerzivität
- Fredholmsche Alternative für Randwertprobleme
- Eigenwerttheorie für schwach formulierte elliptische Eigenwertprobleme

Modul: Spektraltheorie [MATHMTAN10]

Koordination: L. Weis

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer 8 Jedes 2. Semester, Sommersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
SpekTheo	Spektraltheorie	4/2	S	8	G. Herzog, C. Schmoeger, R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Funktionalanalysis oder Differentialgleichungen und Hilberträume

Lernziele

Vertieftes Verständnis funktionalanalytischer Konzepte und Denkweisen, vor allem im Hinblick auf Spektraltheorie.

- · Abgeschlossene Operatoren auf Banachräumen
- · Spektrum und Resolvente
- · Kompakte Operatoren und Fredholm'sche Alternative
- Funktionalkalkül von Dunford, Spektralprojektionen
- Unbeschränkte selbstadjungierte Operatoren auf Hilberträumen
- Spektralsatz
- · Durch Formen definierte Operatoren
- · Anwendungen auf partielle Differentialgleichungen

Modul: Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme [MATHMTAN11]

Koordination: M. Plum

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN11	Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme	4/2	W/S	8	M. Plum

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Rand- und Eigenwertprobleme

Lernziele

Die Studierenden kennen die Grundlagen computerunterstützter analytischer Methoden und deren Bedeutung als methodische Ergänzung zu anderen (rein analytischen) Methoden.

Inhalt

Formulierung von nichtlinearen Randwertproblemen als Nullstellen- und als Fixpunkt-Problem. Nachweis der Voraussetzungen eines geeigneten Fixpunktsatzes mit computerunterstützten Methoden: Explizite Sobolev-Ungleichungen, Eigenwertschranken mittels variationeller Charakterisierungen, Intervall-Arithmetik.

Modul: Evolutionsgleichungen [MATHMTAN12]

Koordination: R. Schnaubelt

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN12	Evolutionsgleichungen	4/2	W/S	8	R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Lernziele

Die Studierenden verstehen die Grundideen und -begriffe des operatortheoretischen Zugangs zu Evolutionsgleichungen. Sie können diese auf partielle Differentialgleichungen anwenden.

Inhalt

stark stetige Operatorhalbgruppen und ihre Erzeuger,

Erzeugungssätze und Wohlgestelltheit,

analytische Halbgruppen,

inhomogene und semilineare Cauchyprobleme,

Störungstheorie,

Einführung in Stabilitäts- und Spektraltheorie von Operatorhalbgruppen,

Anwendungen auf partielle Differentialgleichungen

Modul: Spieltheorie [MATHMTAN13]

Koordination: W. Reichel

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer 4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN13	Spieltheorie	2/1	W/S	4	M. Plum, W. Reichel

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Lernziele

Die Studierenden beherrschen exemplarisch Grundlagen der Theorie nicht-kooperativer Spiele und ihrer Gleichgewichte.

Inhalt

2-Personen-Nullsummenspiele, von Neumann-Morgenstern-Theorie, n-Personen-Nullsummenspiele, gemischte Erweiterungen, Nash-Gleichgewichte, Satz von Nikaido-Isoda

Modul: Fourieranalysis [MATHMTAN14]

Koordination: L. Weis

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN14	Fourieranalysis	4/2	W/S	8	R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung): Funktionalanalysis oder Differentialgleichungen und Hilberträume

Lernziele

Verständnis der Darstellung von Funktionen und Differentialgleichungen im "Fourierbild" (Frequenzbereich), Behandlung von "singulären" Integralen.

- · Fourier Reihen
- Die Fourier Transformation auf L_1 und L_2
- · Temperierte Distributionen und ihre Fourier Transformation
- Explizite Lösungen der Wärmeleitungs-, Schrödinger- und Wellengleichung im Rⁿ
- · Hilbert Transformation
- Der Interpolationssatz von Marcinkiewicz
- · Singuläre Integraloperatoren
- · Der Fourier Multiplikatorensatz von Mihlin

Modul: Funktionen- und Distributionenräume [MATHMTAN15]

Koordination: L. Weis

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN15	Funktionen- und Distributionenräume	4/2	W/S	8	M. Plum, W. Reichel, R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung): Funktionalanalysis oder Differentialgleichungen und Hilberträume

l ernziele

Tieferes Verständnis der Grundkonzepte der modernen Analysis und ihrer Anwendungen: verallgemeinerte Ableitungen und Funktionen, Räume verallgemeinerter Funktionen einschließlich Räume von Maßen.

- · Distributionen und das Rechnen mit Distributionen
- · Fouriertransformation von Distributionen
- · Sobolevräume und schwache Ableitungen
- · Anwendung auf Differentialgleichungen
- Der Darstellungssatz von Riesz für den Dualraum der stetigen Funktionen
- · Konvergenz von Maßen

Modul: Funktionentheorie II [MATHMTAN16]

Koordination: C. Schmoeger

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN16	Funktionentheorie II	4/2	W/S	8	G. Herzog, M. Plum, W. Reichel, C. Schmoeger, R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionentheorie

Lernziele

Die Studierenden vertiefen und erweitern ihre Kenntnisse aus dem Modul Funktionentheorie.

- unendliche Produkte
- Satz von Mittag-Leffler
- Satz von Montel
- Riemannscher Abbildungssatz
- Konforme Abbildungen
- schlichte Funktionen
- Automorphismen spezieller Gebiete
- harmonische Funktionen
- Schwarzsches Spiegelungsprinzip
- reguläre und singuläre Punkte von Potenzreihen

Modul: Modelle der mathematischen Physik [MATHMTAN17]

Koordination: W. Reichel

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN17	Modelle der mathematischen Physik	4/2	W/S	8	M. Plum, W. Reichel

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Analysis 1-3

Lernziele

Die Studierenden sind in der Lage, die Modellierung grundlegender physikalischer Effekte nachzuvollziehen und die wichtigsten Eigenschaften dieser Modelle mathematisch zu erfassen.

Inhalt

Reaktions-Diffusionsmodelle

Wellenphänomene

Maxwellgleichungen und Elektrodynamik

Schrödingergleichung und Quantenmechanik

Navier-Stokes-Gleichung und Flüssigkeitsdynamik

Elastizität

Oberflächenspannung

Modul: Kontrolltheorie [MATHMTAN18]

Koordination: R. Schnaubelt

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer 4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN18	Kontrolltheorie	2/1	W/S	4	R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Lernziele

Die Studierenden verstehen am Ende des Moduls die Grundideen und -begriffe der Kontrolltheorie. Ferner können sie diese und die relevanten Techniken im Rahmen gewöhnlicher Differentialgleichungen anwenden.

Inhalt

Kontrollierte lineare Differentialgleichungssysteme: Steuerbarkeit und Beobachtbarkeit,

Stabilisierbarkeit und Entdeckbarkeit,

Transferfunktionen,

Realisierungstheorie,

Quadratische optimale Kontrolle,

Einführung in die nichtlineare Kontrolltheorie

Modul: Nichtlineare Evolutionsgleichungen [MATHMTAN19]

Koordination: R. Schnaubelt

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN19	Nichtlineare Evolutionsgleichungen	4/2	W/S	8	R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Evolutionsgleichungen Funktionalanalysis

Lernziele

Die Studierenden verstehen am Ende des Moduls die Grundideen und -begriffe funktionalanalytischer Zugänge zu nichtlinearen Evolutionsgleichungen.

Inhalt

semilineare Gleichungen, quasilineare parabolische Gleichungen, Gradientensysteme, Lyapunovfunktionen, invariante Mannigfaltigkeiten, nichtlineare Schrödingergleichungen

Modul: Potentialtheorie [MATHMTAN20]

Koordination: A. Kirsch

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer 8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN20	Potentialtheorie	4/2	W/S	8	T. Arens, F. Hettlich, A. Kirsch, W. Reichel

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis Funktionentheorie

Lernziele

Der Studierende ist in der Lage, die Begriffe der Potentialtheorie in der Theorie und an Beispielen zu erläutern, Beweisskizzen der Hauptsätze zu liefern und den Zusammenhang mit der Funktionentheorie zu erkennen.

Inhalt

Eigenschaften harmonischer Funktionen

Existenz und Eindeutigkeit der Randwertprobleme für die Laplace- und Poissongleichung

Greensche Funktion für die Kugel

Kugelflächenfunktionen

Modul: Randwertprobleme für nichtlineare Differentialgleichungen [MATHMTAN21]

Koordination: W. Reichel

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN21	Randwertprobleme für nichtlineare Differentialgleichungen	4/2	W/S	8	M. Plum, W. Reichel

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingunger

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Klassische Methoden für partielle Differentialgleichungen

Rand- und Eigenwertprobleme

Lernziele

Die Studierenden sind vertraut mit Methoden, um exemplarisch die Existenz von Lösungen nichtlinearer elliptischer und/oder parabolischer Randwertprobleme beweisen zu können.

Inhalt

Methode der Ober- und Unterlösungen Existenz mittels Fixpunktmethoden Variationelle Methoden Verzweigungstheorie

Modul: Spektraltheorie von Differentialoperatoren [MATHMTAN22]

Koordination: M. Plum

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN22	Spektraltheorie von Differentialoperatoren	4/2	W/S	8	M. Plum

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Klassische Methoden für partielle Differentialgleichungen

Rand- und Eigenwertprobleme

Lernziele

Die Studierenden kennen die spektralen Grundbegriffe und können diese auf verschiedene im Zusammenhang mit Differentialgleichungen auftretende spektrale Probleme anwenden.

Inhalt

Spektrale Eigenschaften selbstadjungierter Operatoren. Anwendung auf gewöhnliche und elliptische Differentialoperatoren regulärer Art, singulärer Art (Weylsche Theorie) sowie auf periodische Differentialoperatoren (Floquet-Bloch-Theorie). Ergänzend: nicht-selbstadjungierte Differentialoperatoren.

Modul: Stabilitäts- und Kontrolltheorie für Evolutionsgleichungen [MATHMTAN23]

Koordination: R. Schnaubelt

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN23	Stabilitäts- und Kontrolltheorie für Evolutionsgleichungen	4/2	W/S	8	R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis Evolutionsgleichungen Spektraltheorie

Lernziele

Die Studierenden verstehen am Ende des Moduls die Grundideen und -begriffe der Theorie des qualitativen Verhaltens von Evolutionsgleichungen.

Inhalt

Stabilitätsbegriffe, Dichotomien, Spektraltheorie von Operatorhalbgruppen,

Kriterien für Stabilität und Dichotomie,

linearisierte Stabilität,

Beobachtbarkeit, Steuerbarkeit, Stabilisierbarkeit und Entdeckbarkeit für Operatorhalbgruppen,

Transferfunktionen

Modul: Stochastische Differentialgleichungen [MATHMTAN24]

Koordination: L. Weis

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer 8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN24	Stochastische Differentialgleichungen	4/2	W/S	8	R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung): Funktionalanalysis oder Differentialgleichungen und Hilberträume

Lernziele

Verbindung analytischer und stochastischer Denkweise bei der Behandlung dynamischer Systeme, die zufälligen Störungen ausgesetzt sind.

- · Brownsche Bewegung
- Martingale und Martingalungleichungen
- · Stochastische Integrale und Ito-Formel
- Existenz- und Eindeutigkeitssätze für Systeme von stochastischen Differentialgleichungen
- · Störungs- und Stabilitätstheorie
- · Anwendung auf Gleichungen der Finanzmathematik, Physik und technische Systeme
- Zusammenhang mit Diffusionsgleichungen und Potentialtheorie

Modul: Variationsrechnung [MATHMTAN25]

Koordination: W. Reichel

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN25	Variationsrechnung	4/2	W/S	8	A. Kirsch, M. Plum, W. Reichel

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Klassische Methoden für partielle Differentialgleichungen

Rand- und Eigenwertprobleme

Lernziele

Die Studierenden erkennen die grundlegende Problemstellung der Variationsrechnung und sind selbst in der Lage, eigene variationelle Probleme zu formulieren. Sie kennen Techniken, um die Existenz von Lösungen variationeller Probleme zu beweisen, und können in Spezialfällen diese Lösungen berechnen.

Inhali

eindimensionale Variationsprobleme
Euler-Lagrange-Gleichung
notwendige und hinreichende Kriterien
mehrdimensionale Variationsprobleme
direkte Methoden der Variationsrechnung
Existenz kritischer Punkte von Funktionalen

Modul: Streutheorie [MATHMTAN26]

Koordination: F. Hettlich

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN26	Streutheorie	4/2	W/S	8	T. Arens, F. Hettlich, A. Kirsch

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Lernziele

Die Studierenden können grundlegende Eigenschaften von Lösungen der Helmholtzgleichung in Innen- und Außengebieten beweisen und anwenden. Kenntnisse zur Eindeutigkeit und Verständnis der Existenztheorie bei Streuproblemen mittels Integralgleichungen oder über Variationsformulierungen sind zentrales Anliegen. Somit liegen die Lernziele in einer weitreichenden Kompetenz in der Modellbildung, der Herleitung von Existenzaussagen und dem Umgang mit Lösungen von Streuproblemen und verwandten Randwertproblemen.

Inhalt

Helmholtzgleichung und elementare Lösungen, Greensche Darstellungssätze, Ausstrahlungsbedingungen, Existenz und Eindeutigkeit bei Streuproblemen, Fernfelder

Modul: Inverse Streutheorie [MATHMTAN27]

Koordination: A. Kirsch

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik, Analysis

ECTS-Punkte Zyklus Dauer 8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN27	Inverse Streutheorie	4/2	W/S	8	T. Arens, F. Hettlich, A. Kirsch

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Lernziele

Der Studierende ist in der Lage, die Begriffe der inversen Streutheorie in der Theorie und an Beispielen zu erläutern, Beweisskizzen der Hauptsätze zu liefern und die Unterschiede in den Fragestellungen und Problematiken zur direkten Streutheorie aufzuzeigen.

Inhalt

Direkte Streuprobleme Eindeutigkeit des inversen Problems Faktorisierungsmethode iterative Verfahren

Modul: Maxwellgleichungen [MATHMTAN28]

Koordination: A. Kirsch

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN28	Maxwellgleichungen	4/2	W/S	8	T. Arens, F. Hettlich, A. Kirsch

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Lernziele

Der Studierende ist in der Lage, die Fragestellungen aus der Theorie der Maxwellgleichungen an Beispielen zu erläutern, Beweisskizzen der Hauptsätze zu liefern und den Zusammenhang mit einfacheren Differentialgleichungen (z.B. der Helmholtzgleichung) zu erkennen.

Inhalt

Die Maxwellschen Gleichungen in der integralen und differentiellen Form Spezialfälle (E-Mode, H-Mode)

Randwertaufgaben

Modul: Nichtlineare Funktionalanalysis [MATHAN29]

Koordination: G. Herzog

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
3 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
NichtlinFA	Nichtlineare Funktionalanalysis	2		3	G. Herzog

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung.

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2, Analysis 1-3

Lernziele

Vertieftes Verständnis der Konzepte und Methoden der Nichtlinearen Funktionalanalysis

- Der Brouwersche Abbildungsgrad und seine Anwendungen
- Der Leray-Schaudersche Abbildungsgrad und seine Anwendungen
- · Nichtkompaktheitsmaße und ihre Anwendungen

Modul: Asymptotik von Evolutionsgleichungen [MATHAN30]

Koordination: R. Schnaubelt, L. Weis **Studiengang:** Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
3 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
AsEvolGl	Asymptotik von Evolutionsgleichungen	2		3	R. Schnaubelt, L. Weis

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Evolutionsgleichungen, Funktionalanalysis, Spektraltheorie

Lernziele

Die Studierenden verstehen am Ende des Moduls die Grundideen, Begriffe und Aussagen der Theorie des Langzeitverhaltens von Evolutionsgleichungen und können sie auf partielle Differentialgleichungen anwenden.

Inhalt

Kriterien für Stabilität linearer Evolutionsgleichungen.

Linearisierte Stabilität und weitere Kriterien für die Stabilität semilinearer Evolutionsgleichungen.

Dichotomien linearer Probleme, invariante Mannigfaltigkeiten.

Anwendungen auf partielle Differentialgleichungen.

Modul: Monotoniemethoden in der Analysis [MATHAN31]

Koordination: G. Herzog

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
3 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
01577	Monotoniemethoden in der Analysis	2	W/S	3	G. Herzog

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2, Analysis 1-3

Lernziele

Vertieftes Verständnis der Monotoniemethoden in der Analysis.

- 1.) Fixpunktsätze in geordneten Mengen und geordneten metrischen Räumen.
- 2.) Geordnete Banachräume.
- 3.) Quasimonotonie.
- 4.) Differentialgleichungen und Differentialungleichungen in geordneten Banachräumen.

Modul: Banachalgebren [MATHAN32]

Koordination: G. Herzog

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
3 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN32	Banachalgebren	2	W/S	3	G. Herzog, C. Schmoeger

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionentheorie 1

Lernziele

Vertieftes Verständnis der Struktur von Banachalgebren

- 1.)Banach- und Operatoralgebren.
- 2.) Multiplikative lineare Funktionale.
- 3.) Spektrum und Resolvente.
- 4.)Kommutative Banachalgebren.
- 5.)Corona Theorem.
- 6.)Funktionalkalkül in Banachalgebren.
- 7.)B*-Algebren.

Modul: Spezielle Funktionen und Anwendungen in der Potentialtheorie [MATHAN33]

Koordination: A. Kirsch

Studiengang: Technomathematik (M.Sc.)

Fach: Analysis

ECTS-Punkte Zyklus Dauer
4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHAN33	Spezielle Funktionen und Anwendungen in der Potentialtheorie	2/1	W/S	4	A. Kirsch

Erfolgskontrolle

Mündliche Prüfung

Bedingungen

Keine.

Empfehlungen

Grundvorlesungen Mathematik (Analysis I-III, LA I, II) oder HM I-III

Lernziele

Die Studierenden sollen Grundwissen über spezielle Funktionen und deren Anwendungen in der Potentialtheorie erwerben und in die Lage versetzt werden, weitere Eigenschaften spezieller Funktionen herzuleiten und auf verwandte Probleme der Potentialtheorie anzuwenden.

Inhalt

Gammafunktion, orthogonale Polynome, Kugelfunktionen, Eigenschaften harmonischer Funktionen (z.B. Integralformeln, Maximumprinzip), Randwertaufgaben

Modul: Numerische Methoden für Differentialgleichungen [MATHMTNM03]

Koordination: W. Dörfler, T. Jahnke **Studiengang:** Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer 8 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
NMDG	Numerische Methoden für Differential- gleichungen	4/2	W	8	W. Dörfler, V. Heuveline, A. Rieder, C. Wieners

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Analysis 1+2

Lineare Algebra 1+2

Programmieren: Einstieg in die Informatik und algorithmische Mathematik

Numerische Mathematik 1+2

Lernziele

Die Studierenden kennen die grundlegenden Methoden und Algorithmen zur numerischen Behandlung von Differentialgleichungen. Dabei werden alle Aspekte von der Modellbildung über die algorithmische Umsetzung bis zur Stabilitäts- und Konvergenzanalyse gleichermaßen betrachtet.

- 1. Anfangswertaufgaben
- 1.1. Einführung
- 1.2. Explizite Einschrittverfahren
- 1.3. Schrittweitensteuerung
- 1.4. Extrapolation
- 1.5. Mehrschrittverfahren
- 1.6. Implizite Einschrittverfahren
- 1.7. Stabilität
- 2. Randwertaufgaben
- 2.1. Differenzenverfahren
- 2.2. Variationsmethoden
- 3. Einführung Numerische Methoden für PDGIn
- 3.1. Elliptische Gleichungen
- 3.2. Parabolische Gleichungen (1-D)
- 3.3. Hyperbolische Gleichungen (1-D)

Modul: Einführung in das Wissenschaftliche Rechnen [MATHMTNM05]

Koordination: W. Dörfler

Studiengang: Technomathematik (M.Sc.) **Fach:** Algebra/Geometrie

ECTS-Punkte Zyklus Dauer 8 Jedes 2. Semester, Sommersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
EWR	Einführung in das Wissenschaftliche Rechnen	3/3	S	8	W. Dörfler, V. Heuveline, A. Rieder, C. Wieners

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung oder Praktikumsschein

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Analysis 1+2

Lineare Algebra 1+2

Programmieren: Einstieg in die Informatik und algorithmische Mathematik

Numerische Mathematik 1+2

Numerische Methoden für Differentialgleichungen

Lernziele

Die Studierenden kennen die grundlegenden Methoden und Algorithmen des Wissenschaftlichen Rechnens. Dabei stehen die Modellbildung und die algorithmische Umsetzung im Vordergrund. Sie lernen Techniken, um die Qualität einer Berechnung abschätzen zu können.

Inhalt

Eine Auswahl der folgenden Themen soll behandelt werden:

- 1. Elliptische Gleichungen
- 1.1. Finite Differenzen
- 1.2. Finite Elemente
- 1.3. Gemischte Methoden
- 2. Parabolische Gleichungen (Anwendungen und Beispiele)
- 2.1. Lineare Gleichungen
- 2.2. Monotone Gleichungen
- 2.3. Singulär gestörte Gleichungen
- 2.4. Gleichungen der Strömungsmechanik
- 3. Hyperbolische Gleichungen
- 3.1. Finite Differenzen / Finite Volumen für Erhaltungsgleichungen
- 3.2. Charakteristiken
- 3.3. Finite Elemente für die Wellengleichung

Anmerkungen

3 Stunden Vorlesung und 3 Stunden Praktikum

Modul: Inverse Probleme [MATHMTNM06]

Koordination: A. Kirsch

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
8 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
01052	Inverse Probleme	4/2	W	8	T. Arens, F. Hettlich, A. Kirsch, A. Rieder

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Funktionalanalysis

Lernziele

Die Studierenden

- können Probleme hinsichtlich Gut- oder Schlechtgestelltheit unterscheiden,
- kennen Regularisierungsstrategien.

- · Lineare Gleichungen 1. Art
- · Schlecht gestellte Probleme
- · Regularisierungstheorie
- · Iterative Verfahren
- Anwendungen

Modul: Finite Elemente Methoden [MATHMTNM07]

Koordination: W. Dörfler

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM07	Finite Elemente Methoden	4/2	W/S	8	W. Dörfler

Erfolgskontrolle

Prüfung: mündliche Prüfung Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Numerische Methoden für Differentialgleichungen

Lernziele

Die Studierenden

- · können eine Diskretisierung einer partiellen Differentialgleichung ableiten,
- · können das Konvergenzverhalten einschätzen und numerisch verifizieren,
- · verstehen die einzelnen Schritte der Implementation.

- 1. Finite Differenzen Methoden
- 2. Lineare und Quadratische Finite Elemente
- 3. Aspekte der Implementierung
- 4. Fehlerabschätzungen (Energienorm)
- 5. Interpolationsabschätzungen
- 6. Quadraturfehler und Randapproximation
- 7. Fehlerabschätzungen (L²- und L∞-Norm)
- 8. Nichtkonforme Elemente

Modul: Paralleles Rechnen [MATHMTNM08]

Koordination: V. Heuveline

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer 5 Jedes Semester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM08	Paralleles Rechnen	2/2	W/S	5	V. Heuveline, J. Weiß

Erfolgskontrolle

Prüfungsvorleistung: wöchentliche Aufgaben im Praktikum

Prüfung: schriftliche oder mündliche Prüfung oder Praktikumschein

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Programmieren: Einstieg in die Informatik und algorithmische Mathematik

Numerische Mathematik 1+2

Numerische Methoden für Differentialgleichungen

Lernziele

- Grundlagen des parallelen Rechnens beherrschen
- Überblick zu wissenschaftlichem Rechnen auf massiv parallelen Rechnern
- theoretische und praktische Erfahrungen mit parallelen Programmierparadigmen
- einfache praktische Aufgaben eigenständig skalierbar implementieren können

- Einführung und Motivation (Skalarprodukt, Sortieren, Partielle DGLen)
- Rechnerarchitektur und Speicherhierarchie
- Messung der Leistungsfähigkeit
- Programmierparadigmen: MPI und OpenMPI
- paralleles Lösen linearer Gleichungssysteme
- Softwarebibliotheken
- Lastverteilung
- Finite Differenzen für Laplace-Gleichung
- Parallele Basisalgorithmen

Modul: Optimierung und optimale Kontrolle bei Differentialgleichungen [MATHMTNM09]

Koordination: V. Heuveline

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
4 Jedes 2. Semester, Sommersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM09	Optimierung und optimale Kontrolle bei Differentialgleichungen	2/1	S	4	V. Heuveline

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Lernziele

- Überblick zur Modellierung mit optimaler Kontrolle gewinnen
- nötige Kenntnisse zum funktionalanalytischen Rahmen
- Lösungsverfahren für elliptische und parabolische Probleme anwenden können

- Einleitung und Motivation
- linear-quadratische elliptische Probleme
- parabolische Probleme
- Steuerung semilinearer elliptischer Gleichungen
- semilineare parabolische Gleichungen

Modul: Löser für lineare und nichtlineare Gleichungssysteme [MATHMTNM10]

Koordination: C. Wieners

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer 8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
LLNGS	Löser für lineare und nichtlineare Glei- chungssysteme	4/2	S	8	W. Dörfler, A. Rieder, C. Wieners

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingunger

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Numerische Mathematik 1+2

Lernziele

Die Studierenden lernen numerische Lösungsverfahren für lineare und nichtlineare Gleichungen kennen. Sie lernen Algorithmen, Aussagen über Konvergenz und exemplarische Anwendungen kennen.

Inhalt

- Direkte Lösungsverfahren für lineare Gleichungssysteme (spezielle Matrizenklassen, Bandbreitenreduktion, Rückwärtsanalyse)
- Iterative Lösungsverfahren für lineare Gleichungssysteme (Krylovraum-Verfahren, verschiedene CG- und GMRES-Varianten)
- · Mehrgitter- und Gebietszerlegungsverfahren
- Fixpunkt- und Newtonverfahren für nichtlineare Gleichungssysteme (Dämpfungsstrategien, globale Konvergenz)

Anmerkungen

(keine Übungen)

Modul: Grundlagen der Kontinuumsmechanik [MATHMTNM11]

Koordination: C. Wieners

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer 3 Einmallig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM11	Grundlagen der Kontinuumsmechanik	2	W/S	3	C. Wieners

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Optimierungstheorie

Lernziele

Die Studierenden lernen die grundlegenden Begriffe der Kontinuummechanik kennen. Sie lernen die Methoden und Prinzipien der mathematischen Modellbildung für Festkörper und Strömungen kennen.

- 1. Kinematische Grundlagen
- 2. Bilanzgleichungen für statische Probleme, Cauchy-Theorem
- 3. Elastische Materialien
- 4. Hyperelastische Materialien
- 5. Bilanzgleichungen für dynamische Probleme, Reynolds-Theorem
- 6. Newtonsche Fluide
- 7. Nicht-Newtonsche Fluide

Modul: Numerische Methoden in der Festkörpermechanik [MATHMTNM12]

Koordination: C. Wieners

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer 8 Einmallig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM12	Numerische Methoden in der Festkörpermechanik	4+2	W/S	8	C. Wieners

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Finite Elemente Methoden

Lernziele

Die Studierenden lernen numerische Methoden zur Approximation von Problemen aus der Festkörpermechanik kennen. Sie lernen Algorithmen, Aussagen über Konvergenz und exemplarische Anwendungen kennen.

Inhali

- 1. Finite Elemente für Lineare Elastizität
- 2. Einführung in die Plastizität
- 3. Nichtlineare Lösungsverfahren für inkrementelle Plastizität
- 4. Einführung in die Theorie der Porösen Medien
- 5. Dynamische Probleme in Festkörpern und porösen Medien

Modul: Numerische Methoden in der Elektrodynamik [MATHMTNM13]

Koordination: W. Dörfler

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
3 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM13	Numerische Methoden in der Elektrody- namik	2	W/S	3	W. Dörfler

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Finite Elemente Methoden

Lernziele

Die Studierenden

- · lernen, wie elektrostatische oder dynamische Effekte zu mathematischen Modellen führen,
- erkennen die grundlegenden Probleme der korrekten Approximation,
- · können stabile Diskretisierungen der Maxwellgleichungen angeben.

- 1. Die Maxwell Gleichungen, Modellierung
- 2. Rand- und Übergangsbedingungen
- 3. Analytische Hilfsmittel
- 4. Das Quellenproblem
- 5. Das Eigenwertproblem
- 6. Finite Elemente für die Maxwell-Gleichungen
- 7. Interpolationsabschätzungen

Modul: Wavelets [MATHMTNM14]

Koordination: A. Rieder

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
Wave	Wavelets	4/2		8	A. Rieder

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1-3

Lernziele

Die Studierenden kennen die mathematischen Eigenschaften der kontinuierlichen und der diskreten Wavelet-Transformation und sind damit in der Lage, die Wavelet-Transformation als Analysewerkzeug in der Signal- und Bildverarbeitung anzuwenden.

- Gefensterte Fourier-Transformation
- · Kontinuierliche Wavelet-Transformation
- · Wavelet-Frames
- · Wavelet-Basen
- Schnelle Wavelet-Transformation
- · Konstruktion orthogonaler und bi-orthogonaler Wavelets
- · Anwendungen in Signal- und Bildverarbeitung

Modul: Bildgebende Verfahren in der Medizintechnik [MATHMTNM15]

Koordination: A. Rieder

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM15	Bildgebende Verfahren in der Medizintechnik	4/2	W/S	8	A. Rieder

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Lernziele

Die Studierenden lernen einige mathematische Modelle der medizinischen Bildgebung, deren Eigenschaften und deren numerische Realisierung (Rekonstruktionslagorithmen) kennen. Sie sind damit in der Lage, die gelernten Techniken auf verwandte Fragestellungen anzuwenden.

- Varianten der Computer-Tomographie (Röntgen-, Impedanz-, etc.)
- Abtastung und Auflösung
- Schlechtgestelltheit und Regularisierung
- Rekonstruktionsalgorithmen

Modul: Mathematische Methoden in Signal- und Bildverarbeitung [MATHMTNM16]

Koordination: A. Rieder

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM16	Mathematische Methoden in Signal- und Bildverarbeitung	4/2	W/S	8	A. Rieder

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Funktionalanalysis

Lernziele

Die Studierenden lernen die wesentlichen mathematischen Werkzeuge der Signal- und Bildverarbeitung und deren Eigenschaften kennen. Sie sind damit in die Lage, diese Werkzeuge adäquat einzusetzen und die erhaltenen Resultate kompetent zu interpretieren.

- Digitale und analoge Systeme
- Integrale Fourier-Transformation
- Abtastung und Auflösung
- Diskrete und schnelle Fourier-Transformation
- Nichtuniforme Abtastung
- Anisotrope Diffusion

Modul: Mehrgitter- und Gebietszerlegungsverfahren [MATHMTNM17]

Koordination: C. Wieners

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer 3 Einmallig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM17	Mehrgitter- und Gebietszerlegungsver- fahren	2	W/S	3	C. Wieners

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Finite Elemente Methoden

l ernziele

Die Studierenden lernen Mehrgitter- und Gebietszerlegungsverfahren zur approximativen Lösung von elliptischen Differentialgleichungen kennen. Sie lernen Algorithmen, Aussagen über Konvergenz und exemplarische Anwendungen kennen.

Inhali

- 1. Das Zweigitter-Verfahren
- 2. Klassische Mehrgittertheorie
- 3. Additive Subspace-Correction
- 4. Multiplicative Subspace-Correction
- 5. Mehrgitter-Verfahren für Sattelpunktprobleme

Modul: Numerische Methoden in der Finanzmathematik [MATHMTNM18]

Koordination: T. Jahnke

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer 8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM18	Numerische Methoden in der Finanz- mathematik	4/2	W/S	8	T. Jahnke, C. Wieners

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Numerische Methoden für Differentialgleichungen

Wahrscheinlichkeitstheorie

Lernziele

Im Mittelpunkt der Vorlesung steht die Bewertung von Optionen durch numerische Verfahren. Die Studierenden lernen, durch welche partiellen bzw. stochastischen Differentialgleichungen der Wert einer Option modelliert wird. Zur Lösung dieser Gleichungen werden eine Reihe von numerischen Verfahren vorgestellt, deren Konvergenz- und Stabilitätseigenschaften ausführlich analysiert werden.

- 1. Einführung: Optionen, Arbitrage und andere Grundbegriffe
- 2. Wiener-Prozess, Ito-Integral, Ito-Formel
- 3. Black-Scholes-Gleichung und Black-Scholes-Formel
- 4. Lösung der eindimensionalen Black-Scholes-Gleichung durch Finite-Differenzen-Verfahren
- 5. Asiatische Optionen, Upwind-Verfahren
- 5. Bewertung von amerikanischen Optionen
- 6. Erzeugung von Pseudo-Zufallszahlen und Monte-Carlo-Methode
- 7. Numerische Verfahren für stochastische Differentialgleichungen

Modul: Adaptive Finite Elemente Methoden [MATHMTNM19]

Koordination: W. Dörfler

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
3 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM19	Adaptive Finite Elemente Methoden	2	W/S	3	W. Dörfler

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Finite Elemente Methoden

Lernziele

Die Studierenden

- · verstehen die Möglichkeiten und Grenzen adaptiver Methoden,
- · können eine der Situation angemessene Techniken auswählen,
- · verstehen die Grundlagen der Implementation.

- 1. Notwendigkeit adaptiver Methoden
- 2. Residuenfehlerschätzer
- 3. Aspekte der Implementierung
- 4. Funktional-Fehlerschätzer
- 5. Optimalität der adaptiven Methode
- 6. hp Finite Elemente

Modul: Numerische Methoden für zeitabhängige PDGLn [MATHMTNM20]

Koordination: W. Dörfler

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer 8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM20	Numerische Methoden für zeitabhängige PDGLn	4/2	W/S	8	W. Dörfler

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Finite Elemente Methoden

Lernziele

Die Studierenden

- · können eine Diskretisierung einer zeitabhängigen partiellen Differentialgleichung ableiten,
- · können das Konvergenzverhalten einschätzen und numerisch verifizieren,
- verstehen die einzelnen Schritte der Implementation.

- 1. Numerik parabolischer Gleichungen
- 2. Numerik hyperbolischer Gleichungen
- 3. Zeitschrittweitensteuerung

Modul: Numerik für gewöhnliche Differentialgleichungen und differentiell-algebraische Systeme [MATHMTNM21]

Koordination: T. Jahnke

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
NGDG	Numerik für gewöhnliche Differentialgleichungen und differentiellalgebraische Systeme	4/2	W/S	8	W. Dörfler, T. Jahnke, I. Lenhardt, M. Neher, A. Rieder, C. Wieners

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Lineare Algebra 1+2

Analysis 1+2

Numerik 1+2

Numerische Methoden für Differentialgleichungen

Lernziele

Die Studierenden verstehen, in welchen Anwendungen gewöhnliche und differentiell-algebraische Systeme auftreten, wie numerische Verfahren zur Lösung solcher Probleme konstruiert werden, und wie man die Genauigkeit, Stabilität und Effizienz solcher Verfahren mathematisch untersucht.

Inhali

- 1. Motivation: Wo treten gewöhnliche Differentialgleichungen und differentiell-algebraische Systeme auf?
- 2. Theorie gewöhnlicher Differentialgleichungen (Wiederholung/Zusammenfassung):

Differentialgleichungen höherer Ordnung, Systeme von gewöhnlichen Differentialgleichungen, Existenz und Eindeutigkeit von Lösungen, Einfluss von Störungen in den Anfangswerten

- 3. Numerische Verfahren für Anfangswertprobleme
- 3.1 Wiederholung bzw. Zusammenfassung der Resultate aus Numerik I:

Explizite und implizite Verfahren, Runge-Kutta-Verfahren, Konsistenz, Stabilität, Ordnung, steife Differentialgleichungen, Stabilitätsbereiche, A-Stabilität, L-Stabilität, algebraische Stabilität

- 3.2 Extrapolationsverfahren (falls nicht im Modul "Numerische Methoden für Differentialgleichungen" behandelt)
- ${\it 3.3 Linear-implizite Runge-Kutta-Verfahren, Kollokationsverfahren (Gauß, Radau)}\\$
- 3.4 Mehrschrittverfahren (Adams-, Prädiktor-Korrektor- und BDF-Verfahren)

Ordnung von Mehrschrittverfahren, Dahlquist Barrier, Null-Stabilität

- 3.5 Optional: Weitere Themen wie z.B.
- (a) Exponentielle Integratoren
- (b) Symplektische Verfahren für Hamilton-Systeme, geometrische numerische Integration, (fast-)Erhaltung von ersten Integralen über lange Zeiten
- (c) Splitting- und Kompositionsverfahren
- (d) Magnus-Verfahren
- (e) Ordnungssterne
- (f) B-Reihen
- (g) General linear methods
- 4. Differentiell-algebraische Systeme
- 4.1 Singulär gestörte Probleme, Probleme vom Index 1
- 4.2 Probleme von höherem Index,

Modul: Numerische Methoden in der Strömungsmechanik [MATHMTNM24]

Koordination: V. Heuveline

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
3 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung		SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM24	Numerische Methoden in d mungsmechanik	er Strö-	2	W	3	V. Heuveline

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Lernziele

- Überblickswissen zu Modellierung und physikalischen Annahmen
- Anwendung der Finite Element Methode (FEM) auf Strömungsprobleme
- numerische Behandlung der Inkompressibilität

- Energie und Spannungstensor
- Einführung in die Finite Element Methode (FEM)
- Approximation von vektorwertigen Funktionen
- Herleitung der Navier-Stokes-Gleichung (NSG)
- stationäre NSG
- Approximation stationärer Strömungen
- zeitabhängiges Problem
- Approximation des vollen Systems
- Turbulenz

Modul: Numerische Optimierungsmethoden [MATHMTNM25]

Koordination: C. Wieners

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM25	Numerische Optimierungsmethoden	4/2	W/S	8	V. Heuveline, C. Wieners

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Optimierungstheorie

Lernziele

Die Studierenden lernen verschiedene numerische Verfahren für restringierte und unrestringierte Optimierungsprobleme kennen. Sie lernen Algorithmen, Aussagen über lokale und gobale Konvergenz und exemplarische Anwendungen kennen.

- 1. Allgemeine unrestringierte Minimierungsverfahren
- 2. Newton-Verfahren
- 3. Inexakte Newton-Verfahren
- 4. Quasi-Newton-Verfahren
- 5. Nichtlineare cg-Verfahren
- 6. Trust-Region-Verfahren
- 7. Innere-Punkte-Verfahren
- 8. Penalty-Verfahren
- 9. Aktive-Mengen Strategien
- 10. SQP-Verfahren
- 11. Nicht-glatte Optimierung

Modul: Numerische Methoden in der Finanzmathematik II [MATHNM26]

Koordination: T. Jahnke

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte Zyklus Dauer 8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM26	Numerische Methoden in der Finanzmathematik II	4/2	W/S	8	T. Jahnke, C. Wieners

Erfolgskontrolle

Schriftliche oder mündliche Prüfung. Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Numerische Methoden in der Finanzmathematik

Lernziele

Aufbauend auf den ersten Teil der Vorlesung lernen die Studierende weitere Modelle zur Bewertung von Finanzderivaten kennen, wobei nun der Schwerpunkt auf Optionen mit mehreren Basiswerten liegt. Zur Lösung der zugrundeliegenden Differentialgleichungen werden verschiedene numerische Verfahren vorgestellt, deren Konvergenz- und Stabilitätseigenschaften ausführlich analysiert werden.

- 1. Historische und implizite Volatilität
- 2. Lösung der Black-Scholes-Gleichung mit der Methode der finiten Elemente
- 3. Dünngittermethoden (Sparse Grids) für die Bewertung von Basketoptionen
- 4. Hochdimensionale Quadratur durch Quasi-Monte-Carlo-Methoden
- 5. Weiterführende Themen, z.B. Sprung-Diffusions-Prozesse und Integro-Differentialgleichungen, nichtlineare Black-Scholes-Gleichung usw.

Modul: Modellbildung und numerische Simulation in der Praxis [MATHNM27]

Koordination: G. Thäter

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

ECTS-Punkte	Zyklus	Dauer
3	Jedes 2. Semester, Sommersemester	1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM27	Modellbildung und numerische Simulation in der Praxis	2	W/S	3	V. Heuveline, G. Thäter

Erfolgskontrolle

Mündliche Prüfung oder Bearbeitung eines Projektes

Bedingungen

Keine.

Empfehlungen

Analysis 1+2, Numerik 1 bzw. HM-Zyklus für die Ingenieure

Lernziele

Projektorientiertes Arbeiten, Überblickswissen verknüpfen, typische Modellansätze

Inhalt

Mathematisches Denken (als Modellieren) und mathematische Techniken (als Handwerkszeug) treffen auf Anwendungsprobleme wie:

- 1. Differenzengleichungen
- 2. Bevölkerungsmodelle
- 3. Verkehrsfluss
- 4. Wachstum
- 5. Spieltheorie
- 6. Chaos
- 7. Probleme der Mechanik

Modul: Numerische Methoden für hyperbolische Gleichungen [MATHNM28]

Koordination: W. Dörfler

Studiengang: Technomathematik (M.Sc.)

Fach: Angewandte und numerische Mathematik

Zyklus Dauer
Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHNM28	Numerische Methoden für hyperbolische Gleichungen	2	W/S	3	W. Dörfler

Erfolgskontrolle

Prüfung: mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Oberhalb 6. Semester

Lernziele

Wir stellen grundlegende Prinzipien der Theorie und Numerik von einfachen Gleichungen in Erhaltungsform vor. Als Anwendung betrachten wir die Burgers Gleichung und die Maxwellgleichungen.

- · Herleitung von Erhaltungsgleichungen
- Schocks, Verdünnungswellen und schwache Lösungen
- · Aspekte der Existenz und Regularitätstheorie
- · Diskretisierung von Erhaltungsgleichungen
- · Anwendung auf die Maxwellgleichungen

Modul: Stochastische Geometrie [MATHMTST06]

Koordination: D. Hug

Studiengang: Technomathematik (M.Sc.)
Fach: Algebra/Geometrie, Stochastik

ECTS-Punkte Zyklus Dauer
8 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST06	Stochastische Geometrie	4/2	W/S	8	D. Hug, G. Last

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie

Konvexe Geometrie oder Räumliche Stochastik

Lernziele

Die Studierenden

- kennen die grundlegenden geometrischen Modelle der Stochastischen Geometrie,
- · sind mit Eigenschaften von Poissonprozessen geometrischer Objekte vertraut,
- · kennen exemplarisch Anwendungen von Modellen der Stochastischen Geometrie.

- Geometrische Punktprozesse
- · Zufällige Mengen
- Stationarität und Isotropie
- Poissonprozesse
- · Keim-Korn-Modelle
- · Boolesche Modelle
- · Spezifische innere Volumina
- Kontaktverteilungen
- Zufällige Mosaike

Modul: Asymptotische Stochastik [MATHMTST07]

Koordination: N. Henze

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer
8 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST07	Asymptotische Stochastik	4/2	S	8	N. Henze, C. Kirch, B. Klar

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie

Lernziele

Die Studierenden lernen grundlegende Konzepte und Modelle der asymptotischen Statistik kennen. Nach Absolvieren dieses Moduls sollten sie einen Überblick über die den Verfahren der asymptotischen Statistik zugrunde liegenden mathematischen Methoden besitzen.

Inhalt

Verteilungskonvergenz,

Charakteristische Funktionen und ZGWS im Rd,

Extremwertverteilungen,

Delta-Methode,

Glivenko-Cantelli,

Schwache Konvergenz in metrischen Räumen,

Satz von Donsker,

Asymptotik von Momenten- und Maximum Likelihood-Schätzern,

Asymptotische Optimalität von Schätzern,

M-Schätzer,

Asymptotische Konfidenzbereiche,

Likelihood-Quotienten-Tests

Modul: Generalisierte Regressionsmodelle [MATHMTST09]

Koordination: B. Klar

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer
4 Jedes 2. Semester, Sommersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST09	Generalisierte Regressionsmodelle	2/1	W	4	N. Henze, C. Kirch, B. Klar

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Statistik

Lernziele

Nach Absolvieren dieses Moduls kennen die Studierenden die wichtigsten Regressions-modelle und deren Eigenschaften. Sie können die Anwendbarkeit dieser Modelle beurteilen, die Ergebnisse interpretieren und sind in der Lage, die Modelle zur Analyse komplexerer Datensätze einzusetzen.

Inhalt

Ergänzungen zu linearen Modellen (Versuchsplanung, Modellwahl), nichtlineare Modelle, verallgemeinerte lineare Modelle, gemischte Modelle

Modul: Brownsche Bewegung [MATHMTST10]

Koordination: N. Bäuerle

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer
4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST10	Brownsche Bewegung	2/1	W/S	4	N. Bäuerle, N. Henze, C. Kirch, G. Last

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie

Lernziele

Die Studierenden

- kennen Eigenschaften von stochastischen Prozessen am Beispiel der Brownschen Bewegung,
- kennen spezifische probabilistische Techniken,
- können die Einsatzmöglichkeit der Brownschen Bewegung zur Modellierung von stochastischen Phänomenen abschätzen.

- Pfadeigenschaften der Brownschen Bewegung, quadratische Variation
- Existenz
- Starke Markov-Eigenschaft mit Anwendungen (Spiegelungsprinzip)
- Invarianzprinzip von Donsker

Modul: Markovsche Entscheidungsprozesse [MATHMTST11]

Koordination: N. Bäuerle

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer
4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST11	Markovsche Entscheidungsprozesse	2/1	W/S	4	N. Bäuerle

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie;

Optimierungstheorie

Lernziele

Die Studierenden

- kennen grundlegende Techniken der Markovschen Entscheidungsprozesse und können diese anwenden,
- kennen spezifische Optimierungstechniken,
- können Fragestellungen aus dem Bereich der Markovschen Entscheidungsprozesse mathematisch formulieren.

Inhali

- stochastische, dynamische Programme mit endlichem Horizont, Optimalitätsgleichung
- Diskontierte stochastische, dynamische Programme mit unendlichem Horizont; Howard's Politikverbesserung; Wertiteration.
- Probleme mit unvollständiger Information

Modul: Steuerung stochastischer Prozesse [MATHMTST12]

Koordination: N. Bäuerle

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer
4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST12	Stochastische Steuerung	2/1	W/S	4	N. Bäuerle

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie Finanzmathematik in stetiger Zeit

Lernziele

Die Studierenden

- kennen grundlegende Techniken der modernen stochastischen Steuerungstheorie und können diese anwenden,
- kennen spezifische probabilistische Techniken,
- können Fragestellungen als stochastisches Steuerungsproblem formulieren.

Inhali

- Verifikationstechnik, Hamilton-Jacobi-Bellman Gleichung
- Viskositätslösungen
- · Singuläre Steuerung
- Feynman-Kac Darstellungen

Modul: Perkolation [MATHMTST13]

Koordination: G. Last

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer 4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST13	Perkolation	2/1	W/S	4	G. Last

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie

Lernziele

Die Studierenden sollen grundlegende Modelle der diskreten und stetigen Perkolation kennenlernen.

- · Perkolation auf Graphen
- · Satz von Harris-Kesten
- · Asymptotik der Clustergröße im sub- und superkritischen Fall
- Stetige Perkolation

Modul: Räumliche Stochastik [MATHMTST14]

Koordination: G. Last

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer
8 Jedes 2. Semester, Wintersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST14	Räumliche Stochastik	4/2	W	8	D. Hug, G. Last

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie

Lernziele

Die Studierenden kennen grundlegende räumliche stochastische Prozesse. Dabei sollen nicht nur allgemeine Verteilungseigenschaften, sondern auch konkrete anwendungsrelevante Modelle (Poissonscher Prozess, Gaußsche Zufallsfelder) diskutiert werden.

- Punktprozesse
- · Zufällige Maße
- · Poissonprozess
- · Palmsche Verteilung
- · Räumlicher Ergodensatz
- · Zufällige Felder
- Gaußsche Felder

Modul: Mathematische Statistik [MATHMTST15]

Koordination: B. Klar

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer 4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST15	Mathematische Statistik	2/1	W/S	4	N. Henze, C. Kirch, B. Klar

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie

Lernziele

Die Studierenden lernen grundlegende Konzepte der mathematischen Statistik kennen, und sollen diese bei einfachen Fragestellungen eigenständig anwenden können.

Inhalt

Optimale erwartungstreue Schätzer, BLUE, Cramér-Rao-Schranke, Suffizienz, Vollständigkeit, UMP- und UMPU-Tests

Modul: Nichtparametrische Statistik [MATHMTST16]

Koordination: N. Henze

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer 4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST16	Nichtparametrische Statistik	2/1	W/S	4	N. Henze, C. Kirch, B. Klar

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie Asymptotische Stochastik

Lernziele

Die Studierenden lernen grundlegende Konzepte und Modelle der nichtparametrischen Statistik kennen. Sie können die Anwendbarkeit dieser Modelle beurteilen und sind in der Lage, die Modelle zur Analyse von Datensätzen einzusetzen.

Inhali

Ordnungsstatistik, empirische Verteilungsfunktion, Quantile, U-Statistiken, Rang-Statistiken, Anpassungstests

Modul: Multivariate Statistik [MATHMTST17]

Koordination: N. Henze

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer 4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST17	Multivariate Statistik	2/1	W/S	4	N. Henze, C. Kirch, B. Klar

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Wahrscheinlichkeitstheorie Asymptotische Stochastik

l ernziele

Die Studierenden lernen grundlegende Konzepte und Modelle der multivariaten Statistik kennen. Sie können die Anwendbarkeit dieser Modelle beurteilen und sind in der Lage, die Modelle zur Analyse von Datensätzen einzusetzen.

Inhalt

Mehrdimensionale Normalverteilung, Hotellings -Statistik, Wishart-Verteilung, Hauptkomponenten-, Faktoren, Diskriminanzund Cluster-Analyse, Multidimensionale Skalierung

Modul: Zeitreihenanalyse [MATHMTST18]

Koordination: B. Klar

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer
4 Jedes 2. Semester, Sommersemester 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST18	Zeitreihenanalyse	2/1	S	4	N. Henze, C. Kirch, B. Klar

Erfolgskontrolle

Prüfung: schriftliche oder mündliche Prüfung

Notenbildung: Note der Prüfung

Bedingungen

Folgende Module sollten bereits belegt worden sein (Empfehlung): Wahrscheinlichkeitstheorie

Lernziele

Die Studierenden kennen und verstehen Standardmodelle der Zeitreihenanalyse. Sie haben exemplarisch mathematische Methoden zur datengesteuerten Auswahl und Validierung von Modellen in Anwendungssituationen kennengelernt. Modelle und Methoden der Vorlesung können von den Studierenden selbständig auf reale und simulierte Daten angewendet werden.

Inhalt

Stationarität, Autokorrelation, ARMA-Modelle, Spektraltheorie, Parameterschätzung

Modul: Finanzstatistik [MATHST19]

Koordination: C. Kirch

Studiengang: Technomathematik (M.Sc.)

Fach: Stochastik

ECTS-Punkte Zyklus Dauer 4 Unregelmäßig 1

Lehrveranstaltungen im Modul

Nr.	Lehrveranstaltung	SWS V/Ü/T	Sem.	LP	Lehrveranstaltungs- verantwortliche
MATHST19	Finanzstatistik	2/1	W/S	4	N. Henze, C. Kirch, B. Klar

Erfolgskontrolle

Schriftliche oder mündliche Prüfung, Notenbildung: Note der Prüfung

Bedingungen

Keine.

Empfehlungen

Folgende Module sollten bereits belegt worden sein (Empfehlung):

Zeitreihenanalyse, Asymptotische Stochastik

Lernziele

Die Studierenden kennen Zeitreihenmodelle für Finanzdaten wie etwa Aktienkurse. Sie können diese Modelle mit dem Computer zur Volatilitätsvorhersage und zur Risikomessung einsetzen. Sie kennen statistische Methoden für die Risikoanalyse, insbesondere auch zur multivariaten Modellierung.

Inhalt

GARCH-Zeitreihen, Volatilitätsvorhersage, statistische Methoden zur Schätzung von Risikomaßen, Modellvalidierung, Copulas

Modul: Seminar [MATHMTSE01]

Koordination: Studiendekan/Studiendekanin **Studiengang:** Technomathematik (M.Sc.)

Fach: Seminar

ECTS-Punkte Zyklus Dauer
3 Jedes Semester 1

Erfolgskontrolle

Erfolgskontrolle anderer Art

Notenbildung: ohne Note

Bedingungen

Keine.

Lernziele

Modul: Schlüsselqualifikationen [MATHTMSQ01]

Koordination: Studiendekan/Studiendekanin
Studiengang: Technomathematik (M.Sc.)
Fach: Schlüsselqualifikationen

ECTS-Punkte Zyklus Dauer

Erfolgskontrolle

Erfolgskontrolle anderer Art Notenbildung: (in der Regel) ohne Note

Bedingungen

Keine.

Lernziele

Lernziele lassen sich in drei Hauptkategorien einteilen, die sich wechselseitig ergänzen:

- 1. Orientierungswissen
 - Die Studierenden sind sich der kulturellen Prägung ihrer Position bewusst und sind in der Lage, die Sichtweisen und Interessen anderer (über Fach-, Kultur- und Sprachgrenzen hinweg) zu berücksichtigen.
 - Sie haben ihre F\u00e4higkeiten erweitert, sich an wissenschaftlichen oder \u00f6ffentlichen Diskussionen sachgerecht und angemessen zu beteiligen.

2. Praxisorientierung

- Studierende haben Einsicht in die Routinen professionellen Handelns erhalten.
- · Sie haben ihre Lernfähigkeit weiter entwickelt.
- · Sie haben durch Ausbau ihrer Fremdsprachenkenntnisse ihre Handlungsfähigkeit erweitert.
- · Sie können grundlegende betriebswirtschaftliche und rechtliche Sachverhalte mit ihrem Erfahrungsfeld verbinden.

3. Basiskompetenzen

- Die Studierenden erwerben geplant und zielgerichtet sowie methodisch fundiert selbständig neues Wissen und setzen dieses bei der Lösung von Aufgaben und Problemen ein.
- · Sie können die eigene Arbeit auswerten.
- Sie verfügen über effiziente Arbeitstechniken, können Prioritäten setzen, Entscheidungen treffen und Verantwortung übernehmen.

Inhalt

Das House of Competence bietet mit dem Modul Schlüsselqualifikationen eine breite Auswahl aus sechs Wahlbereichen, in denen Veranstaltungen zur besseren Orientierung thematisch zusammengefasst sind. Die Inhalte werden in den Beschreibungen der Veranstaltungen auf den Internetseiten des HoC (http://www.hoc.kit.edu/studium) detailliert erläutert. Dabei können Tutorenprogramme nur über die Fakultät belegt werden. Mikrobausteine werden in der Regel in Verbindung mit einer Fachveranstaltung angeboten.

Wahlbereiche des HoC:

- "Kultur Politik Wissenschaft Technik", 2-3 LP
- "Kompetenz- und Kreativitätswerkstatt", 2-3 LP
- "Fremdsprachen", 2-3 LP
- "Persönliche Fitness & Emotionale Kompetenz", 2-3 LP
- "Tutorenprogramme", 3 LP
- "Mikrobausteine", 1 LP

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825

Der Rektor

Amtliche Bekanntmachung

2009 Ausgegeben Karlsruhe, den 28. August 2009

Nr. 75

Inhalt Seite

Studien- und Prüfungsordnung der Universität Karlsruhe (TH) 456 für den Masterstudiengang Technomathematik

456

Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Masterstudiengang Technomathematik

Aufgrund von § 34 Abs. 1, Satz 1 des Landeshochschulgesetzes (LHG) vom 1. Januar 2005 hat die beschließende Senatskommission für Prüfungsordnungen der Universität Karlsruhe (TH) am 13. Februar 2009 die folgende Studien- und Prüfungsordnung für den Masterstudiengang Technomathematik beschlossen.

Der Rektor hat seine Zustimmung am 28. August 2009 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen

- § 1 Geltungsbereich, Ziele
- § 2 Akademischer Grad
- § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
- § 4 Aufbau der Prüfungen
- § 5 Anmeldung und Zulassung zu den Prüfungen
- § 6 Durchführung von Prüfungen und Erfolgskontrollen
- § 7 Bewertung von Prüfungen und Erfolgskontrollen
- § 8 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen
- § 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
- § 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
- § 11 Masterarbeit
- § 12 Berufspraktikum
- § 13 Zusatzleistungen, Zusatzmodule, Schlüsselqualifikationen
- § 14 Prüfungsausschuss
- § 15 Prüferinnen und Beisitzende
- § 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

II. Masterprüfung

- § 17 Umfang und Art der Masterprüfung
- § 18 Bestehen der Masterprüfung, Bildung der Gesamtnote
- § 19 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen

- § 20 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
- § 21 Ungültigkeit der Masterprüfung, Entziehung des Mastergrades
- § 22 Einsicht in die Prüfungsakten
- § 23 In-Kraft-Treten

Die Universität Karlsruhe (TH) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studierendenausbildung an der Universität Karlsruhe (TH) der Mastergrad stehen soll. Die Universität Karlsruhe (TH) sieht daher die an der Universität Karlsruhe (TH) angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

In dieser Satzung ist nur die weibliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Ziele

- (1) Diese Masterprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Masterstudiengang Technomathematik an der Universität Karlsruhe (TH).
- (2) Im Masterstudium sollen die im Bachelorstudium erworbenen wissenschaftlichen Qualifikationen weiter vertieft oder ergänzt werden. Die Studentin soll in der Lage sein, die wissenschaftlichen Erkenntnisse und Methoden selbstständig anzuwenden und ihre Bedeutung und Reichweite für die Lösung komplexer wissenschaftlicher und gesellschaftlicher Problemstellungen zu bewerten.

§ 2 Akademischer Grad

Aufgrund der bestandenen Masterprüfung wird der akademische Grad "Master of Science" (abgekürzt: "M.Sc.") verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

- (1) Die Regelstudienzeit beträgt vier Semester. Sie umfasst neben den Lehrveranstaltungen Prüfungen und die Masterarbeit.
- (2) Der Masterstudiengang Technomathematik hat zwei Ergänzungsfächer:
 - 1. Technisches Nebenfach,
 - 2. Informatik.

Die Studentin wählt zu Beginn des Masterstudiums das technische Nebenfach. Es kann eines der folgenden Fächer gewählt werden:

- (a) Maschinenbau,
- (b) Elektrotechnik/Informationstechnik,
- (c) Experimentalphysik,
- (d) Bauingenieurwesen.

Andere technische Nebenfächer können vom Prüfungsausschuss genehmigt werden.

(3) Die im Studium zu absolvierenden Lehrinhalte sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren, thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren, beschreibt der Studienplan. Die Fächer und ihr Umfang werden in § 17 definiert.

458

- (4) Der für das Absolvieren von Lehrveranstaltungen und Modulen vorgesehene Arbeitsaufwand wird in Leistungspunkten (Credits) ausgewiesen. Die Maßstäbe für die Zuordnung von Leistungspunkten entsprechen dem ECTS (European Credit Transfer System). Ein Leistungspunkt entspricht einem Arbeitsaufwand von etwa 30 Stunden.
- (5) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.
- **(6)** Die Verteilung der Leistungspunkte im Studienplan auf die Semester hat in der Regel gleichmäßig zu erfolgen.
- (7) Lehrveranstaltungen können auch in englischer Sprache angeboten werden.

§ 4 Aufbau der Prüfungen

- (1) Die Masterprüfung besteht aus einer Masterarbeit und Fachprüfungen, jede der Fachprüfungen aus einer oder mehreren Modulprüfungen, jede Modulprüfung aus einer oder mehreren Modulteilprüfungen. Eine Modulteilprüfung besteht aus mindestens einer Erfolgskontrolle.
- (2) Erfolgskontrollen sind:
 - 1. schriftliche Prüfungen,
 - 2. mündliche Prüfungen oder
 - 3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z.B. Vorträge, Übungsscheine, Projekte, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Studienplan ausgewiesen sind.

(3) In der Regel sind mindestens 50 % einer Modulprüfung in Form von schriftlichen oder mündlichen Prüfungen (Absatz 2, Nr. 1 und 2) abzulegen, die restlichen Prüfungen erfolgen durch Erfolgskontrollen anderer Art (Absatz 2, Nr. 3). Hiervon ausgenommen sind Seminarmodule.

§ 5 Anmeldung und Zulassung zu den Prüfungen

- (1) Um an den Modulprüfungen teilnehmen zu können, muss sich die Studentin schriftlich oder per Online-Anmeldung beim Studienbüro anmelden. Hierbei sind die gemäß dem Studienplan für die jeweilige Modulprüfung notwendigen Studienleistungen nachzuweisen. Darüber hinaus muss sich die Studentin für jede einzelne Modulteilprüfung, die in Form einer schriftlichen oder mündlichen Prüfung (§ 4 Abs. 2, Nr. 1 und 2) durchgeführt wird, beim Studienbüro anmelden. Dies gilt auch für die Anmeldung zur Masterarbeit.
- (2) Um zu schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) in einem bestimmten Modul zugelassen zu werden, muss die Studentin vor der ersten schriftlichen oder mündlichen Prüfung in diesem Modul beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgeben.
- (3) Die Zulassung darf nur abgelehnt werden, wenn die Studentin in einem mit der Mathematik vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat. In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

- (2) Die Art der Erfolgskontrolle (§ 4 Abs. 2, Nr. 1 bis 3) der einzelnen Lehrveranstaltungen wird von der Prüferin der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lehrziele des Moduls festgelegt. Die Prüferin, die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung und die Bildung der Lehrveranstaltungsnote müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen zwischen Prüferin und Studentin kann die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Abs. 3 zu berücksichtigen.
- (3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfung auch mündlich oder eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.
- (4) Weist eine Studentin nach, dass sie wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Form abzulegen, kann der zuständige Prüfungsausschuss in dringenden Angelegenheiten, deren Erledigung nicht bis zu einer Sitzung des Ausschusses aufgeschoben werden kann, dessen Vorsitzende gestatten, Erfolgskontrollen in einer anderen Form zu erbringen. Auf Antrag kann der Prüfungsausschuss auch in anderen begründeten Ausnahmefällen gestatten, Erfolgskontrollen in einer anderen Form zu erbringen.
- (5) Bei Lehrveranstaltungen in englischer Sprache können mit Zustimmung der Studentin die entsprechenden Erfolgskontrollen in englischer Sprache abgenommen werden.
- (6) Schriftliche Prüfungen (§ 4 Abs. 2, Nr. 1) sind in der Regel von einer Prüferin nach § 15 Abs. 2 oder § 15 Abs. 3 zu bewerten. Die Note ergibt sich aus dem arithmetischen Mittel der Einzelbewertungen. Entspricht das arithmetische Mittel keiner der in § 7 Abs. 2, Satz 2 definierten Notenstufen, so ist auf die nächstliegende Notenstufe zu runden. Bei gleichem Abstand ist auf die nächstbessere Notenstufe zu runden. Das Bewertungsverfahren soll sechs Wochen nicht überschreiten. Schriftliche Einzelprüfungen dauern mindestens 60 und höchstens 240 Minuten.
- (7) Mündliche Prüfungen (§ 4 Abs. 2, Nr. 2) sind von mehreren Prüferinnen (Kollegialprüfung) oder von einer Prüferin in Gegenwart einer Beisitzenden als Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die Prüferin die anderen an der Kollegialprüfung mitwirkenden Prüferinnen bzw. die Beisitzende an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten.
- (8) Die wesentlichen Gegenstände und Ergebnisse der mündlichen Prüfung in den einzelnen Fächern sind in einem Protokoll festzuhalten. Das Ergebnis der Prüfung ist der Studentin im Anschluss an die mündliche Prüfung bekannt zu geben.
- (9) Studentinnen, die sich in einem späteren Prüfungszeitraum der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen als Zuhörerinnen bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse. Aus wichtigen Gründen oder auf Antrag der Studentin ist die Zulassung zu versagen.
- (10) Für Erfolgskontrollen anderer Art sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Studienleistung der Studentin zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.
- (11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: "Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde." Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.
- (12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss in der Regel neben der Prüferin eine Beisitzende anwesend sein, die zusätzlich zur Prüferin die Protokolle zeichnet.

460

§ 7 Bewertung von Prüfungen und Erfolgskontrollen

(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüferinnen in Form einer Note festgesetzt.

(2) Im Masterzeugnis dürfen nur folgende Noten verwendet werden:

1 : sehr gut (very good) = hervorragende Leistung,

2 : gut (good) = eine Leistung, die erheblich über den durch-

schnittlichen Anforderungen liegt,

3 : befriedigend (satisfactory) = eine Leistung, die durchschnittlichen Anfor-

derungen entspricht,

4 : ausreichend (sufficient) = eine Leistung, die trotz ihrer Mängel noch

den Anforderungen genügt,

5 : nicht ausreichend (failed) = eine Leistung, die wegen erheblicher Mängel

nicht den Anforderungen genügt.

Für die Masterarbeit und die Modulteilprüfungen sind zur differenzierten Bewertung nur folgende Noten zugelassen:

1 1.0, 1.3 = sehr gut

2 1.7, 2.0, 2.3 = gut

3 2.7, 3.0, 3.3 = befriedigend

4 3.7, 4.0 = ausreichend

5 4.7, 5.0 = nicht ausreichend

Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

- (3) Für Erfolgskontrollen anderer Art kann im Studienplan die Benotung mit "bestanden" (passed) oder "nicht bestanden" (failed) vorgesehen werden.
- (4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.
- (5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf in demselben Studiengang nur einmal angerechnet werden. Die Anrechnung eines Moduls, einer Lehrveranstaltung oder einer Erfolgskontrolle ist darüber hinaus ausgeschlossen, wenn das betreffende Modul, die Lehrveranstaltung oder die Erfolgskontrolle bereits in einem grundständigen Bachelorstudiengang angerechnet wurde, auf dem dieser Masterstudiengang konsekutiv aufbaut.
- **(6)** Erfolgskontrollen anderer Art dürfen in Modulteilprüfungen oder Modulprüfungen nur eingerechnet werden, wenn die Benotung nicht nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan festgelegt.
- (7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens "ausreichend" (4.0) ist.
- (8) Eine Modulprüfung ist dann bestanden, wenn die Modulnote mindestens "ausreichend" (4.0) ist. Die Modulprüfung und die Bildung der Modulnote werden im Studienplan geregelt. Die differenzierten Lehrveranstaltungsnoten (Absatz 2) sind bei der Berechnung der Modulnoten als Ausgangsdaten zu verwenden. Enthält der Studienplan keine Regelung darüber, wann eine Modulprüfung bestanden ist, so ist diese Modulprüfung dann endgültig nicht bestanden, wenn eine dem Modul zugeordnete Modulteilprüfung endgültig nicht bestanden wurde.

- **(9)** Die Ergebnisse der Masterarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.
- (10) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein. Eine Fachprüfung ist bestanden, wenn die für das Fach erforderliche Anzahl von Leistungspunkten nachgewiesen wird.
- (11) Die Gesamtnote der Masterprüfung und die Modulnoten lauten:

```
bis
                    1.5
                                 sehr gut
       1.6
                    2.5
von
              his
                                 gut
       2.6
                    3.5
                                 befriedigend
              bis
von
       3.6
                    4.0
                                 ausreichend
von
              bis
```

(12) Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Masterprüfung nach folgender Skala vergeben:

Definition der ECTS-Note:

- A gehört zu den besten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- B gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- C gehört zu den nächsten 30 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- D gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- E gehört zu den letzten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- FX *nicht bestanden* (failed) es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden,
- F *nicht bestanden* (failed) es sind erhebliche Verbesserungen erforderlich.

Die Quote ist als der Prozentsatz der erfolgreichen Studierenden definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studierende auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig. Bis zum Aufbau einer entsprechenden Datenbasis wird als Übergangsregel die Verteilung der Vordiplomsnoten des Diplomstudiengangs Technomathematik per 30. September 2009 zur Bildung dieser Skala für alle Module des Masterstudiengangs Technomathematik herangezogen. Diese Verteilung wird jährlich gleitend über mindestens fünf Semester mit mindestens 30 Studierenden jeweils zu Beginn des Semesters für jedes Modul, die Fachnoten und die Gesamtnote angepasst und in diesem Studienjahr für die Festsetzung der ECTS-Note verwendet.

§ 8 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen

- (1) Studentinnen können eine nicht bestandene schriftliche Prüfung (§ 4 Abs. 2, Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit "nicht ausreichend" bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als "ausreichend" (4.0) sein.
- (2) Studentinnen können eine nicht bestandene mündliche Prüfung (§ 4 Abs. 2, Nr. 2) einmal wiederholen.
- (3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen. Fehlversuche an anderen Hochschulen sind anzurechnen.

462

- (4) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Abs. 2, Nr. 3) wird im Studienplan geregelt.
- (5) Eine zweite Wiederholung derselben schriftlichen oder mündlichen Prüfung ist nur in Ausnahmefällen zulässig. Einen Antrag auf Zweitwiederholung hat die Studentin schriftlich beim Prüfungsausschuss zu stellen. Über den ersten Antrag der Studentin auf Zweitwiederholung entscheidet der Prüfungsausschuss, wenn er den Antrag genehmigt. Wenn der Prüfungsausschuss diesen Antrag ablehnt, entscheidet die Rektorin. Über weitere Anträge auf Zweitwiederholung entscheidet nach Stellungnahme des Prüfungsausschusses die Rektorin. Absatz 1, Satz 2 und 3 gilt entsprechend.
- (6) Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.
- (7) Eine Fachprüfung ist endgültig nicht bestanden, wenn mindestens ein Modul des Faches endgültig nicht bestanden ist.
- **(8)** Die Masterarbeit kann bei einer Bewertung mit "nicht ausreichend" einmal wiederholt werden. Eine zweite Wiederholung der Masterarbeit ist ausgeschlossen.
- **(9)** Ist gemäß § 34 Abs. 2, Satz 3 LHG die Masterprüfung bis zum Ende des siebten Fachsemesters dieses Studiengangs einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, es sei denn, dass die Studentin die Fristüberschreitung nicht zu vertreten hat. Die Entscheidung darüber trifft der Prüfungsausschuss. Die Entscheidung über eine Fristverlängerung und über Ausnahmen von der Fristregelung trifft der Prüfungsausschuss.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

- (1) Die Studentin kann bei schriftlichen Modulprüfungen ohne Angabe von Gründen bis einen Tag (24 Uhr) vor dem Prüfungstermin zurücktreten (Abmeldung). Bei mündlichen Modulprüfungen muss der Rücktritt spätestens drei Werktage vor dem betreffenden Prüfungstermin erklärt werden (Abmeldung). Ein Rücktritt von einer mündlichen Prüfung weniger als drei Werktage vor dem betreffenden Prüfungstermin ist nur unter den Voraussetzungen des Absatzes 3 möglich. Die Abmeldung kann schriftlich bei der Prüferin oder per Online-Abmeldung beim Studienbüro erfolgen. Eine durch Widerruf abgemeldete Prüfung gilt als nicht angemeldet. Der Rücktritt von mündlichen Nachprüfungen im Sinne von § 8 Abs. 2 ist grundsätzlich nur unter den Voraussetzungen von Absatz 3 möglich.
- (2) Eine Modul- bzw. Modulteilprüfung gilt als mit "nicht ausreichend" bewertet, wenn die Studentin einen Prüfungstermin ohne triftigen Grund versäumt oder wenn sie nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Masterarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, die Studentin hat die Fristüberschreitung nicht zu vertreten.
- (3) Der für den Rücktritt nach Beginn der Prüfung oder das Versäumnis geltend gemachte Grund muss dem Prüfungsausschuss unverzüglich schriftlich angezeigt und glaubhaft gemacht werden. Bei Krankheit der Studentin bzw. eines von ihr allein zu versorgenden Kindes oder pflegebedürftigen Angehörigen kann die Vorlage eines ärztlichen Attestes und in Zweifelsfällen ein amtsärztliches Attest verlangt werden. Die Anerkennung des Rücktritts ist ausgeschlossen, wenn bis zum Eintritt des Hinderungsgrundes bereits Prüfungsleistungen erbracht worden sind und nach deren Ergebnis die Prüfung nicht bestanden werden kann. Wird der Grund anerkannt, wird ein neuer Termin anberaumt. Die bereits vorliegenden Prüfungsergebnisse sind in diesem Fall anzurechnen. Bei Modulprüfungen, die aus mehreren Prüfungen bestehen, werden die Prüfungsleistungen dieses Moduls, die bis zu einem anerkannten Rücktritt bzw. einem anerkannten Versäumnis einer Prüfungsleistung dieses Moduls erbracht worden sind, angerechnet.
- (4) Versucht die Studentin das Ergebnis seiner Modulprüfung durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Modulprüfung als mit "nicht ausreichend" (5.0) bewertet.

- (5) Eine Studentin, die den ordnungsgemäßen Ablauf der Prüfung stört, kann von der jeweiligen Prüferin oder Aufsicht Führenden von der Fortsetzung der Modulprüfung ausgeschlossen werden. In diesem Fall gilt die betreffende Prüfungsleistung als mit "nicht ausreichend" (5.0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss die Studentin von der Erbringung weiterer Prüfungsleistungen ausschließen.
- (6) Die Studentin kann innerhalb einer Frist von einem Monat verlangen, dass Entscheidungen gemäß Absatz 4 und 5 vom Prüfungsausschuss überprüft werden. Belastende Entscheidungen des Prüfungsausschusses sind der Studentin unverzüglich schriftlich mitzuteilen. Sie sind zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen. Der Studentin ist vor einer Entscheidung Gelegenheit zur Äußerung zu geben.
- (7) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika.

§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

- (1) Auf Antrag einer Studentin sind die Mutterschutzfristen, wie sie im jeweils gültigen Gesetz zum Schutz der erwerbstätigen Mutter (MuSchG) festgelegt sind, entsprechend zu berücksichtigen. Dem Antrag sind die erforderlichen Nachweise beizufügen. Die Mutterschutzfristen unterbrechen jede Frist nach dieser Prüfungsordnung. Die Dauer des Mutterschutzes wird nicht in die Frist eingerechnet.
- (2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweiligen gültigen Gesetzes (BErzGG) auf Antrag zu berücksichtigen. Die Studentin muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an sie die Elternzeit antreten will, dem Prüfungsausschuss unter Beifügung der erforderlichen Nachweise schriftlich mitteilen, in welchem Zeitraum sie Elternzeit in Anspruch nehmen will. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vorliegen, die bei einer Arbeitnehmerin den Anspruch auf Elternzeit auslösen würden, und teilt der Studentin das Ergebnis sowie die neu festgesetzten Prüfungszeiten unverzüglich mit. Die Bearbeitungszeit der Masterarbeit kann nicht durch Elternzeit unterbrochen werden. Die gestellte Arbeit gilt als nicht vergeben. Nach Ablauf der Elternzeit erhält die Studentin ein neues Thema.
- (3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Die Bearbeitungszeit der Masterarbeit kann nicht durch die Wahrnehmung von Familienpflichten unterbrochen oder verlängert werden. Die gestellte Arbeit gilt als nicht vergeben. Die Studentin erhält ein neues Thema, das innerhalb der in § 11 festgelegten Bearbeitungszeit zu bearbeiten ist.

§ 11 Masterarbeit

- (1) Die Masterarbeit soll zeigen, dass die Studentin in der Lage ist, ein Problem aus ihrem Fach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden, die dem Stand der Forschung entsprechen, zu bearbeiten.
- (2) Zum Modul Masterarbeit wird zugelassen, wer mindestens 70 Leistungspunkte erworben hat.
- (3) Die Masterarbeit kann von jeder Prüferin nach § 15 Abs. 2 vergeben werden. Soll die Masterarbeit außerhalb der Fakultät für Mathematik angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses. Der Studentin ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Auf Antrag der Studentin sorgt ausnahmsweise die Vorsitzende des Prüfungsausschusses dafür, dass die Studentin innerhalb von vier Wochen nach Antragstellung von einer Betreuerin ein Thema für die Masterarbeit erhält. Die Ausgabe des Themas erfolgt in diesem Fall über die Vorsitzende des Prüfungsausschusses. Die Masterarbeit kann auch auf Englisch geschrieben werden.

Technomathematik (M.Sc.) Modulhandbuch mit Stand 30.01.2012 464

- (4) Der Masterarbeit werden 30 Leistungspunkte zugeordnet. Die Bearbeitungsdauer beträgt sechs Monate. Thema, Aufgabenstellung und Umfang der Masterarbeit sind von der Betreuerin so zu begrenzen, dass sie mit dem in Satz 1 festgelegten Arbeitsaufwand bearbeitet werden kann. Auf begründeten Antrag der Studentin kann der Prüfungsausschuss diesen Zeitraum um höchstens drei Monate verlängern.
- (5) Bei der Abgabe der Masterarbeit hat die Studentin schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst hat und keine anderen als die von ihr angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit "nicht ausreichend" (5.0) bewertet.
- (6) Der Zeitpunkt der Ausgabe des Themas der Masterarbeit und der Zeitpunkt der Abgabe der Masterarbeit sind aktenkundig zu machen. Die Studentin kann das Thema der Masterarbeit nur einmal und nur innerhalb der ersten zwei Monate der Bearbeitungszeit zurückgeben. Wird die Masterarbeit nicht fristgerecht abgeliefert, gilt sie als mit "nicht ausreichend" bewertet, es sei denn, dass die Studentin dieses Versäumnis nicht zu vertreten hat. Die Möglichkeit der Wiederholung wird in § 8 geregelt.
- (7) Die Masterarbeit wird von einer Betreuerin sowie in der Regel von einer weiteren Prüferin aus der Fakultät begutachtet und bewertet. Eine der beiden muss Hochschullehrerin sein. Bei nicht übereinstimmender Beurteilung der beiden Prüferinnen setzt der Prüfungsausschuss im Rahmen der Bewertung der beiden Prüferinnen die Note der Masterarbeit fest. Der Bewertungszeitraum soll acht Wochen nicht überschreiten.

§ 12 Berufspraktikum

- (1) Der Studentin wird empfohlen, während des Masterstudiums ein Berufspraktikum abzuleisten, welches geeignet ist, der Studentin eine Anschauung von der Anwendbarkeit von Mathematik zu vermitteln. Dem Berufspraktikum sind 8 Leistungspunkte zugeordnet.
- (2) Die Studentin setzt sich in eigener Verantwortung mit geeigneten privaten bzw. öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Die Studentin wird dabei von einer Prüferin nach § 15 Abs. 2 und einer Firmenbetreuerin betreut.
- (3) Am Ende des Berufspraktikums ist ein kurzer Bericht der Prüferin abzugeben und eine Kurzpräsentation der Erfahrungen im Berufspraktikum zu halten.
- (4) Das Berufspraktikum ist abgeschlossen, wenn eine mindestens sechswöchige Tätigkeit nachgewiesen wird, der Bericht abgegeben und die Kurzpräsentation gehalten wurde. Das Berufspraktikum geht nicht in die Gesamtnote ein. Ein Berufspraktikum kann als Zusatzleistung im Sinne von § 13 Abs. 1 oder im Rahmen des Wahlpflichtfachs gemäß § 17 Abs. 4 erbracht werden.

§ 13 Zusatzleistungen, Zusatzmodule, Schlüsselqualifikationen

- (1) Innerhalb der Regelstudienzeit, einschließlich der Urlaubssemester für das Studium an einer ausländischen Hochschule (Regelprüfungszeit), können in einem Modul bzw. Fach auch weitere Leistungspunkte (Zusatzleistungen) im Umfang von höchstens 20 Leistungspunkten pro Studiengang erworben werden. § 3 und § 4 der Prüfungsordnung bleiben davon unberührt. Diese Zusatzleistungen gehen nicht in die Festsetzung der Gesamt-, Fach- und Modulnoten ein. Die bei der Festlegung der Modul- bzw. Fachnote nicht berücksichtigten Leistungspunkte werden als Zusatzleistungen automatisch im Transcript of Records aufgeführt und als Zusatzleistungen gekennzeichnet. Zusatzleistungen werden mit den nach § 7 vorgesehenen Noten gelistet.
- (2) Die Studentin hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

- (3) Die Ergebnisse maximal zweier Module, die jeweils mindestens 6 Leistungspunkte umfassen müssen, werden auf Antrag der Studentin in das Bachelorzeugnis als Zusatzmodule aufgenommen und als Zusatzmodule gekennzeichnet. Zusatzmodule werden bei der Festsetzung der Gesamtnote nicht mit einbezogen. Nicht in das Zeugnis aufgenommene Zusatzmodule werden im Transcript of Records automatisch aufgenommen und als Zusatzmodule gekennzeichnet. Zusatzmodule werden mit den nach § 7 vorgesehenen Noten gelistet.
- (4) Neben den verpflichtenden fachwissenschaftlichen Modulen sind Module zu den überfachlichen Schlüsselqualifikationen im Umfang von mindestens 4 Leistungspunkten Bestandteil eines Masterstudiums. Im Studienplan werden Empfehlungen ausgesprochen, welche Module im Rahmen des Angebots zur Vermittlung der additiven Schlüsselqualifikationen belegt werden sollen.

§ 14 Prüfungsausschuss

- (1) Für den Masterstudiengang Technomathematik wird ein Prüfungsausschuss gebildet. Er besteht aus vier stimmberechtigten Mitgliedern (drei Hochschullehrerinnen, Hochschul- oder Privatdozentinnen und einer Vertreterin der Gruppe der akademischen Mitarbeiterinnen nach § 10 Abs. 1, Satz 2, Nr. 2 LHG) sowie einer Vertreterin der Studentinnen mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelorstudiengang Mathematik und die Masterstudiengänge Mathematik, Technomathematik und Wirtschaftsmathematik erhöht sich die Anzahl der Vertreterinnen der Studentinnen auf zwei Mitglieder mit beratender Stimme, wobei je eine Vertreterin aus dem Bachelor- und aus dem Masterstudiengang stammt. Weitere Mitglieder mit beratender Stimme können vom Fakultätsrat bestellt werden. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die der studentischen Mitglieder ein Jahr.
- (2) Die Vorsitzende, ihre Stellvertreterin, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreterinnen werden vom Fakultätsrat bestellt, das Mitglied der Gruppe der akademischen Mitarbeiterinnen nach § 10 Abs. 1, Satz 2, Nr. 2 LHG und die Vertreterin der Studentinnen auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Die Vorsitzende und deren Stellvertreterin müssen Hochschullehrerinnen sein. Die Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr.
- (3) Der Prüfungsausschuss ist zuständig für die Organisation der Modulprüfungen und die Durchführung der ihm durch diese Studien- und Prüfungsordnung zugewiesenen Aufgaben. Er achtet auf die Einhaltung der Bestimmungen dieser Studien- und Prüfungsordnung und fällt die Entscheidung in Prüfungsangelegenheiten. Er entscheidet über die Anrechnung von Studienzeiten, Studienleistungen und Modulprüfungen und übernimmt die Gleichwertigkeitsfeststellung. Er berichtet der Fakultät regelmäßig über die Entwicklung der Prüfungs- und Studienzeiten, einschließlich der Bearbeitungszeiten für die Masterarbeiten und die Verteilung der Fach- und Gesamtnote. Er gibt Anregungen zur Reform der Studien- und Prüfungsordnung und des Modulhandbuchs.
- (4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die Vorsitzende des Prüfungsausschusses übertragen.
- **(5)** Die Mitglieder des Prüfungsausschusses haben das Recht, der Abnahme von Prüfungen beizuwohnen. Die Mitglieder des Prüfungsausschusses, die Prüferinnen und die Beisitzenden unterliegen der Amtsverschwiegenheit. Sofern sie nicht im öffentlichen Dienst stehen, sind sie durch die Vorsitzende zur Verschwiegenheit zu verpflichten.
- (6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen Fakultät zu nennende Hochschullehrerin, Hochschul- oder Privatdozentin hinzuzuziehen. Sie hat in diesem Punkt Stimmrecht.
- (7) Belastende Entscheidungen des Prüfungsausschusses sind der Studentin schriftlich mitzuteilen. Sie sind zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen. Widersprüche gegen Entscheidungen des Prüfungsausschusses sind innerhalb eines Monats nach Zugang der Entscheidung schriftlich oder zur Niederschrift beim Rektorat der Universität Karlsruhe (TH) einzulegen.

466

§ 15 Prüferinnen und Beisitzende

- (1) Der Prüfungsausschuss bestellt die Prüferinnen und die Beisitzenden. Er kann die Bestellung der Vorsitzenden übertragen.
- (2) Prüferinnen sind Hochschullehrerinnen und habilitierte Mitglieder der Fakultät für Mathematik sowie akademische Mitarbeiterinnen, denen die Prüfungsbefugnis übertragen wurde. Zur Prüferin und Beisitzenden darf nur bestellt werden, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Masterarbeit muss eine Prüferin Hochschullehrerin sein.
- (3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüferinnen bestellt werden, wenn die Fakultät für Mathematik ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.
- (4) Zur Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem Masterstudiengang der Technomathematik oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

- (1) Studienzeiten und Studienleistungen und Modulprüfungen, die in gleichen oder anderen Studiengängen an der Universität Karlsruhe (TH) oder an anderen Hochschulen erbracht wurden, werden angerechnet, soweit Gleichwertigkeit besteht. Gleichwertigkeit ist festzustellen, wenn Leistungen in Inhalt, Umfang und in den Anforderungen denjenigen des Studiengangs im Wesentlichen entsprechen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung und Modulprüfung werden die Grundsätze des ECTS herangezogen; die inhaltliche Gleichwertigkeitsprüfung orientiert sich an den Qualifikationszielen des Moduls.
- (2) Werden Leistungen angerechnet, können die Noten soweit die Notensysteme vergleichbar sind übernommen werden und in die Berechnung der Modulnoten und der Gesamtnote einbezogen werden. Liegen keine Noten vor, muss die Leistung nicht anerkannt werden. Die Studentin hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.
- (3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studienleistungen und Modulprüfungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.
- (4) Absatz 1 gilt auch für Studienzeiten, Studienleistungen und Modulprüfungen, die in staatlich anerkannten Fernstudien- und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien erworben wurden.
- (5) Die Anerkennung von Teilen der Masterprüfung kann versagt werden, wenn in einem Studiengang mehr als die Hälfte aller Erfolgskontrollen und/oder in einem Studiengang mehr als die Hälfte der erforderlichen Leistungspunkte und/oder die Masterarbeit anerkannt werden sollen. Dies gilt insbesondere bei einem Studiengangwechsel sowie bei einem Studienortwechsel.
- **(6)** Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die Gleichwertigkeit sind die zuständigen Fachvertreterinnen zu hören. Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.

II. Masterprüfung

§ 17 Umfang und Art der Masterprüfung

- (1) Die Masterprüfung besteht aus den Fachprüfungen nach Absatz 2, 3 und 4 sowie der Masterarbeit nach Absatz 5.
- (2) Es sind Fachprüfungen aus folgenden mathematischen Fächern durch den Nachweis von insgesamt 40 Leistungspunkten in einem oder mehreren Modulen abzulegen:
 - 1. Algebra und Geometrie,
 - 2. Analysis (im Umfang von mindestens 8 Leistungspunkten),
 - 3. Angewandte und Numerische Mathematik (im Umfang von mindestens 8 Leistungspunkten),
 - 4. Stochastik.
- (3) Des Weiteren sind Fachprüfungen aus den Ergänzungsfächern von § 3 Abs. 2 durch den Nachweis von insgesamt 32 Leistungspunkten in einem oder mehreren Modulen abzulegen, davon müssen 18 22 Leistungspunkte aus dem Technischen Anwendungsfach (siehe § 3 Abs. 2) und 10 14 Leistungspunkte aus der Informatik erbracht werden.

Zusätzlich müssen zwei Seminarmodule über je 3 Leistungspunkte abgelegt werden, davon eines in einem mathematischen Fach aus Absatz 2.

Neben den fachwissenschaftlichen Modulen sind Module zu den Schlüsselqualifikationen im Umfang von 4 Leistungspunkten nach § 13 Abs. 4 abzulegen.

(4) Es sind weitere 8 Leistungspunkte nachzuweisen. Diese können durch Fachprüfungen der in Absatz 2 und 3 genannten Fächer oder durch ein Berufspraktikum nach § 12 eingebracht werden.

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den Fächern sind im Studienplan festgelegt. Zur entsprechenden Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.

(5) Im vierten Semester ist als eine weitere Prüfungsleistung eine Masterarbeit gemäß § 11 anzufertigen.

§ 18 Bestehen der Masterprüfung, Bildung der Gesamtnote

- (1) Die Masterprüfung ist bestanden, wenn alle in § 17 genannten Prüfungsleistungen mit mindestens "ausreichend" bewertet wurden und 120 Leistungspunkte erreicht worden sind.
- (2) Die Gesamtnote der Masterprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden alle Prüfungsleistungen nach § 17 mit ihren Leistungspunkten gewichtet.
- (3) Hat die Studentin die Masterarbeit mit der Note 1.0 und die Masterprüfung mit einem Durchschnitt von 1.0 abgeschlossen, so wird das Prädikat "mit Auszeichnung" (with distinction) verliehen. Mit einer Masterarbeit mit der Note 1.0 und bis zu einem Durchschnitt von 1.3 kann auf Antrag an den Prüfungsausschuss das Prädikat "mit Auszeichnung" (with distinction) verliehen werden.

§ 19 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement

(1) Über die Masterprüfung werden nach Bewertung der letzten Prüfungsleistung eine Masterurkunde und ein Zeugnis erstellt. Die Ausfertigung von Masterurkunde und Zeugnis soll nicht später als sechs Wochen nach der Bewertung der letzten Prüfungsleistung erfolgen. Masterurkunde und Masterzeugnis werden in deutscher und englischer Sprache ausgestellt. Masterurkunde und Zeugnis tragen das Datum der erfolgreichen Erbringung der letzten Prüfungsleistung. Sie werden der Studentin gleichzeitig ausgehändigt. In der Masterurkunde wird die Verleihung

468

des akademischen Mastergrades beurkundet. Die Masterurkunde wird von der Rektorin und der Dekanin unterzeichnet und mit dem Siegel der Universität versehen.

- (2) Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen und der Masterarbeit erzielten Noten, deren zugeordnete Leistungspunkte und ECTS-Noten und die Gesamtnote und die ihr entsprechende ECTS-Note. Das Zeugnis ist von der Dekanin und von der Vorsitzenden des Prüfungsausschusses zu unterzeichnen.
- (3) Weiterhin erhält die Studentin als Anhang ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS User's Guide entspricht. Das Diploma Supplement enthält eine Abschrift der Studiendaten der Studentin (Transcript of Records).
- (4) Die Abschrift der Studiendaten (Transcript of Records) enthält in strukturierter Form alle von der Studentin erbrachten Prüfungsleistungen. Dies beinhaltet alle Fächer, Fachnoten und ihre entsprechende ECTS-Note samt den zugeordneten Leistungspunkten, die dem jeweiligen Fach zugeordneten Module mit den Modulnoten, entsprechender ECTS-Note und zugeordneten Leistungspunkten sowie die den Modulen zugeordneten Lehrveranstaltungen samt Noten und zugeordneten Leistungspunkten. Aus der Abschrift der Studiendaten soll die Zugehörigkeit von Lehrveranstaltungen zu den einzelnen Modulen und die Zugehörigkeit der Module zu den einzelnen Fächern deutlich erkennbar sein. Angerechnete Studienleistungen sind im Transcript of Records aufzunehmen.
- **(5)** Die Masterurkunde, das Masterzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.

III. Schlussbestimmungen

§ 20 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen

- (1) Der Bescheid über die endgültig nicht bestandene Masterprüfung wird der Studentin durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.
- (2) Hat die Studentin die Masterprüfung endgültig nicht bestanden, wird ihr auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten sowie die zur Prüfung noch fehlenden Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 21 Ungültigkeit der Masterprüfung, Entziehung des Mastergrades

- (1) Hat die Studentin bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei deren Erbringung die Studentin getäuscht hat, berichtigt werden. Gegebenenfalls kann die Modulprüfung für "nicht ausreichend" (5.0) und die Masterprüfung für "nicht bestanden" erklärt werden.
- (2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die Studentin darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die Studentin die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für "nicht ausreichend" (5.0) und die Masterprüfung für "nicht bestanden" erklärt werden.
- (3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

- (4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Masterurkunde einzuziehen, wenn die Masterprüfung aufgrund einer Täuschung für "nicht bestanden" erklärt wurde.
- (5) Eine Entscheidung nach Absatz 1 und Absatz 2, Satz 2 ist nach einer Frist von fünf Jahren ab dem Datum des Zeugnisses ausgeschlossen.
- (6) Die Aberkennung des akademischen Grades richtet sich nach den gesetzlichen Vorschriften.

§ 22 Einsicht in die Prüfungsakten

- (1) Nach Abschluss der Masterprüfung wird der Studentin auf Antrag innerhalb eines Jahres Einsicht in ihre Masterarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.
- (2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.
- (3) Die Prüferin bestimmt Ort und Zeit der Einsichtnahme.
- (4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 23 In-Kraft-Treten

- (1) Diese Studien- und Prüfungsordnung tritt am 1. Oktober 2009 in Kraft.
- (2) Studierende, die auf Grundlage der Prüfungsordnungen der Universität Karlsruhe (TH) für die Diplomstudiengänge Mathematik vom 24. Oktober 1991 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 1 vom 22. Januar 1992) in der Fassung der 2. Änderungssatzung vom 28. Februar 2001 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 7 vom 14. März 2001), Technomathematik vom 10. September 2003 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 29 vom 20. Oktober 2003) und Wirtschaftsmathematik vom 15. November 2001 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 30 vom 26. November 2001) in der Fassung der 1. Änderungssatzung vom 10. September 2003 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 28 vom 20. Oktober 2003) ihr Studium an der Universität Karlsruhe (TH) aufgenommen haben, können einen Antrag auf Zulassung zur Prüfung letztmalig am 30. September 2020 stellen.

Karlsruhe, den 28. August 2009

Professor Dr. sc. tech. Horst Hippler (Rektor)

Stichwortverzeichnis

Adaptive Finite Elemente Methoden (M), 76	Modelle der mathematischen Physik (M), 44
Algebra (M), 12	Modulformen (M), 29
Algebraische Geometrie (M), 17	Modulräume von Kurven (M), 24
Algebraische Zahlentheorie (M), 16	Monotoniemethoden in der Analysis (M), 58
Arithmetik Elliptischer Kurven (M), 28	Multivariate Statistik (M), 94
Asymptotik von Evolutionsgleichungen (M), 57	
Asymptotische Stochastik (M), 85	Nichtlineare Evolutionsgleichungen (M), 46
	Nichtlineare Funktionalanalysis (M), 56
Banachalgebren (M), 59	Nichtparametrische Statistik (M), 93
Bildgebende Verfahren in der Medizintechnik (M), 72	Numerik für gewöhnliche Differentialgleichungen und
Brownsche Bewegung (M), 87	differentiell-algebraische Systeme (M), 78
	Numerische Methoden für Differentialgleichungen (M), 61
Computerunterstützte analytische Methoden für Rand- und	Numerische Methoden für hyperbolische Gleichungen (M),
Eigenwertprobleme (M), 38	83
	Numerische Methoden für zeitabhängige PDGLn (M), 77
Diskrete Geometrie (M), 13	Numerische Methoden in der Elektrodynamik (M), 70
	Numerische Methoden in der Festkörpermechanik (M), 69
Ebene algebraische Kurven (M), 22	
Einführung in das Wissenschaftliche Rechnen (M), 62	Numerische Methoden in der Finanzmathematik (M), 75
Evolutionsgleichungen (M), 39	Numerische Methoden in der Finanzmathematik II (M), 81
3 (//	Numerische Methoden in der Strömungsmechanik (M), 79
Finanzstatistik (M), 96	Numerische Optimierungsmethoden (M), 80
Finite Elemente Methoden (M), 64	
Fourieranalysis (M), 41	Optimierung und optimale Kontrolle bei Differentialgleichun-
Funktionalanalysis (M), 33	gen (M), 66
Funktionen- und Distributionenräume (M), 42	
Funktionentheorie II (M), 43	Paralleles Rechnen (M), 65
Taindionomical in (in), 10	Perkolation (M), 90
Gebäude (M), 31	Potentialtheorie (M), 47
Generalisierte Regressionsmodelle (M), 86	
Geometrie der Schemata (M), 18	Räumliche Stochastik (M), 91
Geometrische Gruppentheorie (M), 19	Rand- und Eigenwertprobleme (M), 36
Geometrische Gruppentheorie II (M), 30	Randwertprobleme für nichtlineare Differentialgleichungen
	(M), 48
Geometrische Maßtheorie (M), 15	Riemannsche Geometrie (M), 11
Globale Differentialgeometrie (M), 32	, ,,
Graphen und Gruppen (M), 23	Schlüsselqualifikationen (M), 98
Grundlagen der Kontinuumsmechanik (M), 68	Seminar (M), 97
Integral geometric (M) 26	Spektraltheorie (M), 37
Integralgeometrie (M), 26	Spektraltheorie von Differentialoperatoren (M), 49
Integralgleichungen (M), 34	Spezielle Funktionen und Anwendungen in der Potenti-
Inverse Probleme (M), 63	altheorie (M), 60
Inverse Streutheorie (M), 54	Spieltheorie (M), 40
Klassonkärnorthooria (M) 07	Stabilitäts- und Kontrolltheorie für Evolutionsgleichungen
Klassenkörpertheorie (M), 27	(M), 50
Klassische Methoden für partielle Differentialgleichungen	Steuerung stochastischer Prozesse (M), 89
(M), 35	Stochastische Differentialgleichungen (M), 51
Kontrolltheorie (M), 45	Stochastische Geometrie (M), 84
Konvexe Geometrie (M), 14	Streutheorie (M), 53
Lie Owner and weed Lie Alexaberra (AA) 00	
Lie Gruppen und Lie Algebren (M), 20	Symmetrische Räume (M), 25
Löser für lineare und nichtlineare Gleichungssysteme (M),	Variationsrechnung (M), 52
67	variations reciniting (ivi), 32
M	Wavelets (M), 71
Markovsche Entscheidungsprozesse (M), 88	wavelets (IVI), 71
Mathematische Methoden in Signal- und Bildverarbeitung	Zoitroihonanalyaa (M) OF
(M), 73	Zeitreihenanalyse (M), 95
Mathematische Statistik (M), 92	
Maxwellgleichungen (M), 55	
Mehrgitter- und Gebietszerlegungsverfahren (M), 74	
Metrische Geometrie (M), 21	
Modellbildung und numerische Simulation in der Praxis (M),	