

Technomathematics (M.Sc.)

Summer Term 2016 Short version Date: 05.02.2016

Department of Mathematics

KIT - University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Publisher:

Department of Mathematics Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe www.math.kit.edu

Photographer: Arno Peil

Contact: daniel.hug@kit.edu

1	Studienplan Master Technomathematik	6
		6
	1.2 Vorbemerkung	6
	1.3 Gliederung des Studiums	6
		8
	1.5 Weiterführende Module in den mathematischen Fächern	9
		9
	1.7 Schlüsselqualifikationen	10
2	Helpful information	11
3	Actual Changes 1	13
4	Modules 1	14
i.		 14
		14
		15
	Convex Geometry- MATHMTAG07	16
		17
		18
		19
		20
		21
		 22
		23
		24
		 25
		26
		27
		_, 28
		29
		30
		31
		32
		33
	· · · · · · · · · · · · · · · · · · ·	34
		35
		36
		37
		38
		39
		40
		41
		42
		43
		44
		45
		46
		47
		48
		49
		5 0
		51
		52
		53
		54
		55
	marrono Equationo in triminateo	50

Nonlinear Functional Analysis- MAI HAN29	56
Monotonicity methods in Analysis- MATHAN31	57
Banach algebras- MATHAN32	58
Special functions and applications in potential theory- MATHAN33	59
Geometric Analysis- MATHAN36	60
Sobolev Spaces- MATHAN37	61
Traveling Waves- MATHAN38	62
Stochastic Evolution Equations- MATHAN40	63
Internet seminar for evolution equations- MATHANISEM	64
Numerical methods for differential equations- MATHMTNM03	65
Introduction to scientific computing- MATHMTNM05	66
Inverse Problems- MATHMTNM06	67
Finite element methods- MATHMTNM07	68
Parallel computing- MATHMTNM08	69
Optimisation and optimal control for differential equations- MATHMTNM09	70
Numerical Methods in Solid Mechanics- MATHMTNM12	71
Numerical methods in computational electrodynamics- MATHMTNM13	72
Wavelets- MATHMTNM14	73
Medical imaging- MATHMTNM15	74
Mathematical methods in signal and image processing- MATHMTNM16	75
Multigrid and Domain Decomposition Methods- MATHMTNM17	76
Numerical Methods in Mathematical Finance- MATHMTNM18	77
Adaptive finite elemente methods- MATHMTNM19	78
Numerical methods for time-dependent partial differential equations- MATHMTNM20	79
Numerical optimisation methods- MATHMTNM25	80
Numerical methods in mathematical finance II- MATHNM26	81
Mathematical modelling und simulation in practise- MATHNM27	82
Numerical methods for hyperbolic equations- MATHNM28	83
Numerical Methods for Integral Equations- MATHNM29	84
Special topics in numerical linear algebra- MATHNM30	85
Geometric numerical integration- MATHNM31	86
Optimization in Banach spaces- MATHNM32	87
Numerical methods for Maxwell's equations- MATHNM33	88
Numerical methods in fluid mechanics- MATHNM34	89
Splitting methods- MATHNM35	90
Aspects of time integration- MATHNM36	91
Compressive Sensing- MATHNM37	92
Functions of operators- MATHNM38	93
Functions of matrices- MATHNM39	94
Project centered Software-Lab- MATHNM40	95
Introduction into particulate flows- MATHNM41	96
Numerical continuation methods- MATHNM42	97
Introduction to Matlab and numerical algorithms- MATHNM43	98
Advanced Inverse Problems: Nonlinearity and Banach spaces- MATHNM44	99
Discrete time finance- MATHST04	100
Stochastic Geometry- MATHMTST06	101
Asymptotic Stochastics- MATHMTST07	102
Continuous time finance- MATHST08	103
Generalized Regression Models- MATHMTST09	104
Brownian Motion- MATHMTST10	105
Markov Decision Processes- MATHMTST11	106
Stochastic Control- MATHMTST12	107
Percolation- MATHMTST13	108
Spatial Stochastics- MATHMTST14	109
Mathematical Statistics- MATHMTST15	110
Nonparametric Statistics- MATHMTST16	111
Time Series Analysis- MATHMTST18	112
Poisson processes- MATHST20	113

CONTENTS

	Extreme value theory- MATHST23	
	Stein's Method- MATHST24	
	Probability theory and combinatorial optimization- MATHST27	
	Forecasting: Theory and Practice- MATHST28	11
	Random Graphs- MATHST29	118
	Seminar- MATHMTSE01	119
	Internship- MATHBERP	120
	- MATHTMSQ01	
	Introduction to Python- MATHSQ02	12
	Master Thesis- TMATHMAST	
5 <i>A</i>	Appendix: Study- and Examination Regulation (in German)	124
Inde	av	139

1 Studienplan Master Technomathematik¹

1.1 Ausbildungsziele

Ausbildungsziel des interdisziplinären Masterstudiengangs Technomathematik ist die Qualifizierung für eine berufliche Tätigkeit in der Industrie (im ingenieurwissenschaftlichen Umfeld, insbesondere im Bereich der Simulation bzw. Interpretation von Simulationsergebnissen sowie im Bereich Softwareerstellung für verschiedene Belange (auch im ökonomischen Bereich)), sowie für eine nachgelagerte wissenschaftliche Laufbahn (Promotion) in Mathematik oder Ingenieur- und Naturwissenschaften. Durch die forschungsorientierte Ausbildung werden die Absolventinnen und Absolventen insbesondere auf lebenslanges Lernen vorbereitet.

Fachliche Kernkompetenzen:

Absolventinnen und Absolventen verfügen über ein erweitertes und vertieftes Wissen in den Fächern Mathematik, einem technischen Nebenfach und Informatik. Als technisches Nebenfach sind zur Zeit folgende Fächer zugelassen: Bauingenieurwesen, Elektrotechnik und Informationswissenschaften, Experimentalphysik und Maschinenbau. Auf Anfrage können andere Fächer (z. B. Chemie) gewählt werden. Absolventinnen und Absolventen sind in der Lage aktuelle, komplexe Fragestellungen in diesen Bereichen zu analysieren und zu erklären. Sie können vertiefende Methoden rechnergestützter Simulation, mathematischer Software und Programmierung zur Bearbeitung ingenieur- und naturwissenschaltlicher Probleme einsetzen. Die Absolventen/Absolventinnen sind in der Lage, die Besonderheiten, Grenzen, und Terminologien in den gewählten Themenbereichen zu definieren, zu beschreiben, zu interpretieren, den aktuellen Forschungsstand wiederzugeben sowie punktuell weiterzuentwickeln.

Überfachliche Kompetenzen: Absolventinnen und Absolventen können interdisziplinär denken und Themen aus verschiedenen Blickwinkeln betrachten. Sie können geeignete Handlungsalternativen zu forschungsrelevanten Themenkomplexen auswählen und kombinieren. Diese können sie auf spezifische Problemstellungen übertragen und anwenden. Umfangreiche Probleme sowie Informationen und aktuelle Anforderungen können sie differenziert betrachten und mit geeigneten Methoden und Konzepten analysieren, vergleichen und bewerten. Dabei schätzen sie Komplexität und Risiken ab, erkennen Verbesserungspotentiale und wählen nachhaltige Lösungsverfahren und Verbesserungsmethoden aus. Dadurch sind sie in der Lage, verantwortungsvolle und wissenschaftlich fundierte Entscheidungen zu treffen. Der interdisziplinäre Umgang mit dem Fachwissen erfolgt unter Berücksichtigung von gesellschaftlichen, wissenschaftlichen und ethischen Erkenntnissen. Absolventinnen und Absolventen entwickeln innovative Ideen und können diese umsetzen. Diese Vorgehensweisen können sie selbständig oder auch in internationalen Teams durchführen. Dabei sind sie in der Lage, ihre Entscheidungen zu erläutern und darüber zu diskutieren. Sie können sich auch mit Fachvertretern und Fachvertreterinnen auf wissenschaftlichem Niveau austauschen Die gewonnenen Ergebnisse können sie eigenständig interpretieren, validieren und illustrieren.

Lernergebnisse: Die Absolventinnen und Absolventen können vertiefende mathematische Methoden in den Naturund Ingenieurwissenschaften benennen, erklären und selbständig anwenden. Sie erwerben ein vertieftes Verständnis mathematischer Methoden aus dem Bereich der Angewandten Mathematik, insbesondere der Analysis und der Numerischen Mathematik.

Je nach Anwendungsfach besitzen die Absolventinnen und Absolventen ein breites Wissen über spezielle mathematische Modelle und Methoden im Bauingenieurwesen, in der Elektrotechnik und Informationswissenschaft, in der Experimentalphysik oder im Maschinenbau. Dies befähigt sie, im jeweiligen Bereich komplexe und innovative Aufgaben zu analysieren und die Ergebnisse zu beurteilen.

1.2 Vorbemerkung

Dieser Studienplan ergänzt und erläutert die Studien- und Prüfungsordnung des Masterstudiengangs Technomathematik². Anhand konkreter Beispiele werden Möglichkeiten zur Organisation des Studiums dargestellt.

1.3 Gliederung des Studiums

Die Lehrveranstaltungen werden in Form von Modulen abgehalten, wobei die meisten Module aus einer Vorlesung (mit oder ohne Übung) oder einem Seminar bestehen. Es gilt grundsätzlich, dass nur solche Module gewählt

Technomathematics (M.Sc.) Module Handbook, Date: 05.02.2016

¹Gültig ab Wintersemester 2012/13.

²Im Folgenden wird die Studien- und Prüfungsordnung des Masterstudiengangs Technomathematik einfach mit "'PO Technomathematik" bezeichnet

werden können, die noch nicht im Bachelorstudium verwendet worden sind.³ Jedes Modul schließt mit einer Leistungskontrolle ab. Der durchschnittliche Arbeitsaufwand wird in Leistungspunkten (LP) gemessen⁴. Im Allgemeinen werden Module benotet. Ausnahmen sind z.B. Seminarmodule, die nur bestanden oder nicht bestanden werden können. Die Note geht in die Endnote ein. Die Masterarbeit besteht aus einem eigenen Modul mit 30 LP. Insgesamt müssen im Masterstudium 120 LP erworben werden, etwa gleichmäßig verteilt auf 4 Semester. Es müssen Module der Fakultät für Mathematik, Module im technischen Nebenfach⁵ und Module in der Informatik⁶ belegt werden⁷.

- A) Mathematik: Es gibt die folgenden 4 mathematischen Fächer:
 - 1. Algebra und Geometrie
 - 2. Analysis (mindestens 8 LP)
 - 3. Angewandte und Numerische Mathematik (mindestens 8 LP)
 - 4. Stochastik

Es müssen 40 LP in Vorlesungsmodulen der Mathematik erworben werden, darunter jeweils mindestens 8 LP in den Fächern Analysis sowie Angewandte und Numerische Mathematik (d.h. die Module für die verbleibenden 24 LP können aus den 4 mathematischen Fächern frei gewählt werden).

- B) Technisches Nebenfach und Informatik: Es müssen 32 LP in Modulen des technischen Nebenfachs und der Informatik erworben werden, darunter mindestens 18 LP im technischen Nebenfach und mindestens 10 LP in Informatik.
- C) Vertiefung / Praktikum: Es sind 8 LP nachzuweisen, die der Vertiefung in Richtung Masterarbeit dienen können, z.B. können weitere Vorlesungsmodule aus A) und B) gewählt werden. Hier kann auch ein Berufspraktikum angerechnet werden⁸.
- D) Seminare: Es müssen zusätzlich zwei Seminarmodule über je 3 Leistungspunkte abgelegt werden, darunter mindestens ein Seminarmodul in Mathematik.
- E) Schlüsselqualifikationen: Weitere 4 LP müssen in Form von "additiven" Schlüsselqualifikationen abgelegt werden und können z.B. aus dem House of Competence bezogen werden⁹.

Fach	Mathematik	Techn. Nebenfach und Informatik (zusammen 32 LP)				
Analysis (8 LP)	WP Mathematik (24 LP)	Technisches Nebenfach (18-22 LP)				
Angewandte und	Numerische Mathematik (8 LP)	Informatik (10-14 LP)				
Sen	ninar (3 LP)	Seminar (3 LP)				
Vertiefung oder Praktikum (8 LP) und Schlüsselqualifikationen (4 LP)						
Masterarbeit (30 LP)						

³Im Falle von Modulen, die im Bachelorstudium an einer anderen Universität eingebracht worden sind, wird im Rahmen der Zulassung zum Masterstudiengang Technomathematik die Vergleichbarkeit mit den Modulen des Karlsruher Instituts für Technologie festgelegt.

Technomathematics (M.Sc.) Module Handbook, Date: 05.02.2016

⁴Die Maßstäbe für die Zuordnung von Leistungspunkten entsprechen dem ECTS (European Credit Transfer System). Ein Leistungspunkt entspricht einem Arbeitsaufwand von etwa 30 Stunden.

⁵Das technische Nebenfach wird zu Beginn des Masterstudiengangs festgelegt, vgl. PO Technomathematik §3(2).

⁶Der Masterstudiengang Technomathematik hat zwei Ergänzungsfächer. Das erste Ergänzungsfach ist ein (wählbares) technisches Nebenfach, das zweite Ergänzungsfach ist immer Informatik.

⁷Die folgende Aufstellung ist der PO Technomathematik §17 entnommen.

⁸vgl. §12 der Prüfungsordnung

⁹vgl. §13 der Prüfungsordnung

1.4 Einführende Module in den mathematischen Fächern

Die folgenden Module eignen sich besonders gut zur Einführung in die mathematischen Fächer des Masterbereichs. Sie werden regelmäßig, d.h. mindestens in jedem zweiten Jahr angeboten, und entsprechen einem Arbeitsaufwand von 8 Leistungspunkten (falls nicht anders angegeben).

· Fach Algebra und Geometrie

- Algebra (4+2 SWS, Ws)¹⁰
- Differentialgeometrie (4+2 SWS, Ws)
- Geometrische Gruppentheorie (4+2 SWS, Ss)

Diese Lehrveranstaltungen werden jährlich angeboten und unseren Studierenden im Bachelorstudium zur Vertiefung empfohlen. Wenn sie dort nicht belegt worden sind, so empfehlen wir sie als wichtige Einstiegsmodule in das Fach Algebra und Geometrie. Wurden diese Module schon im Bachelorstudium gehört, so empfehlen wir die folgenden Module zur Einführung. Sie setzen nur eine – und im Folgenden angegebene – der einführenden Vorlesungen voraus.

- Differentialgeometrie (4+2 SWS) (inhaltliche Vor.: Einführung in die Geometrie und Topologie)
- Algebraische Zahlentheorie (4+2 SWS) (inhaltliche Vor.: Algebra)
- Algebraische Geometrie (4+2 SWS) (inhaltliche Vor.: Algebra)
- Globale Differentialgeometrie (4+2 SWS) (inhaltliche Vor.: Riemannsche Geometrie)
- Stochastische Geometrie (4+2 SWS)¹¹ (inhaltliche Vor.: Modul Wahrscheinlichkeitstheorie aus dem Bachelorstudium)

Fach Analysis

- Funktionalanalysis (4+2 SWS, Ws)
- Spektraltheorie (4+2 SWS, Ss)
- Klassische Methoden für partielle Differentialgleichungen (4+2 SWS, Ws)
- Rand- und Eigenwertprobleme (4+2 SWS, Ss)

Die genannten Lehrveranstaltungen werden ebenfalls jährlich angeboten und unseren Studierenden im Bachelorstudium zur Vertiefung empfohlen. Wenn sie dort nicht belegt worden sind, so empfehlen wir sie als wichtige Einstiegsmodule in das Fach Analysis. Wurden diese Module schon im Bachelorstudium gehört, so empfehlen wir die folgenden Module zur Einführung. Sie setzen nur eine – und im Folgenden angegebene – der einführenden Vorlesungen voraus.

- Evolutionsgleichungen (4+2 SWS) (inhaltliche Vor.: Funktionalanalysis)
- Fourieranalysis (4+2 SWS) (inhaltliche Vor.: Funktionalanalysis)
- Integralgleichungen (4+2 SWS) (inhaltliche Vor.: Funktionalanalysis)
- Modelle der Mathematischen Physik (4+2 SWS) (inhaltliche Vor.: Klassische Methoden für partielle Differentialgleichungen)
- Randwertprobleme für nichtlineare Differentialgleichungen (4+2 SWS) (inhaltliche Vor.: Rand- und Eigenwertprobleme)

Fach Angewandte und Numerische Mathematik

- Numerische Methoden für Differentialgleichungen (4+2 SWS, Ws)
- Einführung in das Wissenschaftliche Rechnen (3+3 SWS, Ss)
- Inverse Probleme (4+2 SWS, Ws)

¹⁰SWS = Semesterwochenstunde in Vorlesung + Übung, Ws = Wintersemester, Ss = Sommersemester.

¹¹Dieses Modul kann wahlweise dem Fach Stochastik oder dem Fach Algebra und Geometrie zugeordnet werden.

Die Lehrveranstaltungen werden jährlich angeboten. Alle drei Module können schon im Bachelorstudium zur Vertiefung gewählt werden. Wenn sie dort nicht belegt worden sind, so empfehlen wir sie als wichtige Einstiegsmodule in das Fach Angewandte und Numerische Mathematik. Wurden diese Module schon im Bachelorstudium gehört, so empfehlen wir die folgenden Module zur Einführung. Sie setzen nur eine – und im Folgenden angegebene – der einführenden Vorlesungen voraus.¹²

- Finite Elemente Methoden (4+2 SWS) (inhaltliche Vor.: Numerische Methoden für Differentialgleichungen)
- Numerische Optimierungsmethoden (4+2 SWS) (inhaltliche Vor.: Optimierungstheorie aus dem Bachelorstudium)
- Numerische Methoden für zeitabhängige partielle Differentialgleichungen (4+2 SWS) (inhaltliche Vor.: Numerische Methoden für Differentialgleichungen)
- Numerische Methoden in der Finanzmathematik (4+2 SWS) (inhaltliche Vor.: Numerische Methoden für Differentialgleichungen)

Fach Stochastik

Generell wird das Modul "Wahrscheinlichkeitstheorie" aus dem Bachelorstudium vorausgesetzt. Weitere Voraussetzungen werden nicht benötigt.

- Finanzmathematik in diskreter Zeit (4+2 SWS, Ws)
- Statistik (4+2 SWS, Ws)

Diese Lehrveranstaltungen werden jährlich angeboten und unseren Studierenden im Bachelorstudium zur Vertiefung empfohlen. Wenn sie dort nicht belegt worden sind, können sie auch im Masterstudium belegt werden. Wurden diese Module schon im Bachelorstudium gehört, so empfehlen wir die folgenden Module zur Einführung.

- Finanzmathematik in stetiger Zeit (4+2 SWS)
- Asymptotische Stochastik (4+2 SWS)
- Räumliche Stochastik (4+2 SWS)
- Stochastische Geometrie (4+2 SWS)¹³
- Brownsche Bewegung (2+1 SWS, 4 LP)
- Perkolation (2+1 SWS, 4 LP)
- Generalisierte Regressionsmodelle (2+1 SWS, 4 LP)

1.5 Weiterführende Module in den mathematischen Fächern

Im Modulhandbuch werden zahlreiche weitere, unregelmäßig angebotene Module aufgeführt. Diese bauen auf den in Abschnitt 1.4 genannten Modulen auf und vertiefen die jeweiligen Arbeitsgebiete. Sie ermöglichen, ergänzt durch den Besuch von Seminaren, die Anfertigung einer Masterarbeit in einem Spezialgebiet.

1.6 Technisches Nebenfach und Informatik

Zu Beginn des Masterstudiums ist das technische Nebenfach aus folgender Liste zu wählen

- (a) Maschinenbau
- (b) Elektrotechnik/Informationstechnik
- (c) Experimentalphysik
- (d) Bauingenieurwesen

Andere technische Nebenfächer können vom Prüfungsausschuss genehmigt werden. In der Regel wird das technische Nebenfach aus dem Bachelorstudium fortgeführt. Im technischen Nebenfach und in Informatik können Module aus dem Master- und dem fortgeschrittten Bachelorprogramm der jeweiligen anbietenden Fakultät gewählt werden. Die Module werden durch den Studienberater individuell zugelassen. In Zweifelsfällen entscheidet der Prüfungsausschuss.

Technomathematics (M.Sc.)

Module Handbook, Date: 05.02.2016

¹² Zum Teil sind zusätzliche Analysiskenntnisse erforderlich (etwa das Modul (G8) "Differentialgleichungen und Hilberträume" aus dem Bachelorstudiengang), die in den jeweiligen Modulbeschreibungen genauer spezifiziert sind.

¹³Dieses Modul kann wahlweise dem Fach Stochastik oder dem Fach Algebra und Geometrie zugeordnet werden.

1.7 Schlüsselqualifikationen

Teil des Studiums ist auch der Erwerb von Schlüssel- und überfachlichen Qualifikationen. Zu diesem Bereich zählen überfachliche Veranstaltungen zu gesellschaftlichen Themen, fachwissenschaftliche Ergänzungsangebote, welche die Anwendung des Fachwissens im Arbeitsalltag vermitteln, Kompetenztrainings zur gezielten Schulung von Soft Skills sowie Fremdsprachentrainings im fachwissenschaftlichen Kontext.

Der Masterstudiengang Technomathematik an der Fakultät für Mathematik zeichnet sich aus durch einen hohen Grad an Interdisziplinarität: Durch die Wahl eines technischen Nebenfaches ist die Zusammenführung verschiedener Wissensbestände integrativer Bestandteil des Studiengangs. Die innerhalb des Studiengangs integrativ vermittelten Schlüsselkomptetenzen lassen sich dabei den folgenden Bereichen zuordnen:

• Basiskompetenzen (soft skills)

- 1. Teamarbeit, soziale Kommunikation (Arbeit in Kleingruppen, gemeinsames Bearbeiten der Hausaufgaben und Nacharbeiten des Vorlesungsstoffes)
- 2. Präsentationserstellung und -techniken (Seminarvorträge)
- 3. Logisches und systematisches Argumentieren und Schreiben (im Tutorium bzw. Seminar, beim Ausarbeiten der Vorträge und Verfassen der Hausaufgaben)
- 4. Englisch als Fachsprache

· Orientierungswissen

- 1. Vermittlung von interdisziplinärem Wissen über Anwendungsfach bzw. Informatik
- 2. Medien, Technik und Innovation

Neben der integrativen Vermittlung von Schlüsselqualifikationen ist der additive Erwerb von Schlüsselqualifikationen im Umfang von mindestens 4 Leistungspunkten vorgesehen. Im Modul Schlüsselqualifikationen können Veranstaltungen des House of Competence (HoC) belegt werden. Das aktuelle Angebot des HoC ergibt sich aus dem semesterweise aktualisierten Veranstaltungsprogramm des HoC. Die Inhalte werden in den Beschreibungen der Veranstaltungen auf den Internetseiten des HoC (http://www.hoc.kit.edu/lehrangebot) detailliert erläutert. In dem hier integrierten Modulhandbuch werden deswegen im Gegensatz zu den fakultätsinternen Lehrveranstaltungen die einzelnen Lehrveranstaltungen des HoC nicht aufgeführt, sondern lediglich ein Überblick über die einzelnen Wahlbereiche des HoC gegeben.

Technomathematics (M.Sc.) Module Handbook, Date: 05.02.2016

Module Handbook

The programme exists of several **subjects** (e.g. business administration, economics, operations research). Every subject is split into **modules** and every module itself exists of one or more interrelated **courses**. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are **obligatory**. According to the interdisciplinary character of the programme, a great variety of **individual specialization and deepening possibilities** exists for a large number of modules. This enables the student to customize content and time schedule of the programme according to personal needs, interest and job perspective. The **module handbook** describes the modules belonging to the programme, their structure and extent (in CP), their dependencies, their learning outcomes, their learning control and examinations. Therefore it serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the **course catalogue**, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Every module and every course is allowed to be credited only once. The decision whether the course is assigned to one module or the other is made by the student at the time of signing in for the corresponding exam. The module is **succeeded**, if the general exam of the module and/or if all of its relevant partial exams have been passed (grade min 4.0).

General exams and partial exams

The module exam can be taken in a general exam or several partial exams. If the module exam is offered as a **general exam**, the entire content of the module will be reviewed in a single exam. If the module exam exists of **partial exams**, the content of each course will be reviewed in corresponding partial exams. The registration for the examinations in the bachelor programme takes place online via the self-service function for students. The following functions can be accessed on https://studium.kit.edu by means of the access information of the student card (FriCard):

- Sign in and sign off exams
- · Retrieve examination results
- Print transcript of records

For students of the master programme the registration currently takes place at the **advisory service** of the faculty or at the respective institutes.

Repeating exams

Principally, a failed exam can repeated only once. If the **repeat examination** (including an eventually provided verbal repeat examination) will be failed as well, the **examination claim** is lost. Requests for a second repetition of an exam require the approval of the examination committee. A request for a second repetition has to be made without delay after loosing the examination claim. A counseling interview is mandatory. For further information see http://www.wiwi.uni-karlsruhe.de/studium/hinweise/.

Bonus accomplishments and additional accomplishments

Bonus accomplishments can be achieved on the basis of entire modules or within modules, if there are alternatives at choice. Bonus accomplishments can improve the module grade and overall grade by taking into account only the best possible combination of all courses when calculating the grades. The student has to declare a Bonus accomplishment as such at the time of registration for the exams. Exams, which have been registered as Bonus accomplishments, are subject to examination regulations. Therefore, a failed exam has to be repeated. Failing the repeat examination implies the loss of the examination claim.

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an

additional accomplishment as such at the time of registration for an exam. Up to 2 modules with a minimum of 9 CP may appear additionally in the certificate. After the approval of the examination committee, it is also possible to include modules in the certificate, which are not defined in the module handbook. Single additional courses will be recorded in the transcript of records. Courses and modules, which have been declared as bonus accomplishments, can be changed to additional accomplishments.

Further information

More detailed information about the legal and general conditions of the programme can be found in the examination regulation of the programme.

Used abbreviations

LP/CP Credit Points/ECTS Leistungspunkte/ECTS
LV course Lehrveranstaltung
RÜ computing lab Rechnerübung
S summer term Sommersemester
Sem. semester/term Semester

SPO examination regulations Studien- und Prüfungsordnung SQ key qualifikation Schlüsselqualifikationen SWS contact hour Semesterwochenstunde

Ü excercise course Übung
 V lecture Vorlesung
 W winter term Wintersemester

3 Actual Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist.

4 Modules

4.1 All modules

Module: Differential Geometry [MATHMTAG04]

Coordination: W. Tuschmann

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits
Cycle
Every 2nd term, Winter Term
Duration
Level
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
1036	Differential Geometry	4/2	W	8	S. Grensing , E. Leuzinger, G. Link, W. Tuschmann

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Algebra [MATHMTAG05]

Coordination: F. Herrlich

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits
Cycle
Every 2nd term, Winter Term
Duration
Level
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)		
1031	Algebra	4/2	W	8	F. Herrlich, C. Schmidt, Schmithüsen	S. G.	Kühnlein, Weitze-

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Convex Geometry [MATHMTAG07]

Coordination: D. Hug

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
1044	Convex Geometry	4/2	W/S	8	D. Hug

Learning Control / Examinations

exam: oral exam (30 minutes)
Marking: grade of exam

Conditions

none

Qualification Goals

The students

- know fundamental combinatorial, geometric and analytic properties of convex sets and convex functions and apply these to related problems,
- are familiar with fundamental geometric and analytic inequalities for functionals of convex sets and their applications to geometric extremal problems and can present central ideas and techniques of proofs,
- · know selected integral formulas for convex sets and the required results on invariant measures.
- know how to work self-organized and self-reflexive.

- 1. Convex Sets
- 1.1. Combinatorial Properties
- 1.2. Support and Separation Properties
- 1.3. Extremal Representations
- 2. Convex Functions
- 2.1. Basic Properties
- 2.2. Regularity
- 2.3. Support Function
- 3. Brunn-Minkowski Theory
- 3.1. Hausdorff Metric
- 3.2. Volume and Surface Area
- 3.3. Mixed Volumes
- 3.4. Geometric Inequalities
- 3.5. Surface Area Measures
- 3.6. Projection Functions
- 4. Integralgeometric Formulas
- 4.1. Invariant Measures
- 4.2. Projection and Section Formulas

Module: Algebraic Number Theory [MATHMTAG09]

Coordination: C. Schmidt

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG09	Algebraic Number Theory	4/2	W/S	8	F. Januszewski , S. Kühnlein, C. Schmidt

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Algebraic Geometry [MATHMTAG10]

Coordination: F. Herrlich

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG10	Algebraic Geometry	4/2	W/S	8	F. Herrlich, S. Kühnlein, G. Weitze-Schmithüsen

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Geometry of Schemes [MATHMTAG11]

Coordination: F. Herrlich

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG11	Geometry of Schemes	4/2	W/S	8	F. Herrlich, S. Kühnlein, G. Weitze-Schmithüsen

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Geometric Group Theory [MATHMTAG12]

Coordination: R. Sauer

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG12	Geometric Group Theory	4/2	S	8	F. Herrlich, E. Leuzinger, G. Link, R. Sauer, P. Schwer, W. Tuschmann, G. Weitze-Schmithüsen

Learning Control / Examinations

exam

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Modular Forms [MATHAG23]

Coordination: C. Schmidt

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
Modulformen	Modular Forms	4/2		8	F. Januszewski , S. Kühnlein, C. Schmidt

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Geometric Group Theory II [MATHAG24]

Coordination: G. Weitze-Schmithüsen Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

> **ECTS Credits** Cycle **Duration** Level 8 Irregular Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
GGTIIVorl	Geometric Group Theory II	4+2		8	F. Herrlich, E. Leuzinger, R. Sauer, P. Schwer, G. Weitze-Schmithüsen

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Graph Theory [MATHAG26]

Coordination: M. Axenovich

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
GraphTH	Graph Theory	4+2	W/S	8	M. Axenovich

Learning Control / Examinations

Conditions

None.

Qualification Goals

Learning outcomes include: understanding structural and algorithmic properties of graphs, learning about graph colorings, unavoidable structures in graphs, probabilistic methods, properties of large graphs.

Content

The graph theory course covers the material starting with the basic graph properties introduced by Euler and finishing up with modern results and techniques in extremal graph theory. The specific topics include: structure of trees, paths, cycles, walks in graphs, unavoidable subgraphs in dense graphs, planar graphs, graph colorings, Ramsey theory, regularity in graphs.

Module: Global Differential Geometry [MATHAG27]

Coordination: W. Tuschmann

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG27	Global Differential Geometry	4/2	W/S	8	S. Grensing , W. Tuschmann

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Combinatorics in the plane [MATHAG28]

Coordination: M. Axenovich

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

FCTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG28	Combinatorics in the plane	3/2	W/S	7	M. Axenovich, T. Ueckerdt

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Comparison Geometry [MATHAG30]

Coordination: W. Tuschmann

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

FCTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	CP	Responsible Lecturer(s)
MATHAG30	Comparison Geometry	2/2	W/S	5	W. Tuschmann, M. Radeschi

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Algebraic Topology [MATHAG34]

Coordination: R. Sauer

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG34	Algebraic Topology	4/2	W/S	8	H. Kammeyer, R. Sauer

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Introduction to geometric measure theory [MATHAG35]

Coordination: S. Winter

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG35	Introduction to geometric measure theory	3/1	W/S	6	S. Winter

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Combinatorics [MATHAG37]

Coordination: M. Axenovich

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG37	Combinatorics	4/2	S	8	M. Axenovich, T. Ueckerdt

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: L2-Invariants [MATHAG38]

Coordination: H. Kammeyer

Degree programme: Technomathematik (M.Sc.) **Subject/Field:** Algebra/Geometry, Analysis

FCTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG38	L2-Invariants	2/2	W/S	5	H. Kammeyer, R. Sauer

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Group actions in Riemannian geometry [MATHAG40]

Coordination: W. Tuschmann

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG40	Group actions in Riemannian geometry	2/2	W/S	5	W. Tuschmann

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Algebraic Topology II [MATHAG41]

Coordination: R. Sauer

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG41	Algebraic Topology II	4/2	W/S	8	R. Sauer

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Extremal Graph Theory [MATHAG42]

Coordination: M. Axenovich

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG42	Extremal Graph Theory	4/2	W/S	8	M. Axenovich, T. Ueckerdt

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Spin manifolds, alpha invariant and positive scalar curvature [MATHAG43]

Coordination: W. Tuschmann

 $\textbf{Degree programme:} \quad \text{Technomathematik (M.Sc.)}$

Subject/Field: Algebra/Geometry

FCTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG43	Spin manifolds, alpha invariant and positive scalar curvature	2/2	W/S	5	S. Klaus, W. Tuschmann

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Homotopy theory [MATHAG44]

Coordination: R. Sauer

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG44	Homotopy theory	4/2	W/S	8	R. Sauer

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: The Riemann Zeta function [MATHAG45]

Coordination: F. Januszewski

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Algebra/Geometry

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAG45	The Riemann Zeta function	2/1	W/S	4	F. Januszewski

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Functional Analysis [MATHMTAN05]

Coordination: R. Schnaubelt

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits
Cycle
Every 2nd term, Winter Term
Duration
Level
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	CP	Responsible Lecturer(s)
01048		4/2	W	8	G. Herzog, D. Hundertmark, T. Lamm, M. Plum, W. Reichel, C. Schmoeger, R. Schnaubelt, L. Weis

Learning Control / Examinations

exam

written or oral exam

Marking: grade of exam

Conditions

None.

Recommendations

It is recommended to attend the following modules previously:

Linear Algebra 1+2 Analysis 1-3

Qualification Goals

Module: Integral Equations [MATHMTAN07]

Coordination: F. Hettlich

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics, Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
IG	Integral Equations	4/2		8	T. Arens, F. Hettlich, A. Kirsch

Learning Control / Examinations

Conditions

None.

Recommendations

It is recommended to attend the following modules previously:

Linear Algebra 1+2

Analysis 1-3

Qualification Goals

Module: Classical Methods for Partial Differential Equations [MATHMTAN08]

Coordination: M. Plum

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits
Cycle
Every 2nd term, Winter Term
Duration
Level
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
KMPD	Classical Methods for Partial Differential Equations	4/2	W	8	D. Hundertmark, T. Lamm, M. Plum, W. Reichel, J. Rottmann-Matthes, R. Schnaubelt, L. Weis

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Boundary and eigenvalue problems [MATHMTAN09]

Coordination: W. Reichel

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
RUEP	Boundary and eigenvalue problems	4/2	S	8	D. Hundertmark, T. Lamm, M. Plum, W. Reichel, J. Rottmann-Matthes, R. Schnaubelt, L. Weis

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Spectral Theory [MATHMTAN10]

Coordination: L. Weis

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
SpekTheo	Spectral Theory	4/2	S	8	G. Herzog, C. Schmoeger, R. Schnaubelt, L. Weis

Learning Control / Examinations

Conditions

None.

Recommendations

It is recommended to attend the following modules previously:

Linear Algebra 1+2

Analysis 1-3

Functional Analysis or Differential Equations and Hilbert Spaces

Qualification Goals

Module: Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems [MATHMTAN11]

Coordination: M. Plum

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN11	Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems	4/2	W/S	8	M. Plum

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Evolution Equations [MATHMTAN12]

Coordination: R. Schnaubelt

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN12	Evolution Equations	4/2	W/S	8	R. Schnaubelt, L. Weis

Learning Control / Examinations

exam:

written or oral exam after each semester

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Fourier Analysis [MATHMTAN14]

Coordination: L. Weis

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN14	Fourier Analysis	4/2	W/S	8	R. Schnaubelt, L. Weis

Learning Control / Examinations

Conditions

None.

Qualification Goals

- · Fourier series
- Fourier transform on L_1 and L_2
- · Tempered distributions and their Fourier transform
- Explizit solutions of the Heat-, Schrödinger- and Wave equation in Rⁿ
- · the Hilbert transform
- · the interpolation theorem of Marcinkiewicz
- · Singular integral operators
- the Fourier multiplier theorem of Mihlin

Module: Complex Analysis II [MATHMTAN16]

Coordination: C. Schmoeger

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	CP	Responsible Lecturer(s)
MATHAN16	Complex Analysis II	4/2	W/S	8	G. Herzog, M. Plum, W. Reichel, C. Schmoeger, R. Schnaubelt, L. Weis

Learning Control / Examinations

exam:

written or oral exam

Marking:

grade of exam

Conditions

None.

Qualification Goals

- infinite products
- Mittag-Leffler theorem
- Montel's theorem
- Riemann mapping theorem
- conformal mappings
- univalent (schlicht) functions
- automorphisms of some domains
- harmonic functions
- Schwarz reflection principle
- regular and singular points of power series

Module: Models of mathematical physics [MATHMTAN17]

Coordination: W. Reichel

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN17	Models of mathematical physics	4/2	W/S	8	D. Hundertmark, M. Plum, W. Reichel

Learning Control / Examinations

exam

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Control Theory [MATHAN18]

Coordination: R. Schnaubelt

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

FCTS Credits
Cycle Duration Level
Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN18	Control Theory	3/1	W/S	6	R. Schnaubelt, L. Weis

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Nonlinear Evolution Equations [MATHMTAN19]

Coordination: R. Schnaubelt

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN19	Nonlinear Evolution Equations	4/2	W/S	8	R. Schnaubelt, L. Weis

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Potential Theory [MATHMTAN20]

Coordination: A. Kirsch

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics, Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN20	Potential Theory	4/2	W/S	8	T. Arens, F. Hettlich, A. Kirsch, W. Reichel

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Boundary value problems for nonlinear differential equations [MATHMTAN21]

Coordination: W. Reichel

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN21	Boundary value problems for nonlinear differential equations	4/2	W/S	8	M. Plum, W. Reichel

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Spectral theory of differential operators [MATHMTAN22]

Coordination: M. Plum

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN22	Spectral theory of differential operators	4/2	W/S	8	M. Plum

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Stochastic Differential Equations [MATHMTAN24]

Coordination: L. Weis

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

> **ECTS Credits** Cycle **Duration** Level Undefined 8 Irregular

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN24	Stochastic Differential Equations	4/2	W/S	8	R. Schnaubelt, L. Weis

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Content

- · Brownian motion
- · Martingales and Martingal inequalities
- · Stochastic integrals and Ito's formula
- · Existence and uniqueness of solutions for systems of stochastic differential equations
- · Perturbation and stability results
- · Application to equations in financial mathematics, physics and engineering
- · Connection with diffusion equations and potential theory

Module Handbook, Date: 05.02.2016

Module: Calculus of variations [MATHMTAN25]

Coordination: W. Reichel

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN25	Calculus of variations	4/2	W/S	8	A. Kirsch, T. Lamm, M. Plum, W. Reichel

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Scattering Theory [MATHMTAN26]

Coordination: F. Hettlich

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics, Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN26	Scattering Theory	4/2	W/S	8	T. Arens, F. Hettlich, A. Kirsch

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Maxwell's Equations [MATHMTAN28]

Coordination: A. Kirsch

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics, Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN28	Maxwell's Equations	4/2	W/S	8	T. Arens, F. Hettlich, A. Kirsch

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Nonlinear Functional Analysis [MATHAN29]

Coordination: G. Herzog

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
NichtlinFA	Nonlinear Functional Analysis	2		3	G. Herzog

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Monotonicity methods in Analysis [MATHAN31]

Coordination: G. Herzog

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
01577	Monotonicity methods in Analysis	2	W/S	3	G. Herzog

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Banach algebras [MATHAN32]

Coordination: G. Herzog

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN32	Banach algebras	2	W/S	3	G. Herzog, C. Schmoeger

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Special functions and applications in potential theory [MATHAN33]

Coordination: A. Kirsch

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics, Analysis

FCTS Credits
5 Cycle Duration Level
Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN33	Special functions and applications in potential theory	2/2	W/S	5	A. Kirsch

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Geometric Analysis [MATHAN36]

Coordination: T. Lamm

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN36	Geometric Analysis	4/2	W/S	8	T. Lamm

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Sobolev Spaces [MATHAN37]

Coordination: A. Kirsch

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics, Analysis

FCTS Credits
5 Cycle Duration Level
1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN37	Sobolev Spaces	2/2	W/S	5	A. Kirsch

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Traveling Waves [MATHAN38]

Coordination: J. Rottmann-Matthes **Degree programme:** Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN38	Traveling Waves	3/1	W/S	6	J. Rottmann-Matthes

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Stochastic Evolution Equations [MATHAN40]

Coordination: L. Weis

Degree programme: Technomathematik (M.Sc.) **Subject/Field:** Stochastics, Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHAN40-1	Stochastic Evolution Equations	4	W/S	6	L. Weis
MATHAN40-2	Additional Topics on Stochastic Analysis	2	W/S	2	L. Weis

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Internet seminar for evolution equations [MATHANISEM]

Coordination: R. Schnaubelt

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Analysis

ECTS Credits
Cycle
Every 2nd term, Winter Term
Duration
Level
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHANISEM		2	W	8	R. Schnaubelt

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical methods for differential equations [MATHMTNM03]

Coordination: W. Dörfler, T. Jahnke **Degree programme:** Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

Courses in module

ID	Course				Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
NMDG	Numerical equations	methods	for	differential	4/2	W	8	W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Introduction to scientific computing [MATHMTNM05]

Coordination: W. Dörfler, T. Jahnke **Degree programme:** Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
EWR	Introduction to scientific computing	3/3	S	8	W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners

Learning Control / Examinations

exam

written or oral exam or practical

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Inverse Problems [MATHMTNM06]

Coordination: A. Kirsch

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics, Analysis

ECTS Credits
Cycle
Every 2nd term, Winter Term
Duration
Level
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
01052	Inverse Problems	4/2	W	8	T. Arens, F. Hettlich, A. Kirsch, A. Rieder

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Finite element methods [MATHMTNM07]

Coordination: W. Dörfler, C. Wieners **Degree programme:** Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits
Cycle
Every 2nd term, Winter Term
Duration
Level
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM07	Finite Element Methods	4/2	W	8	W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Parallel computing [MATHMTNM08]

Coordination: C. Wieners

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	CP	Responsible Lecturer(s)
MATHNM08	Parallel computing	2/2	W/S	5	C. Wieners

Learning Control / Examinations

prerequisite:

weekly work assignments in practice,

exam:

written or oral exam

Marking:

grade of exam

Conditions

None.

Qualification Goals

Module: Optimisation and optimal control for differential equations [MATHMTNM09]

Coordination: C. Wieners

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

FCTS Credits
4 Cycle Duration Level
Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM09	Optimisation and optimal control for dif- ferential equations	2/1	W/S	4	W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical Methods in Solid Mechanics [MATHMTNM12]

Coordination: C. Wieners

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Once 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM12	Numerical Methods in Solid Mechanics	4+2	W/S	8	C. Wieners

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical methods in computational electrodynamics [MATHMTNM13]

Coordination: W. Dörfler

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits
Cycle Duration Level
Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM13	Numerical methods in computational electrodynamics	3/1	W/S	6	W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Wavelets [MATHMTNM14]

Coordination: A. Rieder

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week Te C/E/T	Term	СР	Responsible Lecturer(s)
Wave	Wavelets	4/2		8	A. Rieder

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Medical imaging [MATHMTNM15]

Coordination: A. Rieder

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM15	Medical imaging	4/2	W/S	8	A. Rieder

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Mathematical methods in signal and image processing [MATHMTNM16]

Coordination: A. Rieder

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM16	Mathematical methods in signal and image processing	4/2	W/S	8	A. Rieder

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Multigrid and Domain Decomposition Methods [MATHMTNM17]

Coordination: C. Wieners

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Once 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM17	Multigrid and Domain Decomposition Methods	2/1	W/S	4	C. Wieners

Learning Control / Examinations

Conditions

It is recommended to attend the following modules previously:

Finite Element Methods

Qualification Goals

The students became acquainted with multigrid and domain decomposition methods. They learn algorithms, results on convergence, and representative applications.

- 1. The two-grid method
- 2. Classical multigrid theory
- 3. Additive subspace correction method
- 4. Multiplicative subspace correction method
- 5. Multigrid methods for saddle point problems

Module: Numerical Methods in Mathematical Finance [MATHMTNM18]

Coordination: T. Jahnke

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM18	Numerical Methods in Mathematical Finance	4/2	W/S	8	T. Jahnke

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Adaptive finite elemente methods [MATHMTNM19]

Coordination: W. Dörfler

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM19	Adaptive finite elemente methods	3/1	W/S	6	W. Dörfler

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical methods for time-dependent partial differential equations [MATHMTNM20]

Coordination: M. Hochbruck

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM20	Numerical methods for time-dependent partial differential equations	4/2	W/S	8	M. Hochbruck, T. Jahnke

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical optimisation methods [MATHMTNM25]

Coordination: C. Wieners

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM25	Numerical optimisation methods	4/2	W/S	8	W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical methods in mathematical finance II [MATHNM26]

Coordination: T. Jahnke

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM26	Numerical methods in mathematical finance II	4/2	W/S	8	T. Jahnke

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Mathematical modelling und simulation in practise [MATHNM27]

Coordination: G. Thäter

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits
4 Cycle Duration Level
1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM27	Mathematical modelling und simulation in practise	2/1	W/S	4	G. Thäter

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical methods for hyperbolic equations [MATHNM28]

Coordination: W. Dörfler

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits
Cycle Duration Level
Irregular 1 Undefined

Courses in module

ID	Course				Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM28	Numerical equations	methods	for	hyperbolic	3/1	W/S	6	W. Dörfler

Learning Control / Examinations

Conditions

None.

Qualification Goals

.

Module: Numerical Methods for Integral Equations [MATHNM29]

Coordination: T. Arens

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM29	Numerical Methods for Integral Equations	4/2	W/S	8	T. Arens, F. Hettlich, A. Kirsch

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Special topics in numerical linear algebra [MATHNM30]

Coordination: M. Hochbruck

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM30	Special topics in numerical linear algebra	4/2	W/S	8	M. Hochbruck

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Geometric numerical integration [MATHNM31]

Coordination: T. Jahnke

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

FCTS Credits
Cycle Duration Level
Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM31	Geometric numerical integration	3/1	W/S	6	M. Hochbruck, T. Jahnke

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Optimization in Banach spaces [MATHNM32]

Coordination: A. Kirsch

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics, Analysis

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM32	Optimization in Banach spaces	4/2	W/S	8	A. Kirsch

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical methods for Maxwell's equations [MATHNM33]

Coordination: T. Jahnke

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM33	Numerical methods for Maxwell's equations	3/1	W/S	6	T. Jahnke

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical methods in fluid mechanics [MATHNM34]

Coordination: W. Dörfler, G. Thäter **Degree programme:** Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM34	Numerical methods in fluid mechanics	2/1	W/S	4	W. Dörfler, G. Thäter

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Splitting methods [MATHNM35]

Coordination: K. Schratz

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits
Cycle
Duration
Every 2nd term, Winter Term

Duration
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM35	Splitting methods	2/2	W	5	M. Hochbruck, T. Jahnke, K. Schratz

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Aspects of time integration [MATHNM36]

Coordination: K. Schratz

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits
5 Cycle Duration Level
Every 2nd term, Summer Term 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM36	Aspects of time integration	2/2	S	5	M. Hochbruck, T. Jahnke, K. Schratz

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Compressive Sensing [MATHNM37]

Coordination: A. Rieder

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

FCTS Credits
5 Cycle Duration Level
1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM37	Compressive Sensing	2/2	W/S	5	A. Rieder

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Functions of operators [MATHNM38]

Coordination: V. Grimm

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

FCTS Credits
Cycle Duration Level
Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM38	Functions of operators	3/1	W/S	6	V. Grimm

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Functions of matrices [MATHNM39]

Coordination: V. Grimm

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM39	Functions of matrices	4/2	W/S	8	V. Grimm

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Project centered Software-Lab [MATHNM40]

Coordination: G. Thäter

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM40	Project centered Software-Lab	4	W/S	4	G. Thäter

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Introduction into particulate flows [MATHNM41]

Coordination: W. Dörfler

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Once 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM41	Introduction into particulate flows	2	W	3	W. Dörfler

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Numerical continuation methods [MATHNM42]

Coordination: J. Rottmann-Matthes **Degree programme:** Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

FCTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM42	Numerical continuation methods	2/2	W/S	5	J. Rottmann-Matthes

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Introduction to Matlab and numerical algorithms [MATHNM43]

Coordination: D. Weiß

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM43	Introduction to Matlab and numerical algorithms	2/2	W/S	5	D. Weiß, C. Wieners

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Advanced Inverse Problems: Nonlinearity and Banach spaces [MATHNM44]

Coordination: A. Rieder

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

FCTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHNM44	Advanced Inverse Problems: Nonlinearity and Banach spaces	2/2	W/S	5	A. Rieder

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Discrete time finance [MATHST04]

Coordination: N. Bäuerle

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits
Cycle
Every 2nd term, Winter Term
Duration
Level
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
FMDZ	Discrete time finance	4/2	W	8	N. Bäuerle, V. Fasen

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Stochastic Geometry [MATHMTST06]

Coordination: D. Hug

Degree programme: Technomathematik (M.Sc.) **Subject/Field:** Stochastics, Algebra/Geometry

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST06	Stochastic Geometry	4/2	S	8	D. Hug, G. Last

Learning Control / Examinations

exam: oral exam (30 minutes)
Marking: grade of exam

Conditions

none

Recommendations

It is recommended to attend the following modules previously:

Probability Theory, Spatial Stochastics

Qualification Goals

The students

- · know the fundamental geometric models and characteristics in stochastic geometry,
- · are familiar with properties of Poisson processes of geometric objects,
- · know examples of applications of models of stochastic geometry,
- · know how to work self-organised and self-reflexive.

Content

- · Random Sets
- · Geometric Point Processes
- · Stationarity and Isotropy
- · Germ Grain Models
- · Boolean Models
- · Foundations of Integral Geometry
- · Geometric densities and characteristics
- Random Tessellations

Technomathematics (M.Sc.) Module Handbook, Date: 05.02.2016

Module: Asymptotic Stochastics [MATHMTST07]

Coordination: N. Henze

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits
Cycle
Every 2nd term, Winter Term
Duration
Level
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST07	Asymptotic Stochastics	4/2	W	8	V. Fasen, N. Henze, B. Klar

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Continuous time finance [MATHST08]

Coordination: N. Bäuerle

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST08	Mathematical Finance in Continuous Time	4/2	S	8	N. Bäuerle, V. Fasen

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Generalized Regression Models [MATHMTST09]

Coordination: B. Klar

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits
4 Cycle Duration
Every 2nd term, Summer Term 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST09	Generalized Regression Models	2/1	S	4	N. Henze, B. Klar

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Content

Technomathematics (M.Sc.) Module Handbook, Date: 05.02.2016

Module: Brownian Motion [MATHMTST10]

Coordination: N. Bäuerle

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST10	Brownian Motion	2/1	W/S	4	N. Bäuerle, V. Fasen, N. Henze, G. Last

Learning Control / Examinations

exam

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Markov Decision Processes [MATHMTST11]

Coordination: N. Bäuerle

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

FCTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST11	Markov Decision Processes	2/2	W/S	5	N. Bäuerle

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

Module: Stochastic Control [MATHMTST12]

Coordination: N. Bäuerle

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST12	Stochastic Control	2/1	W/S	4	N. Bäuerle

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Percolation [MATHMTST13]

Coordination: G. Last

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST13	Percolation	3/1	W/S	6	G. Last

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

It is recommended to attend the following modules previously:

Probability Theory

Qualification Goals

The students

- are acquainted with basic models of discrete and continuum percolation,
- acquire the skills needed to use specific probabilistic and graph-theoretical methods for the analysis of these models,
- · know how to work self-organised and self-reflexive.

Content

Technomathematics (M.Sc.) Module Handbook, Date: 05.02.2016

Module: Spatial Stochastics [MATHMTST14]

Coordination: G. Last

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits
Cycle
Duration
Level
Every 2nd term, Winter Term

1
Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST14	Spatial Stochastics	4/2	S	8	D. Hug, G. Last

Learning Control / Examinations

exam:

written or oral exam

Marking:

grade of exam

Conditions

It is recommended to attend the following modules previously:

Probability Theory

Qualification Goals

The students are familiar with some basic spatial stochastic processes. They do not only understand how to deal with general properties of distributions, but also know how to describe and apply specific models (Poisson process, Gaussian random fields). They know how to work self-organised and self-reflexive.

Content

- · Point processes
- · Random measures
- · Poisson processes
- · Gibbs point processes
- · Ralm distributions
- · Spatial ergodic theorem
- · Spectral Theory of random fields
- · Gaussian fields

Module: Mathematical Statistics [MATHMTST15]

Coordination: B. Klar

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST15	Mathematical Statistics	2/1	W/S	4	N. Henze, B. Klar

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Nonparametric Statistics [MATHMTST16]

Coordination: N. Henze

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST16	Nonparametric Statistics	2/1	W/S	4	N. Henze, B. Klar

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Time Series Analysis [MATHMTST18]

Coordination: B. Klar

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits
4 Cycle Duration Level
Every 2nd term, Summer Term 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST18	Time Series Analysis	2/1	S	4	N. Henze, B. Klar

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Poisson processes [MATHST20]

Coordination: G. Last

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

FCTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST20	Poisson processes	2/2	W/S	5	V. Fasen, D. Hug, G. Last

Learning Control / Examinations

exam:

written or oral exam

Marking: grade of exam

Conditions

None.

Qualification Goals

The students know about important properties of the Poisson process. The focus is on probabilistic methods and results which are independent of the specific phase space. The students understand the central role of the Poisson process as a specific point process and as a random measure.

Content

- Distributional properties of Poisson processes
- The Poisson process as a particular point process
- · stationary Poisson and point processes
- · Random measures and Cox processes
- · Poisson cluster processes and compound Poisson processes
- · The spatial Gale-Shapley algorithm

Module: Extreme value theory [MATHST23]

Coordination: V. Fasen

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST23	Extreme value theory	2/1	W/S	4	V. Fasen, N. Henze

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Stein's Method [MATHST24]

Coordination: M. Schulte

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

FCTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)	
MATHST24	Stein's Method	2/2	W/S	5	M. Schulte	

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Probability theory and combinatorial optimization [MATHST27]

Coordination: D. Hug

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST27	Probability theory and combinatorial optimization	4/2	W/S	8	D. Hug, G. Last

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Forecasting: Theory and Practice [MATHST28]

Coordination: T. Gneiting

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits Cycle Duration Level Irregular 2 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST28I	Forecasting: Theory and Practice I	2	W/S	3	T. Gneiting
MATHST28II	Forecasting: Theory and Practice II	2/2	W/S	5	T. Gneiting

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Random Graphs [MATHST29]

Coordination: M. Schulte

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Stochastics

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHST29	Random Graphs	3/1	W/S	6	M. Schulte

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Seminar [MATHMTSE01]

Coordination: Studiendekan/Studiendekanin **Degree programme:** Technomathematik (M.Sc.)

Subject/Field: Seminar

ECTS Credits Cycle Duration Level Undefined

Learning Control / Examinations

Conditions None.

Qualification Goals

Module: Internship [MATHBERP]

Coordination: Studiendekan/Studiendekanin **Degree programme:** Technomathematik (M.Sc.)

Subject/Field:

ECTS Credits Cycle Duration Level Every term 1 Undefined

Learning Control / Examinations

Conditions None.

Qualification Goals

Module: [MATHTMSQ01]

Coordination: Studiendekan/Studiendekanin **Degree programme:** Technomathematik (M.Sc.)

Subject/Field: Key Competences

ECTS Credits Cycle Duration Level Undefined

Learning Control / Examinations

Conditions None.

Qualification Goals

Module: Introduction to Python [MATHSQ02]

Coordination: D. Weiß

Degree programme: Technomathematik (M.Sc.)

Subject/Field: Key Competences

ECTS Credits Cycle Duration Level Irregular 1 Undefined

Courses in module

ID	Course	Hours per week C/E/T	Term	СР	Responsible Lecturer(s)
MATHSQ02	Introduction to Python	2/1	W/S	3	D. Weiß

Learning Control / Examinations

Conditions

None.

Qualification Goals

Module: Master Thesis [TMATHMAST]

Coordination: Studiendekan/Studiendekanin **Degree programme:** Technomathematik (M.Sc.)

Subject/Field:

ECTS Credits Cycle Duration Level Undefined

Learning Control / Examinations

Conditions None.

Qualification Goals

Der Rektor

Amtliche Bekanntmachung

2009 Ausgegeben Karlsruhe, den 28. August 2009

Nr. 75

Inhalt Seite

Studien- und Prüfungsordnung der Universität Karlsruhe (TH) 456 für den Masterstudiengang Technomathematik

Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Masterstudiengang Technomathematik

Aufgrund von § 34 Abs. 1, Satz 1 des Landeshochschulgesetzes (LHG) vom 1. Januar 2005 hat die beschließende Senatskommission für Prüfungsordnungen der Universität Karlsruhe (TH) am 13. Februar 2009 die folgende Studien- und Prüfungsordnung für den Masterstudiengang Technomathematik beschlossen.

Der Rektor hat seine Zustimmung am 28. August 2009 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen

- § 1 Geltungsbereich, Ziele
- § 2 Akademischer Grad
- § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
- § 4 Aufbau der Prüfungen
- § 5 Anmeldung und Zulassung zu den Prüfungen
- § 6 Durchführung von Prüfungen und Erfolgskontrollen
- § 7 Bewertung von Prüfungen und Erfolgskontrollen
- § 8 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen
- § 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
- § 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
- § 11 Masterarbeit
- § 12 Berufspraktikum
- § 13 Zusatzleistungen, Zusatzmodule, Schlüsselqualifikationen
- § 14 Prüfungsausschuss
- § 15 Prüferinnen und Beisitzende
- § 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

II. Masterprüfung

- § 17 Umfang und Art der Masterprüfung
- § 18 Bestehen der Masterprüfung, Bildung der Gesamtnote
- § 19 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen

- § 20 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
- § 21 Ungültigkeit der Masterprüfung, Entziehung des Mastergrades
- § 22 Einsicht in die Prüfungsakten
- § 23 In-Kraft-Treten

Die Universität Karlsruhe (TH) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studierendenausbildung an der Universität Karlsruhe (TH) der Mastergrad stehen soll. Die Universität Karlsruhe (TH) sieht daher die an der Universität Karlsruhe (TH) angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

In dieser Satzung ist nur die weibliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Ziele

- (1) Diese Masterprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Masterstudiengang Technomathematik an der Universität Karlsruhe (TH).
- (2) Im Masterstudium sollen die im Bachelorstudium erworbenen wissenschaftlichen Qualifikationen weiter vertieft oder ergänzt werden. Die Studentin soll in der Lage sein, die wissenschaftlichen Erkenntnisse und Methoden selbstständig anzuwenden und ihre Bedeutung und Reichweite für die Lösung komplexer wissenschaftlicher und gesellschaftlicher Problemstellungen zu bewerten.

§ 2 Akademischer Grad

Aufgrund der bestandenen Masterprüfung wird der akademische Grad "Master of Science" (abgekürzt: "M.Sc.") verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

- (1) Die Regelstudienzeit beträgt vier Semester. Sie umfasst neben den Lehrveranstaltungen Prüfungen und die Masterarbeit.
- (2) Der Masterstudiengang Technomathematik hat zwei Ergänzungsfächer:
 - 1. Technisches Nebenfach,
 - 2. Informatik.

Die Studentin wählt zu Beginn des Masterstudiums das technische Nebenfach. Es kann eines der folgenden Fächer gewählt werden:

- (a) Maschinenbau,
- (b) Elektrotechnik/Informationstechnik,
- (c) Experimentalphysik,
- (d) Bauingenieurwesen.

Andere technische Nebenfächer können vom Prüfungsausschuss genehmigt werden.

(3) Die im Studium zu absolvierenden Lehrinhalte sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren, thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren, beschreibt der Studienplan. Die Fächer und ihr Umfang werden in § 17 definiert.

- (4) Der für das Absolvieren von Lehrveranstaltungen und Modulen vorgesehene Arbeitsaufwand wird in Leistungspunkten (Credits) ausgewiesen. Die Maßstäbe für die Zuordnung von Leistungspunkten entsprechen dem ECTS (European Credit Transfer System). Ein Leistungspunkt entspricht einem Arbeitsaufwand von etwa 30 Stunden.
- (5) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.
- **(6)** Die Verteilung der Leistungspunkte im Studienplan auf die Semester hat in der Regel gleichmäßig zu erfolgen.
- (7) Lehrveranstaltungen können auch in englischer Sprache angeboten werden.

§ 4 Aufbau der Prüfungen

- (1) Die Masterprüfung besteht aus einer Masterarbeit und Fachprüfungen, jede der Fachprüfungen aus einer oder mehreren Modulprüfungen, jede Modulprüfung aus einer oder mehreren Modulteilprüfungen. Eine Modulteilprüfung besteht aus mindestens einer Erfolgskontrolle.
- (2) Erfolgskontrollen sind:
 - 1. schriftliche Prüfungen,
 - 2. mündliche Prüfungen oder
 - 3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z.B. Vorträge, Übungsscheine, Projekte, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Studienplan ausgewiesen sind.

(3) In der Regel sind mindestens 50 % einer Modulprüfung in Form von schriftlichen oder mündlichen Prüfungen (Absatz 2, Nr. 1 und 2) abzulegen, die restlichen Prüfungen erfolgen durch Erfolgskontrollen anderer Art (Absatz 2, Nr. 3). Hiervon ausgenommen sind Seminarmodule.

§ 5 Anmeldung und Zulassung zu den Prüfungen

- (1) Um an den Modulprüfungen teilnehmen zu können, muss sich die Studentin schriftlich oder per Online-Anmeldung beim Studienbüro anmelden. Hierbei sind die gemäß dem Studienplan für die jeweilige Modulprüfung notwendigen Studienleistungen nachzuweisen. Darüber hinaus muss sich die Studentin für jede einzelne Modulteilprüfung, die in Form einer schriftlichen oder mündlichen Prüfung (§ 4 Abs. 2, Nr. 1 und 2) durchgeführt wird, beim Studienbüro anmelden. Dies gilt auch für die Anmeldung zur Masterarbeit.
- (2) Um zu schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) in einem bestimmten Modul zugelassen zu werden, muss die Studentin vor der ersten schriftlichen oder mündlichen Prüfung in diesem Modul beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgeben.
- (3) Die Zulassung darf nur abgelehnt werden, wenn die Studentin in einem mit der Mathematik vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat. In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehr-inhalte der einzelnen Module oder zeitnah danach, durchgeführt.

- (2) Die Art der Erfolgskontrolle (§ 4 Abs. 2, Nr. 1 bis 3) der einzelnen Lehrveranstaltungen wird von der Prüferin der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lehrziele des Moduls festgelegt. Die Prüferin, die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung und die Bildung der Lehrveranstaltungsnote müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen zwischen Prüferin und Studentin kann die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Abs. 3 zu berücksichtigen.
- (3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfung auch mündlich oder eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.
- **(4)** Weist eine Studentin nach, dass sie wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Form abzulegen, kann der zuständige Prüfungsausschuss in dringenden Angelegenheiten, deren Erledigung nicht bis zu einer Sitzung des Ausschusses aufgeschoben werden kann, dessen Vorsitzende gestatten, Erfolgskontrollen in einer anderen Form zu erbringen. Auf Antrag kann der Prüfungsausschuss auch in anderen begründeten Ausnahmefällen gestatten, Erfolgskontrollen in einer anderen Form zu erbringen.
- **(5)** Bei Lehrveranstaltungen in englischer Sprache können mit Zustimmung der Studentin die entsprechenden Erfolgskontrollen in englischer Sprache abgenommen werden.
- (6) Schriftliche Prüfungen (§ 4 Abs. 2, Nr. 1) sind in der Regel von einer Prüferin nach § 15 Abs. 2 oder § 15 Abs. 3 zu bewerten. Die Note ergibt sich aus dem arithmetischen Mittel der Einzelbewertungen. Entspricht das arithmetische Mittel keiner der in § 7 Abs. 2, Satz 2 definierten Notenstufen, so ist auf die nächstliegende Notenstufe zu runden. Bei gleichem Abstand ist auf die nächstbessere Notenstufe zu runden. Das Bewertungsverfahren soll sechs Wochen nicht überschreiten. Schriftliche Einzelprüfungen dauern mindestens 60 und höchstens 240 Minuten.
- (7) Mündliche Prüfungen (§ 4 Abs. 2, Nr. 2) sind von mehreren Prüferinnen (Kollegialprüfung) oder von einer Prüferin in Gegenwart einer Beisitzenden als Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die Prüferin die anderen an der Kollegialprüfung mitwirkenden Prüferinnen bzw. die Beisitzende an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten.
- (8) Die wesentlichen Gegenstände und Ergebnisse der mündlichen Prüfung in den einzelnen Fächern sind in einem Protokoll festzuhalten. Das Ergebnis der Prüfung ist der Studentin im Anschluss an die mündliche Prüfung bekannt zu geben.
- (9) Studentinnen, die sich in einem späteren Prüfungszeitraum der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen als Zuhörerinnen bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse. Aus wichtigen Gründen oder auf Antrag der Studentin ist die Zulassung zu versagen.
- (10) Für Erfolgskontrollen anderer Art sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Studienleistung der Studentin zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.
- (11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: "Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde." Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.
- (12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss in der Regel neben der Prüferin eine Beisitzende anwesend sein, die zusätzlich zur Prüferin die Protokolle zeichnet.

§ 7 Bewertung von Prüfungen und Erfolgskontrollen

- (1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüferinnen in Form einer Note festgesetzt.
- (2) Im Masterzeugnis dürfen nur folgende Noten verwendet werden:

1 : sehr gut (very good) = hervorragende Leistung,

2 : gut (good) = eine Leistung, die erheblich über den durch-

schnittlichen Anforderungen liegt,

3 : befriedigend (satisfactory) = eine Leistung, die durchschnittlichen Anfor-

derungen entspricht,

4 : ausreichend (sufficient) = eine Leistung, die trotz ihrer Mängel noch

den Anforderungen genügt,

5 : nicht ausreichend (failed) = eine Leistung, die wegen erheblicher Mängel

nicht den Anforderungen genügt.

Für die Masterarbeit und die Modulteilprüfungen sind zur differenzierten Bewertung nur folgende Noten zugelassen:

1 1.0, 1.3 = sehr gut

2 1.7, 2.0, 2.3 = gut

3 2.7, 3.0, 3.3 = befriedigend

4 3.7, 4.0 = ausreichend

5 4.7, 5.0 = nicht ausreichend

Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

- (3) Für Erfolgskontrollen anderer Art kann im Studienplan die Benotung mit "bestanden" (passed) oder "nicht bestanden" (failed) vorgesehen werden.
- (4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.
- (5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf in demselben Studiengang nur einmal angerechnet werden. Die Anrechnung eines Moduls, einer Lehrveranstaltung oder einer Erfolgskontrolle ist darüber hinaus ausgeschlossen, wenn das betreffende Modul, die Lehrveranstaltung oder die Erfolgskontrolle bereits in einem grundständigen Bachelorstudiengang angerechnet wurde, auf dem dieser Masterstudiengang konsekutiv aufbaut.
- **(6)** Erfolgskontrollen anderer Art dürfen in Modulteilprüfungen oder Modulprüfungen nur eingerechnet werden, wenn die Benotung nicht nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan festgelegt.
- (7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens "ausreichend" (4.0) ist.
- (8) Eine Modulprüfung ist dann bestanden, wenn die Modulnote mindestens "ausreichend" (4.0) ist. Die Modulprüfung und die Bildung der Modulnote werden im Studienplan geregelt. Die differenzierten Lehrveranstaltungsnoten (Absatz 2) sind bei der Berechnung der Modulnoten als Ausgangsdaten zu verwenden. Enthält der Studienplan keine Regelung darüber, wann eine Modulprüfung bestanden ist, so ist diese Modulprüfung dann endgültig nicht bestanden, wenn eine dem Modul zugeordnete Modulteilprüfung endgültig nicht bestanden wurde.

- **(9)** Die Ergebnisse der Masterarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.
- (10) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein. Eine Fachprüfung ist bestanden, wenn die für das Fach erforderliche Anzahl von Leistungspunkten nachgewiesen wird.
- (11) Die Gesamtnote der Masterprüfung und die Modulnoten lauten:

```
bis
                    1.5
                                 sehr gut
       1.6
                    2.5
von
              his
                                 gut
       2.6
                    3.5
                                 befriedigend
              bis
von
       3.6
                    4.0
                                 ausreichend
von
              bis
```

(12) Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Masterprüfung nach folgender Skala vergeben:

Definition der ECTS-Note:

- A gehört zu den besten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- B gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- C gehört zu den nächsten 30 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- D gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- E gehört zu den letzten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben,
- FX *nicht bestanden* (failed) es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden,
- F *nicht bestanden* (failed) es sind erhebliche Verbesserungen erforderlich.

Die Quote ist als der Prozentsatz der erfolgreichen Studierenden definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studierende auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig. Bis zum Aufbau einer entsprechenden Datenbasis wird als Übergangsregel die Verteilung der Vordiplomsnoten des Diplomstudiengangs Technomathematik per 30. September 2009 zur Bildung dieser Skala für alle Module des Masterstudiengangs Technomathematik herangezogen. Diese Verteilung wird jährlich gleitend über mindestens fünf Semester mit mindestens 30 Studierenden jeweils zu Beginn des Semesters für jedes Modul, die Fachnoten und die Gesamtnote angepasst und in diesem Studienjahr für die Festsetzung der ECTS-Note verwendet.

§ 8 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen

- (1) Studentinnen können eine nicht bestandene schriftliche Prüfung (§ 4 Abs. 2, Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit "nicht ausreichend" bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als "ausreichend" (4.0) sein.
- (2) Studentinnen können eine nicht bestandene mündliche Prüfung (§ 4 Abs. 2, Nr. 2) einmal wiederholen.
- (3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen. Fehlversuche an anderen Hochschulen sind anzurechnen.

- (4) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Abs. 2, Nr. 3) wird im Studienplan geregelt.
- (5) Eine zweite Wiederholung derselben schriftlichen oder mündlichen Prüfung ist nur in Ausnahmefällen zulässig. Einen Antrag auf Zweitwiederholung hat die Studentin schriftlich beim Prüfungsausschuss zu stellen. Über den ersten Antrag der Studentin auf Zweitwiederholung entscheidet der Prüfungsausschuss, wenn er den Antrag genehmigt. Wenn der Prüfungsausschuss diesen Antrag ablehnt, entscheidet die Rektorin. Über weitere Anträge auf Zweitwiederholung entscheidet nach Stellungnahme des Prüfungsausschusses die Rektorin. Absatz 1, Satz 2 und 3 gilt entsprechend.
- (6) Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.
- (7) Eine Fachprüfung ist endgültig nicht bestanden, wenn mindestens ein Modul des Faches endgültig nicht bestanden ist.
- (8) Die Masterarbeit kann bei einer Bewertung mit "nicht ausreichend" einmal wiederholt werden. Eine zweite Wiederholung der Masterarbeit ist ausgeschlossen.
- (9) Ist gemäß § 34 Abs. 2, Satz 3 LHG die Masterprüfung bis zum Ende des siebten Fachsemesters dieses Studiengangs einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, es sei denn, dass die Studentin die Fristüberschreitung nicht zu vertreten hat. Die Entscheidung darüber trifft der Prüfungsausschuss. Die Entscheidung über eine Fristverlängerung und über Ausnahmen von der Fristregelung trifft der Prüfungsausschuss.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

- (1) Die Studentin kann bei schriftlichen Modulprüfungen ohne Angabe von Gründen bis einen Tag (24 Uhr) vor dem Prüfungstermin zurücktreten (Abmeldung). Bei mündlichen Modulprüfungen muss der Rücktritt spätestens drei Werktage vor dem betreffenden Prüfungstermin erklärt werden (Abmeldung). Ein Rücktritt von einer mündlichen Prüfung weniger als drei Werktage vor dem betreffenden Prüfungstermin ist nur unter den Voraussetzungen des Absatzes 3 möglich. Die Abmeldung kann schriftlich bei der Prüferin oder per Online-Abmeldung beim Studienbüro erfolgen. Eine durch Widerruf abgemeldete Prüfung gilt als nicht angemeldet. Der Rücktritt von mündlichen Nachprüfungen im Sinne von § 8 Abs. 2 ist grundsätzlich nur unter den Voraussetzungen von Absatz 3 möglich.
- (2) Eine Modul- bzw. Modulteilprüfung gilt als mit "nicht ausreichend" bewertet, wenn die Studentin einen Prüfungstermin ohne triftigen Grund versäumt oder wenn sie nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Masterarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, die Studentin hat die Fristüberschreitung nicht zu vertreten.
- (3) Der für den Rücktritt nach Beginn der Prüfung oder das Versäumnis geltend gemachte Grund muss dem Prüfungsausschuss unverzüglich schriftlich angezeigt und glaubhaft gemacht werden. Bei Krankheit der Studentin bzw. eines von ihr allein zu versorgenden Kindes oder pflegebedürftigen Angehörigen kann die Vorlage eines ärztlichen Attestes und in Zweifelsfällen ein amtsärztliches Attest verlangt werden. Die Anerkennung des Rücktritts ist ausgeschlossen, wenn bis zum Eintritt des Hinderungsgrundes bereits Prüfungsleistungen erbracht worden sind und nach deren Ergebnis die Prüfung nicht bestanden werden kann. Wird der Grund anerkannt, wird ein neuer Termin anberaumt. Die bereits vorliegenden Prüfungsergebnisse sind in diesem Fall anzurechnen. Bei Modulprüfungen, die aus mehreren Prüfungen bestehen, werden die Prüfungsleistungen dieses Moduls, die bis zu einem anerkannten Rücktritt bzw. einem anerkannten Versäumnis einer Prüfungsleistung dieses Moduls erbracht worden sind, angerechnet.
- (4) Versucht die Studentin das Ergebnis seiner Modulprüfung durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Modulprüfung als mit "nicht ausreichend" (5.0) bewertet.

Module Handbook, Date: 05.02.2016

- (5) Eine Studentin, die den ordnungsgemäßen Ablauf der Prüfung stört, kann von der jeweiligen Prüferin oder Aufsicht Führenden von der Fortsetzung der Modulprüfung ausgeschlossen werden. In diesem Fall gilt die betreffende Prüfungsleistung als mit "nicht ausreichend" (5.0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss die Studentin von der Erbringung weiterer Prüfungsleistungen ausschließen.
- (6) Die Studentin kann innerhalb einer Frist von einem Monat verlangen, dass Entscheidungen gemäß Absatz 4 und 5 vom Prüfungsausschuss überprüft werden. Belastende Entscheidungen des Prüfungsausschusses sind der Studentin unverzüglich schriftlich mitzuteilen. Sie sind zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen. Der Studentin ist vor einer Entscheidung Gelegenheit zur Äußerung zu geben.
- (7) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika.

§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

- (1) Auf Antrag einer Studentin sind die Mutterschutzfristen, wie sie im jeweils gültigen Gesetz zum Schutz der erwerbstätigen Mutter (MuSchG) festgelegt sind, entsprechend zu berücksichtigen. Dem Antrag sind die erforderlichen Nachweise beizufügen. Die Mutterschutzfristen unterbrechen jede Frist nach dieser Prüfungsordnung. Die Dauer des Mutterschutzes wird nicht in die Frist eingerechnet.
- (2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweiligen gültigen Gesetzes (BErzGG) auf Antrag zu berücksichtigen. Die Studentin muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an sie die Elternzeit antreten will, dem Prüfungsausschuss unter Beifügung der erforderlichen Nachweise schriftlich mitteilen, in welchem Zeitraum sie Elternzeit in Anspruch nehmen will. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vorliegen, die bei einer Arbeitnehmerin den Anspruch auf Elternzeit auslösen würden, und teilt der Studentin das Ergebnis sowie die neu festgesetzten Prüfungszeiten unverzüglich mit. Die Bearbeitungszeit der Masterarbeit kann nicht durch Elternzeit unterbrochen werden. Die gestellte Arbeit gilt als nicht vergeben. Nach Ablauf der Elternzeit erhält die Studentin ein neues Thema.
- (3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Die Bearbeitungszeit der Masterarbeit kann nicht durch die Wahrnehmung von Familienpflichten unterbrochen oder verlängert werden. Die gestellte Arbeit gilt als nicht vergeben. Die Studentin erhält ein neues Thema, das innerhalb der in § 11 festgelegten Bearbeitungszeit zu bearbeiten ist.

§ 11 Masterarbeit

- (1) Die Masterarbeit soll zeigen, dass die Studentin in der Lage ist, ein Problem aus ihrem Fach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden, die dem Stand der Forschung entsprechen, zu bearbeiten.
- (2) Zum Modul Masterarbeit wird zugelassen, wer mindestens 70 Leistungspunkte erworben hat.
- (3) Die Masterarbeit kann von jeder Prüferin nach § 15 Abs. 2 vergeben werden. Soll die Masterarbeit außerhalb der Fakultät für Mathematik angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses. Der Studentin ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Auf Antrag der Studentin sorgt ausnahmsweise die Vorsitzende des Prüfungsausschusses dafür, dass die Studentin innerhalb von vier Wochen nach Antragstellung von einer Betreuerin ein Thema für die Masterarbeit erhält. Die Ausgabe des Themas erfolgt in diesem Fall über die Vorsitzende des Prüfungsausschusses. Die Masterarbeit kann auch auf Englisch geschrieben werden.

- (4) Der Masterarbeit werden 30 Leistungspunkte zugeordnet. Die Bearbeitungsdauer beträgt sechs Monate. Thema, Aufgabenstellung und Umfang der Masterarbeit sind von der Betreuerin so zu begrenzen, dass sie mit dem in Satz 1 festgelegten Arbeitsaufwand bearbeitet werden kann. Auf begründeten Antrag der Studentin kann der Prüfungsausschuss diesen Zeitraum um höchstens drei Monate verlängern.
- (5) Bei der Abgabe der Masterarbeit hat die Studentin schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst hat und keine anderen als die von ihr angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit "nicht ausreichend" (5.0) bewertet.
- (6) Der Zeitpunkt der Ausgabe des Themas der Masterarbeit und der Zeitpunkt der Abgabe der Masterarbeit sind aktenkundig zu machen. Die Studentin kann das Thema der Masterarbeit nur einmal und nur innerhalb der ersten zwei Monate der Bearbeitungszeit zurückgeben. Wird die Masterarbeit nicht fristgerecht abgeliefert, gilt sie als mit "nicht ausreichend" bewertet, es sei denn, dass die Studentin dieses Versäumnis nicht zu vertreten hat. Die Möglichkeit der Wiederholung wird in § 8 geregelt.
- (7) Die Masterarbeit wird von einer Betreuerin sowie in der Regel von einer weiteren Prüferin aus der Fakultät begutachtet und bewertet. Eine der beiden muss Hochschullehrerin sein. Bei nicht übereinstimmender Beurteilung der beiden Prüferinnen setzt der Prüfungsausschuss im Rahmen der Bewertung der beiden Prüferinnen die Note der Masterarbeit fest. Der Bewertungszeitraum soll acht Wochen nicht überschreiten.

§ 12 Berufspraktikum

- (1) Der Studentin wird empfohlen, während des Masterstudiums ein Berufspraktikum abzuleisten, welches geeignet ist, der Studentin eine Anschauung von der Anwendbarkeit von Mathematik zu vermitteln. Dem Berufspraktikum sind 8 Leistungspunkte zugeordnet.
- (2) Die Studentin setzt sich in eigener Verantwortung mit geeigneten privaten bzw. öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Die Studentin wird dabei von einer Prüferin nach § 15 Abs. 2 und einer Firmenbetreuerin betreut.
- (3) Am Ende des Berufspraktikums ist ein kurzer Bericht der Prüferin abzugeben und eine Kurzpräsentation der Erfahrungen im Berufspraktikum zu halten.
- (4) Das Berufspraktikum ist abgeschlossen, wenn eine mindestens sechswöchige Tätigkeit nachgewiesen wird, der Bericht abgegeben und die Kurzpräsentation gehalten wurde. Das Berufspraktikum geht nicht in die Gesamtnote ein. Ein Berufspraktikum kann als Zusatzleistung im Sinne von § 13 Abs. 1 oder im Rahmen des Wahlpflichtfachs gemäß § 17 Abs. 4 erbracht werden.

§ 13 Zusatzleistungen, Zusatzmodule, Schlüsselqualifikationen

- (1) Innerhalb der Regelstudienzeit, einschließlich der Urlaubssemester für das Studium an einer ausländischen Hochschule (Regelprüfungszeit), können in einem Modul bzw. Fach auch weitere Leistungspunkte (Zusatzleistungen) im Umfang von höchstens 20 Leistungspunkten pro Studiengang erworben werden. § 3 und § 4 der Prüfungsordnung bleiben davon unberührt. Diese Zusatzleistungen gehen nicht in die Festsetzung der Gesamt-, Fach- und Modulnoten ein. Die bei der Festlegung der Modul- bzw. Fachnote nicht berücksichtigten Leistungspunkte werden als Zusatzleistungen automatisch im Transcript of Records aufgeführt und als Zusatzleistungen gekennzeichnet. Zusatzleistungen werden mit den nach § 7 vorgesehenen Noten gelistet.
- (2) Die Studentin hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

- (3) Die Ergebnisse maximal zweier Module, die jeweils mindestens 6 Leistungspunkte umfassen müssen, werden auf Antrag der Studentin in das Bachelorzeugnis als Zusatzmodule aufgenommen und als Zusatzmodule gekennzeichnet. Zusatzmodule werden bei der Festsetzung der Gesamtnote nicht mit einbezogen. Nicht in das Zeugnis aufgenommene Zusatzmodule werden im Transcript of Records automatisch aufgenommen und als Zusatzmodule gekennzeichnet. Zusatzmodule werden mit den nach § 7 vorgesehenen Noten gelistet.
- (4) Neben den verpflichtenden fachwissenschaftlichen Modulen sind Module zu den überfachlichen Schlüsselqualifikationen im Umfang von mindestens 4 Leistungspunkten Bestandteil eines Masterstudiums. Im Studienplan werden Empfehlungen ausgesprochen, welche Module im Rahmen des Angebots zur Vermittlung der additiven Schlüsselqualifikationen belegt werden sollen.

§ 14 Prüfungsausschuss

- (1) Für den Masterstudiengang Technomathematik wird ein Prüfungsausschuss gebildet. Er besteht aus vier stimmberechtigten Mitgliedern (drei Hochschullehrerinnen, Hochschul- oder Privatdozentinnen und einer Vertreterin der Gruppe der akademischen Mitarbeiterinnen nach § 10 Abs. 1, Satz 2, Nr. 2 LHG) sowie einer Vertreterin der Studentinnen mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelorstudiengang Mathematik und die Masterstudiengänge Mathematik, Technomathematik und Wirtschaftsmathematik erhöht sich die Anzahl der Vertreterinnen der Studentinnen auf zwei Mitglieder mit beratender Stimme, wobei je eine Vertreterin aus dem Bachelor- und aus dem Masterstudiengang stammt. Weitere Mitglieder mit beratender Stimme können vom Fakultätsrat bestellt werden. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die der studentischen Mitglieder ein Jahr.
- (2) Die Vorsitzende, ihre Stellvertreterin, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreterinnen werden vom Fakultätsrat bestellt, das Mitglied der Gruppe der akademischen Mitarbeiterinnen nach § 10 Abs. 1, Satz 2, Nr. 2 LHG und die Vertreterin der Studentinnen auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Die Vorsitzende und deren Stellvertreterin müssen Hochschullehrerinnen sein. Die Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr.
- (3) Der Prüfungsausschuss ist zuständig für die Organisation der Modulprüfungen und die Durchführung der ihm durch diese Studien- und Prüfungsordnung zugewiesenen Aufgaben. Er achtet auf die Einhaltung der Bestimmungen dieser Studien- und Prüfungsordnung und fällt die Entscheidung in Prüfungsangelegenheiten. Er entscheidet über die Anrechnung von Studienzeiten, Studienleistungen und Modulprüfungen und übernimmt die Gleichwertigkeitsfeststellung. Er berichtet der Fakultät regelmäßig über die Entwicklung der Prüfungs- und Studienzeiten, einschließlich der Bearbeitungszeiten für die Masterarbeiten und die Verteilung der Fach- und Gesamtnote. Er gibt Anregungen zur Reform der Studien- und Prüfungsordnung und des Modulhandbuchs.
- (4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die Vorsitzende des Prüfungsausschusses übertragen.
- **(5)** Die Mitglieder des Prüfungsausschusses haben das Recht, der Abnahme von Prüfungen beizuwohnen. Die Mitglieder des Prüfungsausschusses, die Prüferinnen und die Beisitzenden unterliegen der Amtsverschwiegenheit. Sofern sie nicht im öffentlichen Dienst stehen, sind sie durch die Vorsitzende zur Verschwiegenheit zu verpflichten.
- (6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen Fakultät zu nennende Hochschullehrerin, Hochschul- oder Privatdozentin hinzuzuziehen. Sie hat in diesem Punkt Stimmrecht.
- (7) Belastende Entscheidungen des Prüfungsausschusses sind der Studentin schriftlich mitzuteilen. Sie sind zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen. Widersprüche gegen Entscheidungen des Prüfungsausschusses sind innerhalb eines Monats nach Zugang der Entscheidung schriftlich oder zur Niederschrift beim Rektorat der Universität Karlsruhe (TH) einzulegen.

§ 15 Prüferinnen und Beisitzende

- (1) Der Prüfungsausschuss bestellt die Prüferinnen und die Beisitzenden. Er kann die Bestellung der Vorsitzenden übertragen.
- (2) Prüferinnen sind Hochschullehrerinnen und habilitierte Mitglieder der Fakultät für Mathematik sowie akademische Mitarbeiterinnen, denen die Prüfungsbefugnis übertragen wurde. Zur Prüferin und Beisitzenden darf nur bestellt werden, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Masterarbeit muss eine Prüferin Hochschullehrerin sein.
- (3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüferinnen bestellt werden, wenn die Fakultät für Mathematik ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.
- (4) Zur Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem Masterstudiengang der Technomathematik oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

- (1) Studienzeiten und Studienleistungen und Modulprüfungen, die in gleichen oder anderen Studiengängen an der Universität Karlsruhe (TH) oder an anderen Hochschulen erbracht wurden, werden angerechnet, soweit Gleichwertigkeit besteht. Gleichwertigkeit ist festzustellen, wenn Leistungen in Inhalt, Umfang und in den Anforderungen denjenigen des Studiengangs im Wesentlichen entsprechen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung und Modulprüfung werden die Grundsätze des ECTS herangezogen; die inhaltliche Gleichwertigkeitsprüfung orientiert sich an den Qualifikationszielen des Moduls.
- (2) Werden Leistungen angerechnet, können die Noten soweit die Notensysteme vergleichbar sind – übernommen werden und in die Berechnung der Modulnoten und der Gesamtnote einbezogen werden. Liegen keine Noten vor, muss die Leistung nicht anerkannt werden. Die Studentin hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.
- (3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studienleistungen und Modulprüfungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äguivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.
- (4) Absatz 1 gilt auch für Studienzeiten, Studienleistungen und Modulprüfungen, die in staatlich anerkannten Fernstudien- und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien erworben wurden.
- (5) Die Anerkennung von Teilen der Masterprüfung kann versagt werden, wenn in einem Studiengang mehr als die Hälfte aller Erfolgskontrollen und/oder in einem Studiengang mehr als die Hälfte der erforderlichen Leistungspunkte und/oder die Masterarbeit anerkannt werden sollen. Dies gilt insbesondere bei einem Studiengangwechsel sowie bei einem Studienortwechsel.
- (6) Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die Gleichwertigkeit sind die zuständigen Fachvertreterinnen zu hören. Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.

Module Handbook, Date: 05.02.2016

II. Masterprüfung

§ 17 Umfang und Art der Masterprüfung

- (1) Die Masterprüfung besteht aus den Fachprüfungen nach Absatz 2, 3 und 4 sowie der Masterarbeit nach Absatz 5.
- (2) Es sind Fachprüfungen aus folgenden mathematischen Fächern durch den Nachweis von insgesamt 40 Leistungspunkten in einem oder mehreren Modulen abzulegen:
 - 1. Algebra und Geometrie,
 - 2. Analysis (im Umfang von mindestens 8 Leistungspunkten),
 - 3. Angewandte und Numerische Mathematik (im Umfang von mindestens 8 Leistungspunkten),
 - 4. Stochastik.
- (3) Des Weiteren sind Fachprüfungen aus den Ergänzungsfächern von § 3 Abs. 2 durch den Nachweis von insgesamt 32 Leistungspunkten in einem oder mehreren Modulen abzulegen, davon müssen 18 22 Leistungspunkte aus dem Technischen Anwendungsfach (siehe § 3 Abs. 2) und 10 14 Leistungspunkte aus der Informatik erbracht werden.

Zusätzlich müssen zwei Seminarmodule über je 3 Leistungspunkte abgelegt werden, davon eines in einem mathematischen Fach aus Absatz 2.

Neben den fachwissenschaftlichen Modulen sind Module zu den Schlüsselqualifikationen im Umfang von 4 Leistungspunkten nach § 13 Abs. 4 abzulegen.

(4) Es sind weitere 8 Leistungspunkte nachzuweisen. Diese können durch Fachprüfungen der in Absatz 2 und 3 genannten Fächer oder durch ein Berufspraktikum nach § 12 eingebracht werden.

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den Fächern sind im Studienplan festgelegt. Zur entsprechenden Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.

(5) Im vierten Semester ist als eine weitere Prüfungsleistung eine Masterarbeit gemäß § 11 anzufertigen.

§ 18 Bestehen der Masterprüfung, Bildung der Gesamtnote

- (1) Die Masterprüfung ist bestanden, wenn alle in § 17 genannten Prüfungsleistungen mit mindestens "ausreichend" bewertet wurden und 120 Leistungspunkte erreicht worden sind.
- (2) Die Gesamtnote der Masterprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden alle Prüfungsleistungen nach § 17 mit ihren Leistungspunkten gewichtet.
- (3) Hat die Studentin die Masterarbeit mit der Note 1.0 und die Masterprüfung mit einem Durchschnitt von 1.0 abgeschlossen, so wird das Prädikat "mit Auszeichnung" (with distinction) verliehen. Mit einer Masterarbeit mit der Note 1.0 und bis zu einem Durchschnitt von 1.3 kann auf Antrag an den Prüfungsausschuss das Prädikat "mit Auszeichnung" (with distinction) verliehen werden.

§ 19 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement

(1) Über die Masterprüfung werden nach Bewertung der letzten Prüfungsleistung eine Masterurkunde und ein Zeugnis erstellt. Die Ausfertigung von Masterurkunde und Zeugnis soll nicht später als sechs Wochen nach der Bewertung der letzten Prüfungsleistung erfolgen. Masterurkunde und Masterzeugnis werden in deutscher und englischer Sprache ausgestellt. Masterurkunde und Zeugnis tragen das Datum der erfolgreichen Erbringung der letzten Prüfungsleistung. Sie werden der Studentin gleichzeitig ausgehändigt. In der Masterurkunde wird die Verleihung

des akademischen Mastergrades beurkundet. Die Masterurkunde wird von der Rektorin und der Dekanin unterzeichnet und mit dem Siegel der Universität versehen.

- (2) Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen und der Masterarbeit erzielten Noten, deren zugeordnete Leistungspunkte und ECTS-Noten und die Gesamtnote und die ihr entsprechende ECTS-Note. Das Zeugnis ist von der Dekanin und von der Vorsitzenden des Prüfungsausschusses zu unterzeichnen.
- (3) Weiterhin erhält die Studentin als Anhang ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS User's Guide entspricht. Das Diploma Supplement enthält eine Abschrift der Studiendaten der Studentin (Transcript of Records).
- (4) Die Abschrift der Studiendaten (Transcript of Records) enthält in strukturierter Form alle von der Studentin erbrachten Prüfungsleistungen. Dies beinhaltet alle Fächer, Fachnoten und ihre entsprechende ECTS-Note samt den zugeordneten Leistungspunkten, die dem jeweiligen Fach zugeordneten Module mit den Modulnoten, entsprechender ECTS-Note und zugeordneten Leistungspunkten sowie die den Modulen zugeordneten Lehrveranstaltungen samt Noten und zugeordneten Leistungspunkten. Aus der Abschrift der Studiendaten soll die Zugehörigkeit von Lehrveranstaltungen zu den einzelnen Modulen und die Zugehörigkeit der Module zu den einzelnen Fächern deutlich erkennbar sein. Angerechnete Studienleistungen sind im Transcript of Records aufzunehmen.
- **(5)** Die Masterurkunde, das Masterzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.

III. Schlussbestimmungen

§ 20 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen

- (1) Der Bescheid über die endgültig nicht bestandene Masterprüfung wird der Studentin durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.
- (2) Hat die Studentin die Masterprüfung endgültig nicht bestanden, wird ihr auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten sowie die zur Prüfung noch fehlenden Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 21 Ungültigkeit der Masterprüfung, Entziehung des Mastergrades

- (1) Hat die Studentin bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei deren Erbringung die Studentin getäuscht hat, berichtigt werden. Gegebenenfalls kann die Modulprüfung für "nicht ausreichend" (5.0) und die Masterprüfung für "nicht bestanden" erklärt werden.
- (2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die Studentin darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die Studentin die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für "nicht ausreichend" (5.0) und die Masterprüfung für "nicht bestanden" erklärt werden.
- (3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

- (4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Masterurkunde einzuziehen, wenn die Masterprüfung aufgrund einer Täuschung für "nicht bestanden" erklärt wurde.
- (5) Eine Entscheidung nach Absatz 1 und Absatz 2, Satz 2 ist nach einer Frist von fünf Jahren ab dem Datum des Zeugnisses ausgeschlossen.
- (6) Die Aberkennung des akademischen Grades richtet sich nach den gesetzlichen Vorschriften.

§ 22 Einsicht in die Prüfungsakten

- (1) Nach Abschluss der Masterprüfung wird der Studentin auf Antrag innerhalb eines Jahres Einsicht in ihre Masterarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.
- (2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.
- (3) Die Prüferin bestimmt Ort und Zeit der Einsichtnahme.
- (4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 23 In-Kraft-Treten

- (1) Diese Studien- und Prüfungsordnung tritt am 1. Oktober 2009 in Kraft.
- (2) Studierende, die auf Grundlage der Prüfungsordnungen der Universität Karlsruhe (TH) für die Diplomstudiengänge Mathematik vom 24. Oktober 1991 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 1 vom 22. Januar 1992) in der Fassung der 2. Änderungssatzung vom 28. Februar 2001 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 7 vom 14. März 2001), Technomathematik vom 10. September 2003 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 29 vom 20. Oktober 2003) und Wirtschaftsmathematik vom 15. November 2001 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 30 vom 26. November 2001) in der Fassung der 1. Änderungssatzung vom 10. September 2003 (Amtliche Bekanntmachung der Universität Karlsruhe (TH) Nr. 28 vom 20. Oktober 2003) ihr Studium an der Universität Karlsruhe (TH) aufgenommen haben, können einen Antrag auf Zulassung zur Prüfung letztmalig am 30. September 2020 stellen.

Karlsruhe, den 28. August 2009

Professor Dr. sc. tech. Horst Hippler (Rektor)

Index INDEX

Index

A	Geometric numerical integration (M)
Adaptive finite elemente methods (M)	Global Differential Geometry (M)24
Advanced Inverse Problems: Nonlinearity and Banach	Graph Theory (M)23
spaces (M)99	Group actions in Riemannian geometry (M)
Algebra (M)15	Group deterior in the maintain good on y (in) the first
Algebraic Geometry (M)18	Н
Algebraic Number Theory (M)	
Algebraic Topology (M)27	Homotopy theory (M)35
Algebraic Topology II (M)32	
Aspects of time integration (M)	
Asymptotic Stochastics (M)	
Asymptotic Stochastics (M)	Integral Equations (M)38
В	Internet seminar for evolution equations (M)
D .	Internship (M)
Banach algebras (M)58	Introduction into particulate flows (M)96
Boundary and eigenvalue problems (M)	Introduction to geometric measure theory (M)
Boundary value problems for nonlinear differential equations	Introduction to Matlab and numerical algorithms (M)98
(M)50	Introduction to Python (M)122
Brownian Motion (M)105	Introduction to scientific computing (M)
	Inverse Problems (M)67
С	
	L
Calculus of variations (M)	1.2.1
Classical Methods for Partial Differential Equations (M)39	L2-Invariants (M)30
Combinatorics (M)	
Combinatorics in the plane (M)	M
Comparison Geometry (M)26	
Complex Analysis II (M)	Markov Decision Processes (M)106
Compressive Sensing (M)	Master Thesis (M)
Computer-Assisted Analytical Methods for Boundary and	Mathematical methods in signal and image processing (M)
Eigenvalue Problems (M)42	75
Continuous time finance (M)	Mathematical modelling und simulation in practise (M)82
Control Theory (M)47	Mathematical Statistics (M)
Convex Geometry (M)	Maxwell's Equations (M)
Comox Geometry (m)	Medical imaging (M)74
D	Models of mathematical physics (M)46
	Modular Forms (M)21
Differential Geometry (M)	Monotonicity methods in Analysis (M)
Discrete time finance (M)	Multigrid and Domain Decomposition Methods (M) 76
Districte time imanee (iii)	waitight and bomain becomposition wethous (w) 70
E	N
Evolution Equations (M)43	Nonlinear Evolution Equations (M)48
Extremal Graph Theory (M)33	Nonlinear Functional Analysis (M)
Extreme value theory (M)	Nonparametric Statistics (M)
Extreme value theory (w)	Numerical continuation methods (M) 97
F	
•	Numerical methods for differential equations (M)65
Finite element methods (M)	Numerical methods for hyperbolic equations (M)83
Forecasting: Theory and Practice (M)	Numerical Methods for Integral Equations (M)
	Numerical methods for Maxwell's equations (M)
Functional Analysis (M)	Numerical methods for time-dependent partial differential
Functional Analysis (M)	equations (M)79
Functions of matrices (M)	Numerical methods in computational electrodynamics (M)72
Functions of operators (M)93	Numerical methods in fluid mechanics (M)89
	Numerical Methods in Mathematical Finance (M)77
G	Numerical methods in mathematical finance II (M) 81
O	Numerical Methods in Solid Mechanics (M)71
Generalized Regression Models (M)	Numerical optimisation methods (M)80
Geometric Analysis (M)	(11)
Geometric Group Theory (M)20	
Geometric Group Theory II (M)	

Index INDEX

\cap				
	4		•	
_	۱	l		

(M)70
Optimization in Banach spaces (M)87
P
Parallel computing (M) 69 Percolation (M) 108 Poisson processes (M) 113 Potential Theory (M) 49 Probability theory and combinatorial optimization (M) 116 Project centered Software-Lab (M) 95
R
Random Graphs (M)
s
Scattering Theory (M)
т
The Riemann Zeta function (M)36Time Series Analysis (M)112Traveling Waves (M)62
w
Wavelets (M)73