{ "cells": [ { "cell_type": "markdown", "id": "3895b29e", "metadata": {}, "source": [ "## Der harmonische Oszillator" ] }, { "cell_type": "markdown", "id": "fab88439", "metadata": {}, "source": [ "*Notebook erstellt am 08.11.2022 von C. Rockstuhl, überarbeitet von Y. Augenstein*\n", "\n", "*Dieses Skript ist leider nicht in jupyterlite ausführbar, da einige benötigte Pakete dort nicht unterstützt werden.*" ] }, { "cell_type": "markdown", "id": "62b0aeaa", "metadata": {}, "source": [ "Der harmonische Oszillator wird mit einer Differentialgleichung zweiter Ordnung mathematisch ausgedrückt, die konkrete Systeme im Kontext vieler verschiedener Untersdisziplinen der Physik ausreichend exakt beschreibt. Der harmonische Oszillator als Gleichung zur Beschreibung der Dynamik in einem System taucht immer dann auf, wenn wir die Bewgung in näherer Umgebung eines Gleichgewichtspunktes beschreiben.\n", "\n", "Der harmonische Oszillator geht von einer Kraftwirkung aus, die linear proportional zur Auslenkung eines Teilchens, also zur Abweichung des Teilchens aus dessen Gleichgewichtslage, führt. Die Kraft ist negativ zur Auslenkung. Die Kraft wirkt daher der Auslenkung entgegen und möchte, dass das Teilchen wieder in seine Gleichgewichtslage zurückkehrt. \n", "\n", "Konkrete physikalische Systeme, die durch diese Differentialgleichung beschrieben werden, sind:\n", "* Eine Masse $m$, die an einer Feder aufgehängt und charakterisiert durch die Federkonstante $k$ ist.\n", "* Das mathematische Pendel, bei dem eine Masse an einem Pendel der Länge $l$ hängt, welches unter dem Einfluss einer Gravitationskraft leicht ausgelenkt wird aus seiner Ruhelage.\n", "* Bei der Berechnung der Schwingungsmoden eines zweiatomigen Moleküls.\n", "* Bei der Beschreibung der Ladung auf einem Kondensator in einem Schwingkreis, in dem für einen kurzen Moment ein Strom floss.\n", "\n", "Die Dynamik aller diese Systeme, und noch viele mehr, lassen sich durch die gleiche Differentialgleichung beschreiben. Wir wollen im Folgenden die Dynamik eines solchen harmonischen Oszillators mit ansteigender Komplexität beschreiben. Wir beginnen mit einem gedämpften freien harmonischen Oszillator und diskutieren anschließend einen getriebenen harmonischen Oszillator, der angeregt wird mit einer zeitharmonischen Kraft. Wir betrachten hier durchgehend eine Dämpfung, die proportional ist zur Geschwindigkeit." ] }, { "cell_type": "markdown", "id": "8dcb48ba", "metadata": {}, "source": [ "### Setup" ] }, { "cell_type": "markdown", "id": "69a9226e", "metadata": {}, "source": [ "Wir importieren hier die Module welche wir im Folgenden benötigen werden und definieren eine Hilfsfunktion, mit welcher wir die Differentialgleichungen lösen und interaktiv anzeigen lassen. Der Inhalt dieser Zelle ist nicht nötig zum Verständnis der besprochenen Probleme, Sie können ihn also ignorieren." ] }, { "cell_type": "code", "execution_count": 1, "id": "549ae848", "metadata": {}, "outputs": [], "source": [ "%matplotlib ipympl\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.integrate import solve_ivp # Solve Initial Value Problen, siehe Notebook \"DGL und Wurf\"\n", "from ipywidgets import interactive # Interaktive Plots mit Schiebereglern\n", "\n", "\n", "def solve_and_plot(ode_problem, x0, t, driven=False):\n", " \"\"\"Diese Funktion erstellt zunächst ein leeres Schaubild.\n", " Sie gibt dann die Funktion solve_and_draw zurück, mit welcher dann\n", " die DGL gelöst wird und lediglich neue Linien in das bestehende\n", " Schaubild hineingezeichnet werden.\n", "\n", " Dies hat den Vorteil, dass das Schaubild nicht nach jeder Änderung\n", " der Parameter komplett neu erstellt werden muss, was dazu führen würde,\n", " dass das interaktive Schaubild, welches wir zeichnen wollen, flackern würde.\n", " \"\"\"\n", "\n", " plt.close()\n", " fig, ax = plt.subplots(1, 1)\n", " (line0,) = ax.plot(t, np.zeros_like(t), c=\"tab:blue\", label=\"Auslenkung\")\n", " if ode_problem.driven:\n", " (line1,) = ax.plot(t, np.zeros_like(t), c=\"tab:orange\", label=\"Anregung\")\n", "\n", " ax.grid()\n", " ax.set_xlabel(\"Zeit\")\n", " ax.set_ylabel(\"Auslenkung\")\n", " fig.legend(framealpha=1)\n", " fig.tight_layout()\n", "\n", " def solve_and_draw(**kwargs):\n", " # Zunächst lösen wir die DGL\n", " sol = solve_ivp(ode_problem, (t[0], t[-1]), x0, t_eval=t, args=kwargs.values())\n", "\n", " # Und zeichnen dann die relevaten Linien\n", " line0.set_ydata(sol.y[0])\n", " if ode_problem.driven:\n", " omegad = kwargs[\"omegad_omega0\"] * kwargs[\"omega0\"]\n", " line1.set_ydata(1 / 4 * kwargs[\"F_m\"] * np.sin(omegad * t))\n", "\n", " # Und als Letztes skalieren wir die Achsen neu, da diese an\n", " # die neuen Werte von y angepasst werden müssen\n", " ax.relim()\n", " ax.autoscale_view()\n", "\n", " return solve_and_draw" ] }, { "cell_type": "markdown", "id": "c8253227", "metadata": {}, "source": [ "### Der freie harmonische Oszillator" ] }, { "cell_type": "markdown", "id": "ad2d061e", "metadata": {}, "source": [ "Der freie harmonische Oszillator wird durch die folgende Differentialgleichung beschrieben:\n", "\n", "$$\n", "\\ddot{x}+2\\gamma\\dot{x}+\\omega_0^2x=0 \\quad .\n", "$$\n", "\n", "Hier ist $\\omega_0$ die Eigen- oder Resonanzfrequenz. Diese ergibt sich aus der ganz konkreten physikalischen Situation, die wir betrachten. Der Dämpfungskoeffizient $\\gamma$ in dem Dämpfungsterm ist definiert als $\\gamma=\\frac{r}{2m}$. Der Faktor 2 im Dämpfungsterm ist etwas willkürlich gewählt hier, aber in Übereinstimmung mit der Notatation in der Vorlesung. Analytische Ausdrücke vereinfachen sich durch diese 2.\n", "\n", "Zur eindeutigen Lösung der Bewegung des harmonischen Oszillators benötigen wir zwei Anfangsbedingungen. Hierfür betrachtet man dann den Ort bzw. die Geschwindigkeit zu einer Anfangszeit $t_\\mathrm{Anfang}=t_0$. Aus Gründen der Praktikabilität und da unser System sowieso zeitinvariant ist, wählen wir üblicherweise $t_0=0$. \n", "\n", "In Analogie zur Lösung der Bewegungsgleichung für den Wurf, formulieren wir diese eine Differentialgleichung zweiter Ordnung zunächst in zwei gekoppelte Differentialgleichungen erster Ordnung um. Diese integrieren wir dann mit einer in einer passenden Python-Bibliothek implementierten Funktion, so dass wir die Position und die Geschwindigkeit des Teilchens nach einer endlichen Zeit berechnen können.\n", "\n", "Für die beiden Variablen, die durch Differentialgleichugnen erster Ordnung beschrieben werden, wählen wir den Ort $x$ und die Geschwindigkeit $\\dot{x}$ und fassen diese in einem Vektor $\\mathbf{X}(t)$ zusammen. Dieser ist definiert als:\n", "\n", "$$\n", "\\mathbf{X}(t)=\\begin{pmatrix} X_1(t)\\\\ X_2(t)\\end{pmatrix}=\\begin{pmatrix} x(t)\\\\ \\dot{x}(t)\\end{pmatrix} \\quad .\n", "$$\n", "\n", "Die von uns zu lösende Bewegungsgleichung lautet dann:\n", "\n", "$$\n", "\\dot{\\mathbf{X}}(t)= \\begin{pmatrix} \\dot{x} \\\\-2\\gamma\\dot{x}-\\omega_0^2 x \\end{pmatrix} \\quad .\n", "$$\n", "In dem folgenden Pythonskript variieren wir die Dämpfung und die Eigenfrequenz, um Details der Bewegung zu studieren. \n", "\n", "Beachten Sie, dass Sie zwei verschiedene Arten (oder beliebige Kombinationen) von Anfangsbedingungen berücksichtigen können. So können Sie dem harmonischen Oszillator eine Auslenkung geben und würden beobachten, wie er langsam wieder seiner Gleichgewichtslage entgegen strebt. Sie können aber auch die Auslenkung zum Zeitpunkt $t=t_0=0$ auf $0$ setzen und dem hamonischen Oszillator eine endliche Geschwindigkeit geben. Das entspricht der Situation einer stoßförmigen Anregung. " ] }, { "cell_type": "code", "execution_count": 2, "id": "136d0b99", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a9b0db6c04324946a9b70d3ab1131d27", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(FloatSlider(value=6.28, description='gamma', max=12.566370614359172, step=0.01), FloatSl…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6034590951a640d3a8c5fee20b593d81", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABSeklEQVR4nO3deXxUVZ7//3elshEgrBpAQmSTRbGFgGyNYGuCoA44IowLOD9hlMEFSI+2iIyCrbQbRlGw6cbO0N1ixkFEbforpa0CDS2KxHZHRQ1iIgSBbFCpVN3fH0lVCAmQrerWvff1fDzygLp169YpTiBvPueec1yGYRgCAACAY8SY3QAAAABEFgEQAADAYQiAAAAADkMABAAAcBgCIAAAgMPEmt0AAADQ8iorK1VRUWF2M2CC+Ph4xcaeOuIRAAEAsBHDMJSfn6+ioiKzmwITde7cWT169JDL5ar3eQIgAAA2Egx/Z511ltq0aaOYGO72cpJAIKDS0lLt27dPkpSWllbveQRAAABsorKyMhT+unTpYnZzYJI2bdpIkvbt26ezzjqr3uFg/lsAAIBNBO/5CwYAOFfwe+Bk94ESAAEAsBmGfXG67wG+QwAAgO3l5OSoffv2LXrNt99+Wy6XS4cPH27R60YCARAAAESNbdu2ye1267LLLjO7KbbGJJAwCQQC+uGHH9S2bduTTsEGAKAlHTt2zOwmNNtzzz2n22+/Xb///e+Vn5+vHj16mN0kezIQFnv37jUk8cUXX3zxxVfEvvr162e8//77RllZmdk/BpuktLTUaNu2rfH5558b06ZNMxYvXhx67g9/+IPRrl27WuevX7/ekGqiTF5enjFu3DijTZs2Rtu2bY0hQ4YY77333klf/8orrxhDhgwxEhISjJ49exr333+/4fP5Qs9LMn73u98ZkydPNlq1amX06dPH2LBhQ+j5t956y5BkHDp0yDAMwygvLzcmTpxoDB8+3Dh48KBx4403GpMmTar1nnPnzjXGjh0bejx27Fjj9ttvN+68806jQ4cORkpKinHffffVes1nn31mjB492khISDAGDBhgeDweQ5Kxfv36k/5ZlpWVnfJ7gQpgmLRt21aStHfvXiUnJ7f49X0+nzZt2qTMzEzFxcW1+PXRMPRDdKAfogP9YL5jx45p7969ZjejyXJzc9WvXz/169dPN9xwg26//XYtWrSowSNp119/vQYPHqyVK1fK7XYrLy/vpN+Lr7/+um644QY99dRTGjNmjL7++mvdfPPNkqT77rsvdN7ixYv1yCOP6NFHH9Xy5ct1/fXX67vvvlPHjh1rXe/IkSO64oorlJiYqDfffFOtW7du8Of+n//5H2VlZendd9/V9u3b9e///u8aPXq0MjIyFAgENHnyZPXo0UPvvvuuSkpK9Mtf/rLB1z4ZAmCYBL9Zk5OTwxYAk5KSlJyczD+0JqIfogP9EB3oB/PVt96bYRg66vOb0BqpVZy7UbdBrV69WjfccIMk6bLLLlNpaanefPNNXXrppQ16fX5+vu688071799fktS3b9+Tnvvggw/q7rvv1o033ihJ6tWrlx544AHdddddtQLgv//7v+vaa6+VJD300ENavny5duzYUesexR9//FHTpk1T7969tXbtWsXHxzf4M0vS+eefH3rPvn376umnn9abb76pjIwMbdq0SV9//bXefvvt0NqODz74oDIyMhr1HiciAAIAYGNHfX4N/O/XTXnvT5eMV1J8w6LGF198oR07duill16SVBVmp02bpueee67BATArK0uzZs3SH//4R1166aW65ppr1Lt373rP3blzp9577z09+OCDoWN+v1/Hjh1TeXm5kpKSJFWFs6DWrVurbdu22r9/f61rXXrppRo2bJj+93//V263u0FtPd7x7yFJXbt2Db3HF198odTU1FoLe1944YWNfo8TEQABAIDpVq9ercrKSp111lmhY4ZhKC4uTocOHVJMTIyqbsur4fP5aj2+//77dd111+kvf/mL/vrXv+q+++7TCy+8oKuuuqrO+wUCAS1evFj/+q//Wue5xMTE0O9PrGa7XC4FAoFaxy6//HKtW7dOn376qQYNGhQ63pA2n+49DMMIy2RSWwTAFStW6NFHH1VBQYHOPfdcZWdna8yYMfWeu3XrVv3qV7/S559/rvLycqWlpemWW27R/Pnza523bt06LVq0SF9//bV69+6tBx98sN5vIAAAolmrOLc+XTLetPduiMrKSq1Zs0aPP/64MjMzaz139dVX689//rN69+6tkpISlZWVhe6vy8vLq3Otc845R+ecc47mz5+va6+9Vn/4wx/q/fk9ZMgQffHFF+rTp0/jP9gJfvOb36hNmza65JJL9Pbbb2vgwIGSpDPOOEMff/xxrXNPdV9iffr376/8/Hz9+OOPSklJkSS99957zW6z5QNgbm6u5s2bpxUrVmj06NH67W9/qwkTJujTTz+td+p469atddttt+n8889X69attXXrVt1yyy1q3bp16ObP7du3a9q0aXrggQd01VVXaf369Zo6daq2bt2q4cOHR/ojAgDQZC6Xq8HDsGZ57bXXdOjQIc2cOVPt2rWr9dyUKVO0evVqvfnmm0pKStI999yj22+/XTt27FBOTk7ovKNHj+rOO+/UlClT1LNnT33//fd67733dPXVV9f7nv/93/+tK664QqmpqbrmmmsUExOjf/7zn/roo4/061//utGf4bHHHpPf79cvfvELvf322+rfv79+8Ytf6NFHH9WaNWs0cuRI/elPf9LHH3+swYMHN/i6GRkZ6t27t2688UY98sgjKikp0cKFCyWpWZVByy8EvWzZMs2cOVOzZs3SgAEDlJ2drdTUVK1cubLe8wcPHqxrr71W5557rs4++2zdcMMNGj9+vLZs2RI6Jzs7WxkZGVqwYIH69++vBQsW6JJLLlF2dnaEPhUAAM6xevVqXXrppXXCn1RVAczLy9O3336rP/3pT9q4caMGDRqktWvX6v777w+d53a7dfDgQc2YMUPnnHOOpk6dqgkTJmjx4sX1vuf48eP12muvyePxaNiwYRoxYoSWLVumtLS0Jn+OJ554QlOnTtUvfvEL7d69W+PHj9eiRYt01113adiwYSopKdGMGTMadU23262XX35ZpaWlGjZsmGbNmqV7771XUu2h6kY76QIyFuD1eg2322289NJLtY7fcccdxkUXXdSga3zwwQdGSkqK8bvf/S50LDU11Vi2bFmt85YtW2b06NGjwW07cuSIIck4cuRIg1/TGBUVFcbLL79sVFRUhOX6aBj6ITrQD9GBfjDf6dZ+gz1s3brVkGR89dVXJz3H1usAFhUVye/3h8bEg1JSUlRYWHjK13bv3l0HDhxQZWWl7r//fs2aNSv0XGFhYaOv6fV65fV6Q4+Li4slVd3sWd8Nn80VvGY4ro2Gox+iA/0QHegH8/Fnb0/r169XmzZt1LdvX3311VeaO3euRo8efdIZzg1h6QAYdOIYuNGAGTNbtmxRaWmp/vGPf+juu+9Wnz59Quv8NOWaS5curbfMvGnTptBU8nDweDxhuzYajn6IDvRDdKAfzBMXF1engAHrKykp0V133aW9e/eqc+fOuvTSS/X4448365qWDoCdO3eW2+2uU5nbv3//af8C9OzZU5I0aNAg/fjjj7r//vtDAbBLly6NvuaCBQuUlZUVelxcXKzU1FRlZmaGbSFoj8ejjIwMFlw1Ef0QHeiH6EA/mK+8vFxfffWV2c1AC5sxY0aj7x08HUsHwPj4eKWnp8vj8dSa4u3xeDRp0qQGX8cwjFrDtyNHjpTH46m1NMymTZs0atSok14jISFBCQkJdY7HxcWF9R/CcF8fDUM/RAf6ITrQD+bhzx0NZekAKFWt+j19+nQNHTpUI0eO1KpVq5Sfn6/Zs2dLqqrM7du3T2vWrJEkPfPMM+rRo0dom5itW7fqscce0+233x665ty5c3XRRRfp4Ycf1qRJk7Rhwwa98cYb2rp1a+Q/IAAAQAuzfACcNm2aDh48qCVLlqigoEDnnXeeNm7cGJrGXVBQoPz8/ND5gUBACxYs0DfffKPY2Fj17t1bv/nNb3TLLbeEzhk1apReeOEF3XvvvVq0aJF69+6t3Nxc1gAEAFjCiTtVwHlO9z1g+QAoSXPmzNGcOXPqfe74RSIl6fbbb69V7TuZKVOmaMqUKS3RPAAAIiI+Pl6SVFpaqjZt2pjcGpiptLRUUs33xIlsEQABAIAUGxurjh07at++fZKkNm3aKCbG8ns+oBECgYBKS0u1b98+de7cWbGx9Uc9AqBN7fjmJ31WUKzpI9IUE9Pym0gDAKLTWWedpfz8/FAIhDN17ty53i1xgwiANvRNUZmmr35X3sqA4twxum74yb8BAAD24nK5dPjwYQ0fPpx7AU3k8/n097//XaNHjw7L7OzS0lJddNFF2rx5c53h/vj4+JNW/oIIgDa06ZNCeSur/tLnvpdPAAQAB3K73c3bKxbNEtwJLCkpKSwBsLKyUl988YUSExObtOEENwbY0K78w6Hff/JDsY5W+M1rDAAAiDoEQBv6vLA49PvKgKFPfjhiYmsAAEC0IQDaTCBg6IfDxyRJvTq3liR9faDUzCYBAIAoQwC0maIyryr8AcW4pJG9O0mS9hwoM7lVAAAgmhAAbWbfoaOSpJTkRJ2T0laStKeIAAgAAGoQAG2m8EjV8G/Xdonq3qGVJKngyFEzmwQAAKIMAdBmfiqvkCR1apOglOSq6f+FR7xmNgkAAEQZAqDN/FRaFQA7JsWrS7uqAHiwzKuKShYDBQAAVQiANhOsAHZsE6+OSfGKd8fIMKT9JcdMbhkAAIgWBECbOVRWUwGMiXHpzOQESdKPxQRAAABQhQBoMz+V+yRJHVrHS5K6cB8gAAA4AQHQZoIVwA5JVfsOBu8DZCYwAAAIIgDaTPGxqgpgu1bVAbC6AsgQMAAACCIA2kzpsUpJUtvEEyuABEAAAFCFAGgzJdUBsE1irCTpjLZVk0AOVi8PAwAAQAC0kWM+vyr8Vev9ta0OgB2rJ4P8VEYABAAAVQiANhKs/klSm/jaAfAgARAAAFQjANpIqbd6+DchVjExLkk1AfBQeYUMwzCtbQAAIHoQAG2kpHoGcHD4V6oJgP6AoeKjlfW+DgAAOAsB0EZKQjOAawJgQqxbbRKqHh8sYzFoAABAALSV4BBw64TYWsePHwYGAAAgANrI0Qq/JKl1fO0AGNwWjqVgAACARAC0lbKKqgpgq3h3reOdWAoGAAAchwBoI8EKYNIJAZClYAAAwPEIgDZSfpoAeIgACAAARAC0lWAAbBVX/yQQhoABAIBEALSV8orgLODaFcAOSXGSmAUMAACqEABtJFQBPGEIuF2rqgB45Kgv4m0CAADRhwBoI6FJIHEnBsCqIWACIAAAkAiAthIcAk46YR3AmgogW8EBAAACoK2EZgGfcA9gu+p7AIuP+mQYRsTbBQAAogsB0EaO+YKzgOu/B7DCH9AxXyDi7QIAANGFAGgj3sqqcJd4QgBsHe+WO8YlSTp8lJnAAAA4HQHQRoIBMCG2dre6XC5mAgMAgBACoI0Eh4ATYt11nmsfDIDlBEAAAJyOAGgjoQpgXN1uTaYCCAAAqhEAbcQbqgDW7VaGgAEAQBAB0EZq7gGsOwRMAAQAAEEEQJuo9AdUGaha448KIAAAOBUCoE1U+GvW96vvHsD2SQRAAABQhQBoE97jFniOd1MBBAAAJ0cAtIng/X+xMS7F1hMAmQUMAACCCIA24a08+QxgiQogAACoQQC0iZo1AOvOAJYIgAAAoAYB0CaC9wCetgLITiAAADgeAdAmTjcEfPwsYMMwItYuAAAQfQiANnGqRaClmgpgZcBQeYU/Yu0CAADRhwBoE6EKYD1rAEpSqzi34twuSdwHCACA09kiAK5YsUI9e/ZUYmKi0tPTtWXLlpOe+9JLLykjI0NnnHGGkpOTNXLkSL3++uu1zsnJyZHL5arzdezYsXB/lCY73T2ALpdLyYlVVcDiYwRAAACczPIBMDc3V/PmzdPChQu1a9cujRkzRhMmTFB+fn6952/evFkZGRnauHGjdu7cqYsvvlhXXnmldu3aVeu85ORkFRQU1PpKTEyMxEdqktMNAUtS28RYSVLJscqItAkAAESnWLMb0FzLli3TzJkzNWvWLElSdna2Xn/9da1cuVJLly6tc352dnatxw899JA2bNigV199VYMHDw4dd7lc6tKlS1jb3pJONwlEktpWVwBLqAACAOBolq4AVlRUaOfOncrMzKx1PDMzU9u2bWvQNQKBgEpKStSxY8dax0tLS5WWlqbu3bvriiuuqFMhjDY16wCeKgBSAQQAABavABYVFcnv9yslJaXW8ZSUFBUWFjboGo8//rjKyso0derU0LH+/fsrJydHgwYNUnFxsZ588kmNHj1aH374ofr27Vvvdbxer7xeb+hxcXGxJMnn88nna/mKW/CawV/LvVW/xse4Tvp+reOrhocPlXnD0iYnOrEfYA76ITrQD9GBfogO4e6H5l7X0gEwyOVy1XpsGEadY/VZu3at7r//fm3YsEFnnnlm6PiIESM0YsSI0OPRo0dryJAhWr58uZ566ql6r7V06VItXry4zvFNmzYpKSmpoR+l0TwejyTpo+9dktz6sWCfNm7cW++5xUUxkmL0/ocfq0PRR2FrkxMF+wHmoh+iA/0QHeiH6BCufigvL2/W6y0dADt37iy3212n2rd///46VcET5ebmaubMmXrxxRd16aWXnvLcmJgYDRs2TF9++eVJz1mwYIGysrJCj4uLi5WamqrMzEwlJyc34NM0js/nk8fjUUZGhuLi4vTFG19Je/eoT6+zNXFi/3pfs2vj53r3QL66pfXWxMxzWrxNTnRiP8Ac9EN0oB+iA/0QHcLdD8GRxqaydACMj49Xenq6PB6PrrrqqtBxj8ejSZMmnfR1a9eu1U033aS1a9fq8ssvP+37GIahvLw8DRo06KTnJCQkKCEhoc7xuLi4sP4FDF6/snpzj6T42JO+X7ukqvaVVQT4R6GFhbuf0TD0Q3SgH6ID/RAdwtUPzb2mpQOgJGVlZWn69OkaOnSoRo4cqVWrVik/P1+zZ8+WVFWZ27dvn9asWSOpKvzNmDFDTz75pEaMGBGqHrZq1Urt2rWTJC1evFgjRoxQ3759VVxcrKeeekp5eXl65plnzPmQDeD1NWQWMJNAAACADQLgtGnTdPDgQS1ZskQFBQU677zztHHjRqWlpUmSCgoKaq0J+Nvf/laVlZW69dZbdeutt4aO33jjjcrJyZEkHT58WDfffLMKCwvVrl07DR48WJs3b9aFF14Y0c/WGDWzgE++DmAyy8AAAADZIABK0pw5czRnzpx6nwuGuqC33377tNd74okn9MQTT7RAyyKnZiFoKoAAAODULL0OIGo0biFoAiAAAE5GALSJmr2AT78VHHsBAwDgbARAm2jITiDJragAAgAAAqBtBIeA492nvwew1Fspf8CISLsAAED0IQDaRIW/KtDFNSAASlUhEAAAOBMB0CZ81UPAcaeYBJIQ61Z89fMsBQMAgHMRAG2iMlAdAGNOvQdyMkvBAADgeARAm/AFh4BPUQGUWAoGAAAQAG3D56+qAMaepgIYWgrmKEPAAAA4FQHQJoIB8FSTQKTjdgPxEgABAHAqAqBNVDZgFrB0/H7ADAEDAOBUBECbqAhVABs2BEwABADAuQiANtHQCmBwEgjbwQEA4FwEQJto9D2AVAABAHAsAqANGIahyuqt3WJPOwTMPYAAADgdAdAGgmsASg2vALIMDAAAzkUAtIHgLiDS6SeB1OwEQgAEAMCpCIA24KtsTAWQIWAAAJyOAGgDvuMqgKfbCYR1AAEAAAHQBnzHrQHocjV0HUCGgAEAcCoCoA0E1wCMjTl9dwYDYFmFX/6AcZqzAQCAHREAbaChu4BINfcASlIpw8AAADgSAdAGGroLiCTFx8YoIbbqPHYDAQDAmQiANtDQXUCC2A4OAABnIwDaQDAAnm4XkKBktoMDAMDRCIA2ENwJJL7BFUACIAAATkYAtIHKxlYAWwXXAmQIGAAAJyIA2kBFo+8BpAIIAICTEQBtILQOYEMDYAIVQAAAnIwAaAPBSSDxDRwCDlYAi6kAAgDgSARAG/AFGr4TiFSzDAwVQAAAnIkAaAO+yup7AGMbdw8gFUAAAJyJAGgDlYHqABjTuCFgJoEAAOBMBEAbqGjEVnASQ8AAADgdAdAGGr0OIBVAAAAcjQBoAzWzgKkAAgCA0yMA2oAvtA4g9wACAIDTIwDaQGWj7wGsCoDlFf7Q8DEAAHAOAqAN+Bq9FVxc6PelXqqAAAA4DQHQBnzBZWAaOAQcHxujhOo1AxkGBgDAeQiANuCrbNxewFJNFbCYiSAAADgOAdAGQgtBNyIAshQMAADORQC0gdA9gA3cCURiJjAAAE5GALSB4DIwDd0LWGItQAAAnIwAaAPBCmAsFUAAANAABEAbCK4DGN+oCmAwAFIBBADAaQiANlARqgA2ZQiYCiAAAE5DALSBSn/j1gGUpOTQMjAEQAAAnIYAaAO+Rm4FJzEEDACAkxEAbSA0CaQRFUAmgQAA4FwEQBvwB6p3AmnULGCWgQEAwKkIgDZQWR0A3Y2YBMJOIAAAOJctAuCKFSvUs2dPJSYmKj09XVu2bDnpuS+99JIyMjJ0xhlnKDk5WSNHjtTrr79e57x169Zp4MCBSkhI0MCBA7V+/fpwfoRmaV4FkAAIAIDTWD4A5ubmat68eVq4cKF27dqlMWPGaMKECcrPz6/3/M2bNysjI0MbN27Uzp07dfHFF+vKK6/Url27Quds375d06ZN0/Tp0/Xhhx9q+vTpmjp1qt59991IfaxGqakANv4ewGKGgAEAcBzLB8Bly5Zp5syZmjVrlgYMGKDs7GylpqZq5cqV9Z6fnZ2tu+66S8OGDVPfvn310EMPqW/fvnr11VdrnZORkaEFCxaof//+WrBggS655BJlZ2dH6FM1jj/Q9J1Ayiv8oWVkAACAM1g6AFZUVGjnzp3KzMysdTwzM1Pbtm1r0DUCgYBKSkrUsWPH0LHt27fXueb48eMbfM1I8zepAhgX+n2pl2FgAACcJNbsBjRHUVGR/H6/UlJSah1PSUlRYWFhg67x+OOPq6ysTFOnTg0dKywsbPQ1vV6vvF5v6HFxcbEkyefzyedr+WHW4DV9Pl9oKzgZgQa/l0tSQmyMvJUB/VR6VK3jGh4eUeP4foB56IfoQD9EB/ohOoS7H5p7XUsHwCCXq3Z4MQyjzrH6rF27Vvfff782bNigM888s1nXXLp0qRYvXlzn+KZNm5SUlHTatjSVx+NRSZlbkkvvbt+mwo8b/tp4l1teufTXN95W99Zha6IjeDwes5sA0Q/Rgn6IDvRDdAhXP5SXlzfr9ZYOgJ07d5bb7a5Tmdu/f3+dCt6JcnNzNXPmTL344ou69NJLaz3XpUuXRl9zwYIFysrKCj0uLi5WamqqMjMzlZyc3NCP1GA+n08ej0cZGRla+sk2yevVRWN+rnO7Nfy9sndvVcnBcv1s6AgN79nx9C9AHcf3Q1xc3OlfgLCgH6ID/RAd6IfoEO5+CI40NpWlA2B8fLzS09Pl8Xh01VVXhY57PB5NmjTppK9bu3atbrrpJq1du1aXX355nedHjhwpj8ej+fPnh45t2rRJo0aNOuk1ExISlJCQUOd4XFxcWP8CxsXFKTgCnBDfuPdKblV17tFK8Y9EM4W7n9Ew9EN0oB+iA/0QHcLVD829pqUDoCRlZWVp+vTpGjp0qEaOHKlVq1YpPz9fs2fPllRVmdu3b5/WrFkjqSr8zZgxQ08++aRGjBgRqvS1atVK7dq1kyTNnTtXF110kR5++GFNmjRJGzZs0BtvvKGtW7ea8yFPoynrAErsBgIAgFNZehawJE2bNk3Z2dlasmSJLrjgAm3evFkbN25UWlqaJKmgoKDWmoC//e1vVVlZqVtvvVVdu3YNfc2dOzd0zqhRo/TCCy/oD3/4g84//3zl5OQoNzdXw4cPj/jna4jgMi6NmQUssR8wAABOZfkKoCTNmTNHc+bMqfe5nJycWo/ffvvtBl1zypQpmjJlSjNbFhk1FcDG5fmaAEgFEAAAJ7F8BRDH7QTibuoQMBVAAACchABoA02/BzC4HRwBEAAAJyEAWpxhGE3aC1hiEggAAE5FALS46uwnqekVQIaAAQBwFgKgxVUelwBjGhkAk5kEAgCAIxEALc4fCIR+3/R1AKkAAgDgJARAi/MfVwFkHUAAANAQBECLO34IuPHrADIJBAAAJyIAWtzxFcBGFgBDFcCyCn+t6wAAAHsjAFpc5XFrALpcTRsClqRShoEBAHAMAqDF+Zu4BqAkJcS6FR9b9S1QzDAwAACOQQC0uMom7gISlMxEEAAAHIcAaHF+f9MrgBITQQAAcCICoMWF9gF2N60rWQoGAADnIQBanN9obgWwOgB6qQACAOAUBECL8zfzHsC2CewGAgCA0xAALa6yGbOAJYaAAQBwIgKgxTW7Alg9CYRlYAAAcA4CoMVVBgKSml4BTG5FBRAAAKchAFpcTQWwqbOAuQcQAACnIQBaXPAewJhm3wPIEDAAAE5BALS45t4DyE4gAAA4DwHQ4lpqJ5Dio1QAAQBwCgKgxTV3L2CWgQEAwHlizXjTV155pd7jLpdLiYmJ6tOnj3r27BnhVlmTv9nrALIXMAAATmNKAJw8ebJcLpeM6m3MgoLHXC6Xfv7zn+vll19Whw4dzGiiZYQqgO7mVQDLKvzyB4wmB0kAAGAdpgwBezweDRs2TB6PR0eOHNGRI0fk8Xh04YUX6rXXXtPmzZt18OBB/dd//ZcZzbOUmgpgU5eBqfk/QCnDwAAAOIIpFcC5c+dq1apVGjVqVOjYJZdcosTERN1888365JNPlJ2drZtuusmM5llKc+8BTIh1Kz42RhWVARUf86ldUlxLNg8AAEQhUyqAX3/9tZKTk+scT05O1p49eyRJffv2VVFRUaSbZjnNvQdQYikYAACcxpQAmJ6erjvvvFMHDhwIHTtw4IDuuusuDRs2TJL05Zdfqnv37mY0z1L81VvBNbUCKDERBAAApzFlCHj16tWaNGmSunfvrtTUVLlcLuXn56tXr17asGGDJKm0tFSLFi0yo3mWUtkCFUCWggEAwFlMCYD9+vXTZ599ptdff127d++WYRjq37+/MjIyFFM9mWHy5MlmNM1ymrsTiHRcAPRSAQQAwAlMCYBS1ZIvl112mS677DKzmmALlc2cBSxJbROCQ8BUAAEAcALTAuCbb76pN998U/v371eg+j62oOeee86kVllPi1YACYAAADiCKQFw8eLFWrJkiYYOHaquXbvK5WLx4aYKVQCbuBC0JCW3Yj9gAACcxJQA+OyzzyonJ0fTp0834+1tpSUqgO2qA+ARAiAAAI5gyjIwFRUVtRaBRtO15DqAxSwDAwCAI5gSAGfNmqXnn3/ejLe2nVAAbMYwenD3DyqAAAA4gylDwMeOHdOqVav0xhtv6Pzzz1dcXO3tx5YtW2ZGsyzJ3wL3ADIEDACAs5gSAP/5z3/qggsukCR9/PHHtZ5jQkjjNHcvYIkACACA05gSAN966y0z3taW/C2wDmC70CxgloEBAMAJTLkHEC2nJSqAydV7ARcf8ylQfT0AAGBfplQAL7744lMO9f7tb3+LYGusrUVmAVdXAA1DKvFWhiqCAADAnkwJgMH7/4J8Pp/y8vL08ccf68YbbzSjSZblr95FpTkVwMQ4txJiY+StDKj4qI8ACACAzZkSAJ944ol6j99///0qLS2NcGusrbIFKoBS1X2A+0u8OnLUp9SWaBgAAIhaUXUP4A033MA+wI3UEjuBSGwHBwCAk0RVANy+fbsSExPNboal1OwF3LyuZCkYAACcw5Qh4H/913+t9dgwDBUUFOj999/XokWLzGiSZbVUBZAACACAc5gSANu1a1frcUxMjPr166clS5YoMzPTjCZZVkveAyixHzAAAE5g2iSQ9u3b1/vcV199pT59+kS2QRbWEnsBS1JyYtW3AhVAAADsz5R7ACdOnKhjx47VOf7FF19o3LhxkW+QhQVauAJIAAQAwP5MCYAdOnTQ5MmTVVlZs/XYZ599pnHjxunqq682o0mW5TeqAmBMC80CPsJ2cAAA2J4pAXDdunUqKyvTddddJ8Mw9PHHH2vcuHG69tpr9eSTTzb6eitWrFDPnj2VmJio9PR0bdmy5aTnFhQU6LrrrlO/fv0UExOjefPm1TknJydHLperzld9VUuztdQQcDuWgQEAwDFMCYCJiYl67bXX9OWXX+qaa67RJZdcohkzZmjZsmWNvlZubq7mzZunhQsXateuXRozZowmTJig/Pz8es/3er0644wztHDhQv3sZz876XWTk5NVUFBQ6ysal6gJbt3bzFVgGAIGAMBBIhYAi4uLa325XC7l5uZqx44duvrqq7Vo0aLQc42xbNkyzZw5U7NmzdKAAQOUnZ2t1NRUrVy5st7zzz77bD355JOaMWNGndnIx3O5XOrSpUutr2gUrADGNHcSCBVAAAAcI2IBsH379urQoUOtrwEDBuj777/Xs88+qw4dOoTOaaiKigrt3LmzztIxmZmZ2rZtW7PaW1paqrS0NHXv3l1XXHGFdu3a1azrhUvAYBIIAABonIgtA/PWW2+1+DWLiork9/uVkpJS63hKSooKCwubfN3+/fsrJydHgwYNUnFxsZ588kmNHj1aH374ofr27Vvva7xer7xeb+hxsJLp8/nk87V8qApes9IfkCQZAX+z3qd1XFWALD7mU0VFhVzNrCg6RfDPPBx9jIajH6ID/RAd6IfoEO5+aO51IxYAx44dG7ZrnxhWDMNoVoAZMWKERowYEXo8evRoDRkyRMuXL9dTTz1V72uWLl2qxYsX1zm+adMmJSUlNbktp3OkuESSSzvff19lXxlNvo7XL0mx8vkNvfzaX5XgbqkWOoPH4zG7CRD9EC3oh+hAP0SHcPVDeXl5s15vykLQknT48GHt2LFD+/fvVyAQqPXcjBkzGnSNzp07y+1216n27d+/v05VsDliYmI0bNgwffnllyc9Z8GCBcrKygo9Li4uVmpqqjIzM5WcnNxibQny+XzyeDxKat1GKi/TiOEXalTvTk2+nmEYWvD+G/IHDI246Bfq2i76JrxEo2A/ZGRkKC4uzuzmOBb9EB3oh+hAP0SHcPdDY+dMnMiUAPjqq6/q+uuvV1lZmdq2bVurWudyuRocAOPj45Weni6Px6OrrroqdNzj8WjSpEkt1l7DMJSXl6dBgwad9JyEhAQlJCTUOR4XFxfWv4DBWcDxLfA+7VrF6aeyCpVXGvyj0Ujh7mc0DP0QHeiH6EA/RIdw9UNzr2lKAPzlL3+pm266SQ899FCzh0ezsrI0ffp0DR06VCNHjtSqVauUn5+v2bNnS6qqzO3bt09r1qwJvSYvL09S1USPAwcOKC8vT/Hx8Ro4cKAkafHixRoxYoT69u2r4uJiPfXUU8rLy9MzzzzTrLaGQ0tNApFqAmAxi0EDAGBrpgTAffv26Y477miRe+OmTZumgwcPasmSJSooKNB5552njRs3Ki0tTVLVws8nrgk4ePDg0O937typ559/Xmlpafr2228lVQ1P33zzzSosLFS7du00ePBgbd68WRdeeGGz29vSQgtBt8B87mRmAgMA4AimBMDx48fr/fffV69evVrkenPmzNGcOXPqfS4nJ6fOMcM49WSJJ554Qk888URLNC3sghXA5q4DKLEUDAAATmFKALz88st155136tNPP9WgQYPqjGP/y7/8ixnNsqSaCmDzA2ByYtW3AwEQAAB7MyUA/sd//IckacmSJXWec7lc8vv9kW6SZQUngbRkBZDdQAAAsDdTAuCJy76g6VqyAsgQMAAAzhCxreBO5tixY2Y3wdJaehawRAUQAAC7MyUA+v1+PfDAAzrrrLPUpk0b7dmzR5K0aNEirV692owmWVZLTgJhFjAAAM5gSgB88MEHlZOTo0ceeUTx8fGh44MGDdLvf/97M5pkWdVbAbdsBfAYARAAADszJQCuWbNGq1at0vXXXy+3u2bT2fPPP1+ff/65GU2yrJoKYPOvxT2AAAA4gykBcN++ferTp0+d44FAQD4f4aMxgpNAWAcQAAA0lCkB8Nxzz9WWLVvqHH/xxRdr7dKB0wvHJJDD5QRAAADszJRlYO677z5Nnz5d+/btUyAQ0EsvvaQvvvhCa9as0WuvvWZGkyyrJZeBaZ9UFQC9lQEd8/mVGOc+zSsAAIAVmVIBvPLKK5Wbm6uNGzfK5XLpv//7v/XZZ5/p1VdfVUZGhhlNsiTDaNmFoNskxCq2OkgeKq9o9vUAAEB0MqUCKFXtBzx+/Hiz3t4Wjt/RuCUqgC6XS+2T4lRUWqFDZT51bdeq2dcEAADRx/SFoNF0geMSoLsFKoCS1D6palmew1QAAQCwrYhVADt06CBXA0PKTz/9FObW2MPxATCmhaJ8h+r7AA8xEQQAANuKWADMzs6O1Fs5RksPAUs1FUDuAQQAwL4iFgBvvPHGSL2VY9SqALbQEHCwAsgQMAAA9mXKPYAffPCBPvroo9DjDRs2aPLkybrnnntUUUHwaKha9wC2UAWwQ6gCyBAwAAB2ZUoAvOWWW7R7925J0p49ezRt2jQlJSXpxRdf1F133WVGkyyp1hBwC08CYQgYAAD7MiUA7t69WxdccIGkqt0/xo4dq+eff145OTlat26dGU2ypNqTQFp2CPgIFUAAAGzLlABoGIYCgYAk6Y033tDEiRMlSampqSoqKjKjSZYUzH8tNfwrUQEEAMAJTAmAQ4cO1a9//Wv98Y9/1DvvvKPLL79ckvTNN98oJSXFjCZZUrAC2FLDv9Lxk0CoAAIAYFemBMDs7Gx98MEHuu2227Rw4UL16dNHkvR///d/GjVqlBlNsqTQNnAt2ItUAAEAsD9TtoI7//zza80CDnr00UfldrtNaJE1hYaAw1ABPHLUp0DAaLF7CwEAQPSIqq3gEhMTFRcXZ3YzLKOmAtjy9wAGDKn4GMPAAADYkSkBMCYmRm63+6RfaJjQPYAtGADjY2PUOr6qD1gLEAAAezJlCHj9+vW1Hvt8Pu3atUv/8z//o8WLF5vRJEsKVP/aUruABLVPildZxVEdKq9QT7Vu0WsDAADzmRIAJ02aVOfYlClTdO655yo3N1czZ840oVXWYwSHgFs4AHZoHad9h4+yHRwAADYVVfcADh8+XG+88YbZzbCMmiHglr1uaDu4MoaAAQCwo6gJgEePHtXy5cvVvXt3s5tiGcEh4JacBSyxFAwAAHZnyhBwhw4d5DoutBiGoZKSErVq1Up//vOfzWiSJRlhmAUssRg0AAB2Z0oAzM7OrvU4JiZGZ5xxhoYPH67vvvvOjCZZUjhmAUtUAAEAsDtTAuCNN95Y6/GRI0f05z//WQsXLlReXp78fr8ZzbKccA0BhyqAR6kAAgBgR6beA/i3v/1NN9xwg7p27arly5drwoQJev/9981skqUYRlXwa+kh4PahIWAqgAAA2FHEK4Dff/+9cnJy9Nxzz6msrExTp06Vz+fTunXrNHDgwEg3x9JCQ8DhmgTCLGAAAGwpohXAiRMnauDAgfr000+1fPly/fDDD1q+fHkkm2Arwb2AW34SSFUApAIIAIA9RbQCuGnTJt1xxx36z//8T/Xt2zeSb21L4VoHsFPrqgB4sKxChmHUmrENAACsL6IVwC1btqikpERDhw7V8OHD9fTTT+vAgQORbIKthGsSSMfqAOitDKi8ggk5AADYTUQD4MiRI/W73/1OBQUFuuWWW/TCCy/orLPOUiAQkMfjUUlJSSSbY3nhWgcwKd6txLiqb42DpQwDAwBgN6bMAk5KStJNN92krVu36qOPPtIvf/lL/eY3v9GZZ56pf/mXfzGjSZYUrkkgLpdLnVonSJIOlnlb9NoAAMB8pm8F169fPz3yyCP6/vvvtXbtWrObYynBIeCWrgBKUqc21fcBUgEEAMB2TA+AQW63W5MnT9Yrr7xidlMswwhTBVCquQ/wpzICIAAAdhM1ARCNF66t4KSaAFjEEDAAALZDALSwcA4Bd25TdQ/gTwwBAwBgOwRAC6uZBNLy1+543FqAAADAXgiAFhZaBiYM9wB2IgACAGBbBEALi8wsYO4BBADAbgiAFhaudQAlhdYBZBYwAAD2QwC0MCMCs4CD+wEDAAD7IABaWCSGgCsqAyr1Vrb49QEAgHkIgBYWzlnASfGxahXnlsQwMAAAdkMAtLDQLOAwVACl4xaDZi1AAABshQBoYcEh4HBMApGkzm3YDg4AADsiAFpYOCeBSMdNBGEpGAAAbMUWAXDFihXq2bOnEhMTlZ6eri1btpz03IKCAl133XXq16+fYmJiNG/evHrPW7dunQYOHKiEhAQNHDhQ69evD1Prmy4Q5iHgTtXbwbEYNAAA9mL5AJibm6t58+Zp4cKF2rVrl8aMGaMJEyYoPz+/3vO9Xq/OOOMMLVy4UD/72c/qPWf79u2aNm2apk+frg8//FDTp0/X1KlT9e6774bzozRaQFXBL1xDwKHdQLgHEAAAW7F8AFy2bJlmzpypWbNmacCAAcrOzlZqaqpWrlxZ7/lnn322nnzySc2YMUPt2rWr95zs7GxlZGRowYIF6t+/vxYsWKBLLrlE2dnZYfwkjRfuIeBOoXsAGQIGAMBOYs1uQHNUVFRo586duvvuu2sdz8zM1LZt25p83e3bt2v+/Pm1jo0fP/6UAdDr9crrrQlKxcXFkiSfzyefz9fktpyMz+cLDQHLCITlPdolVi0Dc6DEG5br20Hwz4U/H3PRD9GBfogO9EN0CHc/NPe6lg6ARUVF8vv9SklJqXU8JSVFhYWFTb5uYWFho6+5dOlSLV68uM7xTZs2KSkpqcltOZVAdQH3u2+/1caNe1r8+nsOuSS59W1BkTZu3Nji17cTj8djdhMg+iFa0A/RgX6IDuHqh/Ly8ma93tIBMMh1wj1whmHUORbuay5YsEBZWVmhx8XFxUpNTVVmZqaSk5Ob1Zb6+Hw+rf/dm5KkPr17aeL4c1r8PXrsK9ZvP/+HfO5ETZw4tsWvbwc+n08ej0cZGRmKi4szuzmORT9EB/ohOtAP0SHc/RAcaWwqSwfAzp07y+1216nM7d+/v04FrzG6dOnS6GsmJCQoISGhzvG4uLiw/QUM3gMYF+sOy3t07dBaklRU6lWMOzZs9xraQTj7GQ1HP0QH+iE60A/RIVz90NxrWnoSSHx8vNLT0+uUVz0ej0aNGtXk644cObLONTdt2tSsa4ZDaCHoMAWzzm3i5XJVLTfDYtAAANiHpSuAkpSVlaXp06dr6NChGjlypFatWqX8/HzNnj1bUtXQ7L59+7RmzZrQa/Ly8iRJpaWlOnDggPLy8hQfH6+BAwdKkubOnauLLrpIDz/8sCZNmqQNGzbojTfe0NatWyP++U4ltA5gmJaBiXXHqFPreBWVVmh/yTGd0bZuhRMAAFiP5QPgtGnTdPDgQS1ZskQFBQU677zztHHjRqWlpUmqWvj5xDUBBw8eHPr9zp079fzzzystLU3ffvutJGnUqFF64YUXdO+992rRokXq3bu3cnNzNXz48Ih9roYI9zIwktS5TUJ1APTq3LC9CwAAiCTLB0BJmjNnjubMmVPvczk5OXWOGcHkdApTpkzRlClTmtu0sAr3ELAknZmcqM8LS3SghLUAAQCwC0vfA+h0wSHgMI0AS5LOrB72JQACAGAfBEALC9Yxw7UVnKTQfX/7i4+F7T0AAEBkEQAtLBCBewBDFcBSKoAAANgFAdDCjDDPApakM9smSpL2FxMAAQCwCwKghUViEkhoCJh7AAEAsA0CoIWF1gGMxBBwibdBs6cBAED0IwBaWGgdwAhMAjnq86vUWxm29wEAAJFDALSwmiHg8L1H64RYtY53S2IYGAAAuyAAWlgkJoFIVYtBS6wFCACAXRAALSx4R164AyATQQAAsBcCoIXVTAIJ7/uwGDQAAPZCALSwSFUAWQwaAAB7IQBaWMTuAaxeDPoAi0EDAGALBEALM1QV/CJVAeQeQAAA7IEAaGGhewDDm/+OmwTCPYAAANgBAdDCQvcAhjkBdm1XNQRccIQACACAHRAALSxS9wB2bd9KklRyrJLdQAAAsAECoIXVzAIO7/u0SYhV28RYSVLB4aPhfTMAABB2BEALC0SoAigxDAwAgJ0QAC0sUvcASlLXdlXDwAVHqAACAGB1BEALMyI0C1iSurWvqgD+cJgKIAAAVkcAtLBA9a+RGALuklxVASxkCBgAAMsjAFpYsAIYgfynrsEKIEPAAABYHgHQwoL3ALojkAC7he4BpAIIAIDVEQAtLHQPYCQmgVRXABkCBgDA+giAFlZzD2D43yu4DEypt1LFx3zhf0MAABA2BEALq7kHMPwJMCk+Vu1axUmSCpgJDACApREALSyS9wBKNVVAJoIAAGBtBEALi+ROIFJNAOQ+QAAArI0AaGHBCmCE8p+6tq+eCcx+wAAAWBoB0MKMCFcAu4WGgKkAAgBgZQRACwvOAnZHYhqwpC7sBwwAgC0QAC0sknsBS9JZ1UPA+w4RAAEAsDICoIXV3AMYmQSY2rE6AB4+Kn9wBgoAALAcAqCFRboC2LVdK8XGuOTzG/qxmPsAAQCwKgKghUX6HkB3jEvdqoeB9/5UHpH3BAAALY8AaGGRngUs1QwD7+U+QAAALIsAaGGRXgdQklI7JEmiAggAgJURAC0s0juBSFJqx+oAeIgACACAVREALSy0F3CkZoFI6t6hagj4+58YAgYAwKoIgBYWvAcwkkPAPagAAgBgeQRACzNUlfzMGAIuLD4mb6U/Yu8LAABaDgHQogLHLcQcyQDYqXW8WsW5ZRjSD4dZCxAAACsiAFpUwKgJgO4IBkCXyxUaBv7uYFnE3hcAALQcAqBFHb8TmyvCvZjWqSoAfltEAAQAwIoIgBZlGOYMAUtSzzNaS5K+PchEEAAArIgAaFH+WgEwsu/ds1NVANxDBRAAAEsiAFrU8UPAEa8Adq6uABIAAQCwJAKgRZk6BFwdAL8/VK6KykBE3xsAADQfAdCialcAI/veZ7RNUOt4twKGlM+ewAAAWA4B0KL8Jq0DKFUtBXN2dRXwG4aBAQCwHAKgRdUaAo50CVDcBwgAgJXZIgCuWLFCPXv2VGJiotLT07Vly5ZTnv/OO+8oPT1diYmJ6tWrl5599tlaz+fk5MjlctX5OnYsena+CBYATch+kmoCIDOBAQCwHssHwNzcXM2bN08LFy7Url27NGbMGE2YMEH5+fn1nv/NN99o4sSJGjNmjHbt2qV77rlHd9xxh9atW1frvOTkZBUUFNT6SkxMjMRHapDgTiCRHv4NCgXAA6WmvD8AAGi6WLMb0FzLli3TzJkzNWvWLElSdna2Xn/9da1cuVJLly6tc/6zzz6rHj16KDs7W5I0YMAAvf/++3rsscd09dVXh85zuVzq0qVLRD5DUwQrgCblP/U9s60k6av9BEAAAKzG0gGwoqJCO3fu1N13313reGZmprZt21bva7Zv367MzMxax8aPH6/Vq1fL5/MpLi5OklRaWqq0tDT5/X5dcMEFeuCBBzR48OCTtsXr9crr9YYeFxcXS5J8Pp98Pl+TPt+peCuqrul2ucJy/dPp0SFeknSwrEKFh8vUqXV8xNsQDYJ/9mb0AWrQD9GBfogO9EN0CHc/NPe6lg6ARUVF8vv9SklJqXU8JSVFhYWF9b6msLCw3vMrKytVVFSkrl27qn///srJydGgQYNUXFysJ598UqNHj9aHH36ovn371nvdpUuXavHixXWOb9q0SUlJSU38hCd38JgkxSoQ8Gvjxo0tfv2G6JTg1kGvS39+5Q31aWdKE6KGx+MxuwkQ/RAt6IfoQD9Eh3D1Q3l585Zhs3QADHKdMA5qGEadY6c7//jjI0aM0IgRI0LPjx49WkOGDNHy5cv11FNP1XvNBQsWKCsrK/S4uLhYqampyszMVHJycuM+UAN8/WOxtOsfiouN1cSJ41v8+g2x/uAHent3kTr1Ok8Th/cwpQ1m8/l88ng8ysjICFWPEXn0Q3SgH6ID/RAdwt0PwZHGprJ0AOzcubPcbnedat/+/fvrVPmCunTpUu/5sbGx6tSpU72viYmJ0bBhw/Tll1+etC0JCQlKSEioczwuLi4sHR/jdle3zWXaX/B+XZP19u4i7Tl41PH/yISrn9E49EN0oB+iA/0QHcLVD829pqVnAcfHxys9Pb1OedXj8WjUqFH1vmbkyJF1zt+0aZOGDh160j9MwzCUl5enrl27tkzDW0BwEojbrFkgks6pngiy+8cS09oAAAAaz9IBUJKysrL0+9//Xs8995w+++wzzZ8/X/n5+Zo9e7akqqHZGTNmhM6fPXu2vvvuO2VlZemzzz7Tc889p9WrV+u//uu/QucsXrxYr7/+uvbs2aO8vDzNnDlTeXl5oWtGg0Bo2Nq8NvRNaSOJmcAAAFiNpYeAJWnatGk6ePCglixZooKCAp133nnauHGj0tLSJEkFBQW11gTs2bOnNm7cqPnz5+uZZ55Rt27d9NRTT9VaAubw4cO6+eabVVhYqHbt2mnw4MHavHmzLrzwwoh/vpMxTF4HUJL6nFkVAItKK/RTWYU6OnQmMAAAVmP5AChJc+bM0Zw5c+p9Licnp86xsWPH6oMPPjjp9Z544gk98cQTLdW8sPAHqn41aycQSUqKj1Vqx1ba+9NRfV5YrFG9O5vXGAAA0GCWHwJ2qtBOIGYmQEkDu1bNcP70h+bNRgIAAJFDALQoI7QXsLkB8NxuVQsAEgABALAOAqBF1ewFbG47QhXAAgIgAABWQQC0KP8Ji1eb5dyzqgLgl/tLdcznN7UtAACgYQiAFmVEwTqAktQlOVEdkuLkDxj68keWgwEAwAoIgBYVLUPALpcrdB/gJz8cMbcxAACgQQiAFhWIkiFgSRrYrWoY+BMmggAAYAkEQIsKRME6gEHnnVVVAfzn94fNbQgAAGgQAqBFBSuA7ihIgINT20uqmgnMRBAAAKIfAdCiAtWTQKJhCLh7h1bq3CZePr/BMDAAABZAALQoI0omgUhVIfSC1A6SpF35h0xuDQAAOB0CoEX5QwEwChKgpME92kuS8vYeNrUdAADg9AiAFhUcAo6Jkh4M3ge4K/+wqe0AAACnFyXxAY1lBKKrAnh+anu5XNK+w0e1v/iY2c0BAACnQAC0qFAFMEoCYJuEWA3oUrUe4Lvf/GRyawAAwKkQAC3KH0WTQIJG9OokSfrHnoMmtwQAAJwKAdCijCibBCJJI3p1lEQABAAg2hEALapmCNjcdhzvwp4d5XJJXx8o04ESr9nNAQAAJ0EAtKhAFFYA2yfFH3cfIFVAAACiFQHQogLVJcBo2AnkeMH7AP/+FQEQAIBoRQC0qOAQsDvKenBM386SpM27D4TuUwQAANElyuIDGio4BByNFcD42BjtO3xUX+0vNbs5AACgHgRAi4rGSSCS1CrerZHVw8BvfbHf5NYAAID6EAAtKhongQSN63eGJOntLw6Y3BIAAFAfAqBFRXMAvLjfmZKk9779ScXHfCa3BgAAnIgAaFHROgQsSWd3bq0+Z7aRz2/ozc9+NLs5AADgBARAi4rGnUCON/G8LpKkjR8VmtwSAABwIgKgRfkDUR4Az+8qSXpn9wGVMAwMAEBUIQBaVGgIOEp7sF9KW/Xq3FoVlQH97XNmAwMAEE2iND7gdKJ9CNjlcuny6irg+l37TG4NAAA4HgHQoqJ5EkjQ1UO6S6raFaTgyFGTWwMAAIIIgBblj9K9gI93dufWuvDsjgoY0ksfUAUEACBaEAAtKjgE7I7mEqCka4ZWVQFffH+vAgH2BgYAIBoQAC3KCkPAkjRxUFe1TYjVtwfL9c5udgYBACAaEAAtKrgTSDQPAUtS64RY/duFqZKk1Vu/Mbk1AABAIgBaVs1WcCY3pAFuHHW2YlzS1q+K9HlhsdnNAQDA8QiAFhUcAnZHeQVQkrp3SNKEQVVLwjz9t69Mbg0AACAAWpRVhoCDbru4jyTptX8W6LMCqoAAAJiJAGhRhkUmgQQN6JocWhh6mWe3ya0BAMDZCIAWFe17Addn/qV9FeOSPJ/+qL9/VWR2cwAAcCwCoEWFJoFYpQQoqc+ZbTV9RJok6b5XPlFFZcDkFgEA4EwEQIuy2hBwUFZmP3VqHa+v9pfq2Xe+Nrs5AAA4EgHQomqWgbFWAmzXKk6LrhgoSXrqzS/10fdHTG4RAADOQwC0KH91BdBi+U+SNOmCbrp8UFdVBgzNfWGXio/5zG4SAACOQgC0qNBewBZMgC6XS7+efJ66tUvUnqIyzXshLzSpBQAAhB8B0KKsOgQc1KF1vH47fagSYmP0t8/3696XPwqFWgAAEF4EQIsKWHgIOGhQ93ZaNvUCxbiktTv2avGrnxICAQCIAAKgRQUsuA5gfS4/v6semfIzSVLOtm+V9b8fylvpN7lVAADYGwHQokJ7AVttHZh6TEnvroevHiR3jEvrd+3Tdb97Vz8cPmp2swAAsC0CoEXV7AVsckNayLRhPZTz/w1T28RY7fzukMY/sVkvvr+XIWEAAMKAAGhRhsUngdRnTN8z9MptP9fgHu1V4q3Unf/3T01esU3/2HOQIAgAQAsiAFqUv3oXNRuMANfSs3NrvXjLSP3qsv5Kinfrw72H9W+r/qHJz/xdL+/ap2M+7g8EAKC5bBEAV6xYoZ49eyoxMVHp6enasmXLKc9/5513lJ6ersTERPXq1UvPPvtsnXPWrVungQMHKiEhQQMHDtT69evD1fwmseJewA0V647Rf47rrbfvHKfrh/dQfGyMPvz+iObl5mnor9/QvBd26a8fFeinsgqzmwoAgCVZPgDm5uZq3rx5WrhwoXbt2qUxY8ZowoQJys/Pr/f8b775RhMnTtSYMWO0a9cu3XPPPbrjjju0bt260Dnbt2/XtGnTNH36dH344YeaPn26pk6dqnfffTdSH+u0avYCtl8ADDqzbaIevGqQtt39C2VlnKMuyYkq9Vbq5bwf9J9//kBDHvDosuzNumf9R1qz/Vv9Y89B/VRWwXAxAACnEWt2A5pr2bJlmjlzpmbNmiVJys7O1uuvv66VK1dq6dKldc5/9tln1aNHD2VnZ0uSBgwYoPfff1+PPfaYrr766tA1MjIytGDBAknSggUL9M477yg7O1tr166NzAc7jZqFoE1uSAR0bpOgOy7pq9su7qNdew/pL/8s1NavDmj3j6X6vLBEnxeW1Dq/dbxbXdu3Urf2rdQ1OVHtW8epfat4tU+KU/tWcUpuFafEOLcS42KUGOdWqzh36Nf42BjFuKp2KwEAwK4sHQArKiq0c+dO3X333bWOZ2Zmatu2bfW+Zvv27crMzKx1bPz48Vq9erV8Pp/i4uK0fft2zZ8/v845wdBYH6/XK6/XG3pcXFwsSfL5fPL5Wn6v28rqmwCNQCAs149W53drq/O7tZXUVwdLvdrx7SF9WlCiL34s0Zc/lur7w8dUVuHXV/tL9dX+0ia/jzvGpRiXFBvjUkyMq+pXl6vWY5fLJRmGjh5167HPN8vlcsmlquAYzI8uHT9T21XrePC8+l4TfEAMbRhDhkqK3Vr5zbbQnycij36IDvRDdDBkqE+8Sxlh+hnd3J/9lg6ARUVF8vv9SklJqXU8JSVFhYWF9b6msLCw3vMrKytVVFSkrl27nvSck11TkpYuXarFixfXOb5p0yYlJSU19CM1WOGPMZJi9MXnn2njoU9b/PpWMkDSgI6SOkoVfulwhXSowqVDXulIhVRe6VJ5pVReKZVVunS0UvIFar4qApLfqP2PpD9gyC/J52/IcLJLB73HwvDJ0DguqbzpoR8thX6IDvRDNOic4pLH4wnLtcvLy5v1eksHwKATh+sMwzjlEF595594vLHXXLBggbKyskKPi4uLlZqaqszMTCUnJ5/+QzRS90E/ybPlXV2T+XP16Ny2xa/vNP6AoWM+vyr8AQUChioDhgKGVBkIKBCQKgOG/IGA/IGqcysDARmSKn2V2vHeDg0bdqFiY2NlGIaCkTF4K2LwyPG3Jtb33Mleh9PzV/r1wQcfaMiQIXLHus1ujmPRD9EhYv3AP1GnVFlZqW8++UAZGRmKi4tr8esHRxqbytIBsHPnznK73XUqc/v3769TwQvq0qVLvefHxsaqU6dOpzznZNeUpISEBCUkJNQ5HhcXF5aOPz+1o75vb6hH57Zhub7TxElKrNt9p+Xz+XTgc+nCXp3pBxP5fD6V7zE0rn8K/WAi+iE60A/Rwefz6eg34csBzb2mpWcBx8fHKz09vU551ePxaNSoUfW+ZuTIkXXO37Rpk4YOHRr6wzzZOSe7JgAAgJVYugIoSVlZWZo+fbqGDh2qkSNHatWqVcrPz9fs2bMlVQ3N7tu3T2vWrJEkzZ49W08//bSysrL0H//xH9q+fbtWr15da3bv3LlzddFFF+nhhx/WpEmTtGHDBr3xxhvaunWrKZ8RAACgJVk+AE6bNk0HDx7UkiVLVFBQoPPOO08bN25UWlqaJKmgoKDWmoA9e/bUxo0bNX/+fD3zzDPq1q2bnnrqqdASMJI0atQovfDCC7r33nu1aNEi9e7dW7m5uRo+fHjEPx8AAEBLs3wAlKQ5c+Zozpw59T6Xk5NT59jYsWP1wQcfnPKaU6ZM0ZQpU1qieQAAAFHF0vcAAgAAoPEIgAAAAA5DAAQAAHAYAiAAAIDDEAABAAAchgAIAADgMARAAAAAhyEAAgAAOAwBEAAAwGEIgAAAAA5DAAQAAHAYW+wFHI0Mw5AkFRcXh+X6Pp9P5eXlKi4uVlxcXFjeA6dHP0QH+iE60A/RgX6IDuHuh2C+COaNxiIAhklJSYkkKTU11eSWAAAAuyopKVG7du0a/TqX0dToiFMKBAL64Ycf1LZtW7lcrha/fnFxsVJTU7V3714lJye3+PXRMPRDdKAfogP9EB3oh+gQ7n4wDEMlJSXq1q2bYmIaf0cfFcAwiYmJUffu3cP+PsnJyfwFjwL0Q3SgH6ID/RAd6IfoEM5+aErlL4hJIAAAAA5DAAQAAHAYAqBFJSQk6L777lNCQoLZTXE0+iE60A/RgX6IDvRDdIj2fmASCAAAgMNQAQQAAHAYAiAAAIDDEAABAAAchgBoUStWrFDPnj2VmJio9PR0bdmyxewmOcrSpUs1bNgwtW3bVmeeeaYmT56sL774wuxmOdrSpUvlcrk0b948s5viOPv27dMNN9ygTp06KSkpSRdccIF27txpdrMcpbKyUvfee6969uypVq1aqVevXlqyZIkCgYDZTbO1zZs368orr1S3bt3kcrn08ssv13reMAzdf//96tatm1q1aqVx48bpk08+MaexJyAAWlBubq7mzZunhQsXateuXRozZowmTJig/Px8s5vmGO+8845uvfVW/eMf/5DH41FlZaUyMzNVVlZmdtMc6b333tOqVat0/vnnm90Uxzl06JBGjx6tuLg4/fWvf9Wnn36qxx9/XO3btze7aY7y8MMP69lnn9XTTz+tzz77TI888ogeffRRLV++3Oym2VpZWZl+9rOf6emnn673+UceeUTLli3T008/rffee09dunRRRkZGaLtYMzEL2IKGDx+uIUOGaOXKlaFjAwYM0OTJk7V06VITW+ZcBw4c0Jlnnql33nlHF110kdnNcZTS0lINGTJEK1as0K9//WtdcMEFys7ONrtZjnH33Xfr73//O6MQJrviiiuUkpKi1atXh45dffXVSkpK0h//+EcTW+YcLpdL69ev1+TJkyVVVf+6deumefPm6Ve/+pUkyev1KiUlRQ8//LBuueUWE1tLBdByKioqtHPnTmVmZtY6npmZqW3btpnUKhw5ckSS1LFjR5Nb4jy33nqrLr/8cl166aVmN8WRXnnlFQ0dOlTXXHONzjzzTA0ePFi/+93vzG6W4/z85z/Xm2++qd27d0uSPvzwQ23dulUTJ040uWXO9c0336iwsLDWz+uEhASNHTs2Kn5esxewxRQVFcnv9yslJaXW8ZSUFBUWFprUKmczDENZWVn6+c9/rvPOO8/s5jjKCy+8oA8++EDvvfee2U1xrD179mjlypXKysrSPffcox07duiOO+5QQkKCZsyYYXbzHONXv/qVjhw5ov79+8vtdsvv9+vBBx/Utddea3bTHCv4M7m+n9ffffedGU2qhQBoUS6Xq9ZjwzDqHENk3HbbbfrnP/+prVu3mt0UR9m7d6/mzp2rTZs2KTEx0ezmOFYgENDQoUP10EMPSZIGDx6sTz75RCtXriQARlBubq7+9Kc/6fnnn9e5556rvLw8zZs3T926ddONN95odvMcLVp/XhMALaZz585yu911qn379++v878MhN/tt9+uV155RZs3b1b37t3Nbo6j7Ny5U/v371d6enromN/v1+bNm/X000/L6/XK7Xab2EJn6Nq1qwYOHFjr2IABA7Ru3TqTWuRMd955p+6++27927/9myRp0KBB+u6777R06VICoEm6dOkiqaoS2LVr19DxaPl5zT2AFhMfH6/09HR5PJ5axz0ej0aNGmVSq5zHMAzddttteumll/S3v/1NPXv2NLtJjnPJJZfoo48+Ul5eXuhr6NChuv7665WXl0f4i5DRo0fXWQJp9+7dSktLM6lFzlReXq6YmNo/0t1uN8vAmKhnz57q0qVLrZ/XFRUVeuedd6Li5zUVQAvKysrS9OnTNXToUI0cOVKrVq1Sfn6+Zs+ebXbTHOPWW2/V888/rw0bNqht27ahimy7du3UqlUrk1vnDG3btq1zz2Xr1q3VqVMn7sWMoPnz52vUqFF66KGHNHXqVO3YsUOrVq3SqlWrzG6ao1x55ZV68MEH1aNHD5177rnatWuXli1bpptuusnsptlaaWmpvvrqq9Djb775Rnl5eerYsaN69OihefPm6aGHHlLfvn3Vt29fPfTQQ0pKStJ1111nYqurGbCkZ555xkhLSzPi4+ONIUOGGO+8847ZTXIUSfV+/eEPfzC7aY42duxYY+7cuWY3w3FeffVV47zzzjMSEhKM/v37G6tWrTK7SY5TXFxszJ071+jRo4eRmJho9OrVy1i4cKHh9XrNbpqtvfXWW/X+LLjxxhsNwzCMQCBg3HfffUaXLl2MhIQE46KLLjI++ugjcxtdjXUAAQAAHIZ7AAEAAByGAAgAAOAwBEAAAACHIQACAAA4DAEQAADAYQiAAAAADkMABAAAcBgCIAAAgMMQAAEgio0bN07z5s0zuxkAbIYACABh8Pbbb8vlcp306+KLL27QdV566SU98MADocdnn322srOzw9RqAE4Ra3YDAMCORo0apYKCgjrHX3nlFc2ePVtz5sxp0HU6duzY0k0DACqAABAO8fHx6tKlS62vQ4cO6c4779Q999yja665RpL06aefauLEiWrTpo1SUlI0ffp0FRUVha5z/BDwuHHj9N1332n+/PmhSiIANAUBEAAi4PDhw5o8ebLGjh0bGtItKCjQ2LFjdcEFF+j999/X//t//08//vijpk6dWu81XnrpJXXv3l1LlixRQUFBvRVGAGgIhoABIMwCgYCuu+46ud1u/elPfwpV7lauXKkhQ4booYceCp373HPPKTU1Vbt379Y555xT6zodO3aU2+1W27Zt1aVLl4h+BgD2QgAEgDC75557tH37du3YsUPJycmh4zt37tRbb72lNm3a1HnN119/XScAAkBLIQACQBjl5ubqscce01/+8hf17du31nOBQEBXXnmlHn744Tqv69q1a6SaCMCBCIAAECZ5eXm66aab9Jvf/Ebjx4+v8/yQIUO0bt06nX322YqNbdg/x/Hx8fL7/S3dVAAOwyQQAAiDoqIiTZ48WePGjdMNN9ygwsLCWl8HDhzQrbfeqp9++knXXnutduzYoT179mjTpk266aabThryzj77bG3evFn79u2rNVsYABqDCiAAhMFf/vIXfffdd/ruu+/qHc5NS0vTt99+q7///e/61a9+pfHjx8vr9SotLU2XXXaZYmLq///5kiVLdMstt6h3797yer0yDCPcHwWADbkM/vUAAABwFIaAAQAAHIYACAAA4DAEQAAAAIchAAIAADgMARAAAMBhCIAAAAAOQwAEAABwGAIgAACAwxAAAQAAHIYACAAA4DAEQAAAAIchAAIAADgMARAAAMBhCIAAAAAOQwAEAABwGAIgAACAwxAAAQAAHOb/BzKI6Te3SkXvAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def damped_harmonic_oscillator(t, X, gamma, omega0):\n", " \"\"\"Definition der DGL\n", " Als Input bekommen wir die Variablen und geben dann ihre Zeitableitung zurück. \n", " \"\"\"\n", " x, dx = X\n", " ddx = -2 * gamma * dx - omega0**2 * x\n", " return [dx, ddx]\n", "\n", "\n", "# Hier speichern wir als Funktionsattribut, ob es sich um einen getriebenen Oszillator handelt,\n", "# denn beim getriebenen Oszillator plotten wir noch die Anregungsfrequenz.\n", "damped_harmonic_oscillator.driven = False\n", "\n", "\n", "# Anfangsbedingungen: [Auslenkung, Geschwindigkeit]\n", "x0 = [0, 5] # Hier beginnen wir mit einer endlichen Geschwindigkeit\n", "# x0 = [1, 0] # Hier beginnen wir mit einer endlichen Auslenkung\n", "\n", "# Das Zeitintervall, welches wir hier betrachten\n", "t = np.linspace(0, 10, 1000)\n", "\n", "# Die Funktion `interactive` nimmt eine Funktion (welche interaktiv dargestellt werden soll)\n", "# und erstellt Schieberegler für die veränderlichen Variablen. In unserem Fall hier sind das\n", "# der Dämpfungskoeffizient gamma sowie die Resonanzfrequenz omega0.\n", "# Die Regler werden dann erstellt wie (min, max, step).\n", "# Jedes Mal, wenn ein Schieberegler verändert wird, wird die Funktion neu aufgerufen\n", "# für den entsprechenden Wert.\n", "interactive(\n", " solve_and_plot(damped_harmonic_oscillator, x0, t),\n", " gamma=(0, 4 * np.pi, 0.01), # Dämpfungskoeffizient\n", " omega0=(0, 4 * np.pi, 0.01), # Resonanzfrequenz\n", ")" ] }, { "cell_type": "markdown", "id": "47727cd1", "metadata": {}, "source": [ "Spielen Sie mit dem oben stehenden Code etwas herum und versuchen Sie bitte, die in der Vorlesung gezeigten Beispiele zu verifizieren! Beobachten Sie das dynamische Verhalten im Kriechfall ($\\omega_0=\\gamma$) und untersuchen Sie, wie sich das System mit sehr großer Dämpfung und sehr niedriger Dämpfung verhält. Beobachten Sie bitte auch, wie sich die Oszillationsperiode ändert, wenn Sie die Eigen- oder Resonanzfrequenz ändern. " ] }, { "cell_type": "markdown", "id": "97ecb787", "metadata": {}, "source": [ "### Der getriebene harmonische Oszillator mit einer periodischen Anregung" ] }, { "cell_type": "markdown", "id": "f8936a99", "metadata": {}, "source": [ "Der getriebene harmonische Oszillator mit einer zeitharmonischen Anregung wird durch die folgende Differentialgleichung beschrieben:\n", "\n", "$$\n", "\\ddot{x}+2\\gamma\\dot{x}+\\omega_0^2x - F_m \\sin(\\omega_d t)=0 \\quad .\n", "$$\n", "\n", "Die Gleichung ist identisch zum freien Oszillator, nur dass jetzt noch eine periodische oszillierende Kraft auf den Oszillator wirkt, die charakterisiert ist durch die Amplitude $F_m$ und die Oszillationsfrequenz $\\omega_d$. \n", "\n", "Wir fassen hier wieder den Ort $x$ und die Geschwindigkeit $\\dot{x}$ in einem Vektor $\\mathbf{X}(t)$ zusammen. Die von uns zu lösende Bewegungsgleichung lautet dann:\n", "$$\n", "\\dot{\\mathbf{X}}(t)= \\begin{pmatrix} \\dot{x} \\\\-2\\gamma\\dot{x}-\\omega_0^2 x + F_m \\sin(\\omega_d t)\\end{pmatrix} \\quad .\n", "$$\n", "In dem folgenden Pythonskript variieren wir die Dämpfung, die Eigenfrequenz, die Anregungsfrequenz der Kraft und die Amplitude der Kraft, um Details der Bewegung zu studieren. " ] }, { "cell_type": "code", "execution_count": 3, "id": "87694371", "metadata": { "scrolled": false }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9270eabe58a24928b1171fc22a640cc8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(FloatSlider(value=3.14, description='gamma', max=6.283185307179586, step=0.01), FloatSli…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "db045e32a4d4429f888e295861bcb91f", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZglRZU2/mbmvbf26uqdrVkbmn1YZRAVZWkExpEZF75RBAXGcfiNozKCOIwKrvOpIJ844taIKIOoiAu2Aw3IojgCDc3aNL1XL1VdXft6t8z8/ZEZmRGRkZlxl6qu25z3eXjoqj6dGRF58sQb7zkRabiu64JAIBAIBAKB8LqBuacbQCAQCAQCgUCYWRABJBAIBAKBQHidgQgggUAgEAgEwusMRAAJBAKBQCAQXmcgAkggEAgEAoHwOkNmTzeAQCAQCARC/VEul1EsFvd0Mwh7ALlcDplMMsUjAkggEAgEwl4E13XR3d2N/v7+Pd0Uwh7EggULcOCBB8IwDOXfEwEkEAgEAmEvAiN/+++/P9rb22GaVO31eoLjOBgfH8eOHTsAAAcddJDSjggggUAgEAh7CcrlckD+9tlnnz3dHMIeQnt7OwBgx44d2H///ZXpYFoWEAgEAoGwl4DV/DECQHj9gvlAXB0oEUACgUAgEPYyUNqXkOYD5CEEAoFAIBD2etxxxx3o6uqq6zUfffRRGIaB4eHhul53JkAEkEAgEAgEwqzBk08+Ccuy8Pa3v31PN2WvBm0CmSY4joOdO3eio6Mjdgs2gUAgEAj1RD6f39NNqBm33347PvrRj+IHP/gBuru7ceCBB+7pJu2dcAnTgm3btrkA6D/6j/6j/+g/+m/G/lu2bJn7zDPPuBMTE3t6GqwK4+PjbkdHh/vqq6+6F198sXvjjTcGf/fDH/7QnTNnjmB/3333uUBIZdasWeO+9a1vddvb292Ojg73pJNOcp9++unYf/+b3/zGPemkk9ympib3kEMOcW+44Qa3VCoFfw/A/f73v+9edNFFbktLi7t06VL317/+dfD3f/jDH1wA7tDQkOu6rjs5OelecMEF7mmnneYODAy4l112mfvOd75TuOfHPvYx98wzzwx+PvPMM92PfvSj7jXXXOPOnTvXXbx4sfu5z31O+Ddr1651zzjjDLepqck96qij3FWrVrkA3Pvuuy92LCcmJhJ9gRTAaUJHRwcAYNu2bejs7Kz79UulEh588EEsX74c2Wy27tcn6IGew+wAPYfZAXoOex75fB7btm3b082oGvfccw+WLVuGZcuW4ZJLLsFHP/pRfOYzn9HOpL3//e/HiSeeiNtuuw2WZWHNmjWxvvjAAw/gkksuwTe/+U28+c1vxsaNG/HhD38YAPC5z30usLvxxhvx1a9+FV/72tdw66234v3vfz+2bt2KefPmCdcbGRnB3/zN36C5uRkPP/ww2tratPv9ox/9CFdffTX+8pe/4M9//jM++MEP4owzzsC5554Lx3Fw0UUX4cADD8Rf/vIXjI2N4d/+7d+0rx0HIoDTBOasnZ2d00YAW1tb0dnZSYF2D4Kew+wAPYfZAXoOex6q895c18VUyd4DrQFaslZFZVArVqzAJZdcAgB4+9vfjvHxcTz88MM455xztP59d3c3rrnmGhx55JEAgMMPPzzW9ktf+hKuu+46XHbZZQCAQw89FF/4whdw7bXXCgTwgx/8IP7hH/4BAPDlL38Zt956K5566imhRnHXrl24+OKLcdhhh+Huu+9GLpfT7jMAHH/88cE9Dz/8cHzrW9/Cww8/jHPPPRcPPvggNm7ciEcffTQ42/FLX/oSzj333IruIYMIIIFAIBAIezGmSjaO/uwDe+Ter3z+PLTm9KjGunXr8NRTT+GXv/wlAI/MXnzxxbj99tu1CeDVV1+NK6+8Ej/+8Y9xzjnn4D3veQ8OO+wwpe3q1avx9NNP40tf+lLwO9u2kc/nMTk5idbWVgAeOWNoa2tDR0cH+vr6hGudc845OPXUU/Gzn/0MlmVptZUHfw8A2HfffYN7rFu3DkuWLBEO9n7DG95Q8T1kEAEkEAgEAoGwx7FixQqUy2Xsv//+we9c10U2m8XQ0BBM04RXlheiVCoJP99www143/veh9/97nf4/e9/j8997nP46U9/ir/7u7+L3M9xHNx44434+7//+8jfNTc3B3+W1WzDMOA4jvC7Cy+8EPfeey9eeeUVHHfcccHvddqcdg/XdadlMykRQAKBQCAQ9mK0ZC288vnz9ti9dVAul3HnnXfipptuwvLly4W/e9e73oW77roLhx12GMbGxjAxMRHU161ZsyZyrSOOOAJHHHEEPvGJT+Af/uEf8MMf/lBJAE866SSsW7cOS5curbxjEv7zP/8T7e3tOPvss/Hoo4/i6KOPBgAsXLgQL730kmCbVJeowpFHHonu7m7s2rULixcvBgA8/fTTNbeZCCCBQCAQCHsxDMPQTsPuKdx///0YGhrCFVdcgTlz5gh/9+53vxsrVqzAww8/jNbWVvz7v/87PvrRj+Kpp57CHXfcEdhNTU3hmmuuwbvf/W4ccsgh2L59O55++mm8613vUt7zs5/9LP7mb/4GS5YswXve8x6YpokXXngBL774Ir74xS9W3Ievf/3rsG0bZ511Fh599FEceeSROOuss/C1r30Nd955J04//XT85Cc/wUsvvYQTTzxR+7rnnnsuDjvsMFx22WX46le/irGxMVx//fUAUJMySAdBEwgEAoFA2KNYsWIFzjnnnAj5AzwFcM2aNdiyZQt+8pOfYOXKlTjuuONw991344YbbgjsLMvCwMAALr30UhxxxBF473vfi/PPPx833nij8p7nnXce7r//fqxatQqnnnoq/vqv/xo333wzDjrooKr78Y1vfAPvfe97cdZZZ+G1117Deeedh8985jO49tprceqpp2JsbAyXXnppRde0LAu/+tWvMD4+jlNPPRVXXnkl/uM//gOAmKquFIYrJ6cJdcHo6CjmzJmDkZGRadsFvHLlSlxwwQW0224Pgp7D7AA9h9kBeg57HpOTk1i7di2OOuqoYBMDYe/Dn/70J7zpTW/Chg0bYje5pPnC7NaECQQCgUAgEF7nuO+++9De3o7DDz8cGzZswMc+9jGcccYZseRPB0QACQQCgUAgEGYxxsbGcO2112Lbtm1YsGABzjnnHNx00001XfN1UwP47W9/G4cccgiam5tx8skn44knnki0LxQKuP7663HQQQehqakJhx12GG6//fYZai2BQCAQCASCh0svvRTr169HPp/H9u3bcccdd2D+/Pk1XfN1oQDec889+PjHP45vf/vbOOOMM/Dd734X559/Pl555ZXYj0y/973vxa5du7BixQosXboUfX19KJfLM9xyAoFAIBAIhPrjdUEAb775ZlxxxRW48sorAQC33HILHnjgAdx22234yle+ErH/n//5Hzz22GPYtGlT8K2/gw8+eCabTCAQCAQCgTBt2OtTwMViEatXr44cLLl8+XI8+eSTyn/zm9/8Bqeccgq++tWvYv/998cRRxyBT37yk5iampqJJhMIBAKBQCBMK/Z6BbC/vx+2bQenZzMsXrwYvb29yn+zadMm/PGPf0RzczPuu+8+9Pf346qrrsLg4GBsHWChUEChUAh+Hh0dBeAdi6D67EutYNecjmsT9EHPYXaAnsPsAD2HPQ8ae4Iu9noCyCCflp30bT3HcWAYBu66667gUMqbb74Z7373u/Ff//VfaGlpifybr3zlK8rDJh988MFpPYtp1apV03Ztgj7oOcwO0HOYHaDnsOeQzWYjggeBoMJeTwAXLFgAy7Iial9fX1/sS7Lvvvti//33F04kP+qoo+C6LrZv347DDz888m8+/elP4+qrrw5+Hh0dxZIlS7B8+fJpOwj6wQdXYWj+0Th6vy6cdGBX3e9BSEepVMKqVatw7rnn0sG3exD0HGYH6DnseUxOTmLDhg17uhmEBsBeTwBzuRxOPvlkrFq1SvgY9KpVq/DOd75T+W/OOOMM/PznP8f4+Dja29sBAK+99hpM08QBBxyg/DdNTU1oamqK/D6bzU5bINw0Bnzzf18DAGz5zwun5R4EPUzncybog57D7AA9hz0HGneCLvb6TSAAcPXVV+MHP/gBbr/9dqxduxaf+MQn0N3djY985CMAPPWO/zbf+973PsyfPx8f+tCH8Morr+Dxxx/HNddcg8svv1yZ/t1TmCqHKezxAh1RQyAQCITGx5NPPgnLsvD2t799Tzdlr8brggBefPHFuOWWW/D5z38eJ5xwAh5//HGsXLky+OBzT08Puru7A/v29nasWrUKw8PDOOWUU/D+978f73jHO/DNb35zT3VBiSYr/PPGvvE91xACgUAgEOqE22+/HR/96Efxxz/+UZibqwFtionH64IAAsBVV12FLVu2oFAoYPXq1XjLW94S/N0dd9yBRx99VLA/8sgjsWrVKkxOTmLbtm246aabZpX6BwC2G/55y8DEnmsIgUAgEAh1wMTEBH72s5/hn//5n/E3f/M3uOOOO4K/e/TRR2EYBh5++GGccsopaG1txRvf+EasW7cusLnhhhtwwgkn4Pbbb8ehhx6KpqYmuK6LkZERfPjDH8aiRYvQ2dmJs846C88//7xw7y9+8YtYtGgROjo6cOWVV+K6667DCSecEPz9W9/6Vnz84x8X/s1FF12ED37wg8HPBx98ML785S/j8ssvR0dHBw488EB873vfE/7Nk08+iRNOOAHNzc045ZRT8Ktf/QqGYWDNmjW1Dl9FeN0QwL0RPAGcKtp7riEEAoFAINQB99xzD5YtW4Zly5bhkksuwQ9/+EO4rivYXH/99bjpppvwzDPPIJPJ4PLLLxf+fsOGDfjZz36Ge++9NyBVF154IXp7e7Fy5UqsXr0aJ510Es4++2wMDg4CAO666y586Utfwv/9v/8Xq1evxoEHHojbbrutqj7cdNNNOOWUU/Dcc8/hqquuwj//8z/j1VdfBeB90/cd73gHjjvuODz77LP4whe+gE996lNV3adW7PWbQPZm8ASwaDt7riEEAoFAmL1wXaA0uWfunW0FYo5cU2HFihW45JJLAABvf/vbMT4+jocffhjnnHNOYPOlL30JZ555JgDguuuuw4UXXoh8Po/m5mYA3gcgfvzjH2PhwoUAgEceeQQvvvgi+vr6gs2aX//61/GrX/0Kv/jFL/DhD38Yt956K6644gp86EMfAgB89rOfxYMPPojx8crLqy644AJcddVVAIBPfepT+MY3voFHH30URx55JO666y4YhoHvf//7aG5uxtFHH40dO3bgH//xHyu+T60gAtjAEAhgmQgggUAgEBQoTQJf3m/P3PvfdwK5Ni3TdevW4amnnsIvf/lLAEAmk8HFF1+M22+/XSCAxx9/fPDnfffdF4B3tNuBBx4IADjooIMC8gcAq1evxvj4OObPny/cb2pqChs3bgzuzUgbwxve8AY88sgjuj1Vts8wDOyzzz7o6+sL7nP88ccHZJXdZ0+ACGADgxf9CkQACQQCgdDAWLFiBcrlMvbff//gd67rIpvNYmhoKPgdf9QN+6CD44RzYFubSDgdx8G+++4bqfUHgK6ursi1+HvzME0z8jvVJhP5KB7DMIL2qT5CIV9zpkAEsIHBK4BEAAkEAoGgRLbVU+L21L01UC6Xceedd+Kmm27C8uXLhb9717vehbvuugvHHntsVU046aST0Nvbi0wmg4MPPlhps2zZMjz11FP4wAc+EPzumWeeEWwWLlyInp6e4GfbtvHSSy/hbW97m3ZbWBq4UCgE6Wj5PjMF2gTSwKAUMIFAIBBSYRheGnZP/KdZ/3f//fdjaGgIV1xxBY499ljhv3e/+91YsWJF1d0/55xzcPrpp+Oiiy7CAw88gC1btuDJJ5/Ef/zHfwTk66Mf/ShWrFiBH/3oR1i/fj2++MUv4oUXXhDUurPOOgu/+93v8Lvf/Q6vvvoqrrrqKgwPD1fUlve9731wHAcf/vCHsXbtWjzwwAP4+te/DiCqQE43iAA2MIgAEggEAmFvwIoVK3DOOecIn2BleNe73oU1a9bg2WefrerahmFg5cqVeMtb3oLLL78cRxxxBP7P//k/2LJlS/BJ2Pe///349Kc/jU9+8pM46aSTsHnzZnzwgx8UavUuv/xyXHbZZbj00ktx5pln4pBDDqlI/QOAzs5O/Pa3v8WaNWtwwgkn4Prrr8dnP/tZABDuNRMw3D2VfN7LMTo6ijlz5mBkZGTavgV87Yrf474t3mnQl/z1gfjiRcfV/T6EZJRKJaxcuRIXXHABfYJpD4Kew+wAPYc9j8nJSaxduxZHHXUUWlv10q8ENc4991zss88++PGPfzyt97nrrrvwoQ99CCMjI3U9bzjNF6gGsIHh8DWAJVIACQQCgUCoBpOTk/jOd76D8847D5Zl4e6778ZDDz2EVatW1f1ed955Jw499FDsv//+eP755/GpT30K733ve2f8YxNEABsYdA4ggUAgEAi1g6WJv/jFL6JQKGDZsmW49957heNn6oXe3l589rOfRW9vL/bdd1+85z3vwZe+9KW63ycNRAAbGDznoxpAAoFAIBCqQ0tLCx566KEZude1116La6+9dkbulQTaBNLAsN1wxxARQAKBQCAQCLogAtjAoHMACQQCgUAgVAMigA0MOgaGQCAQCCrwX8YgvD6R5gNEABsYwi5g2gRCIBAIr3vkcjkAwPj4+B5uCWFPg/kA8wkZtAmkgUEKIIFAIBB4ZDIZzJs3Dzt27AAAtLe3wzRJ63k9wXEcjI+PY8eOHViwYAEyGTXVIwLYwBBrAO091xACgUAgzBrsv//+6O7uDkgg4fWJBQsW4MADD4z9eyKADQyeAJZt+qALgUAgELwz7YaHh3HaaadRLeAeRKlUwp/+9CecccYZ0/JlnPHxcbzlLW/B448/jvb2duHvcrlcrPLHQASwgcGX/ZWoBpBAIBAIHCzLmvHvyxJClEollEoltLa2TgsBLJfLWLduHZqbm6v67B8VBjQw+E0gJVIACQQCgUAgaIIIYAPDFgggKYAEAoFAIBD0QASwgSHWABIBJBAIBAKBoAcigA0MPulLKWACgUAgEAi6IALYwHD5cwBtB65LJJBAIBAIBEI6iADuRbAdIoAEAoFAIBDSQQSwgSFX/VEamEAgEAgEgg6IADYw5IxviQ78JBAIBAKBoAEigHsRSvQ9YAKBQCAQCBogAtjAcGEIP5epBpBAIBAIBIIGiAA2MOQUcJEUQAKBQCAQCBogAtjAkPU+UgAJBAKBQCDogAhgA0Ome/Q5OAKBQCAQCDogAtjAiOwCJgJIIBAIBAJBA0QAGxhRBZBSwAQCgUAgENJBBLCBISuAZVIACQQCgUAgaIAIYAND1vuKRAAJBAKBQCBogAhgAyOyC5hSwAQCgUAgEDRABLCBQZtACAQCgUAgVAMigA0M2gRCIBAIBAKhGhABbGDQOYAEAoFAIBCqARHABgZLAWdM75vAZYcIIIFAIBAIhHQQAWxgMAUwl/EeY6lMKWACgUAgEAjpIAK4F6CJEUBSAAkEAoFAIGiACGADg6WAQwWQCCCBQCAQCIR0EAFsYDC6FxBA2gVMIBAIBAJBA0QAGxiBAmhRCphAIBAIBII+iADuBchlLAC0CYRAIBAIBIIeiAA2MORdwHQMDIFAIBAIBB0QAWxgOD4DZLuAi3QQNIFAIBAIBA0QAdwLwAhgmTaBEAgEAoFA0AARwAZGZBMIKYAEAoFAIBA0QASwgRH5EggpgAQCgUAgEDRABLCBESWApAASCAQCgUBIBxHABoacAi4TASQQCAQCgaABIoANDKYANmUpBUwgEAgEAkEfRAAbGEEK2PIPgiYFkEAgEAgEggaIADYwghQw1QASCAQCgUCoAEQAGxhBCjj4EgilgAkEAoFAIKSDCGADQ94FXCyTAkggEAgEAiEdRAAbGK70KThSAAkEAoFAIOiACGADg84BJBAIBAKBUA2IADYyJAWQjoEhEAgEAoGgAyKADQym95ECSCAQCAQCoRIQAWxgyOcA0pdACAQCgUAg6IAIYCMjcg4gpYAJBAKBQCCkgwhgAyNyDAwpgAQCgUAgEDRABLCB4cIAAOQs/xgYIoAEAoFAIBA0QASwQeG6Ybq3KUspYAKBQCAQCPogAtig4M98Zgog7QImEAgEAoGgAyKADQqHVwDpGBgCgUAgEAgVgAhgg0JQAH0C6LiATZ+DIxAIBAKBkAIigI0KTgFkBBAgFZBAIBAIBEI6iAA2KFQ1gABQJgWQQCAQCARCCogANiiEGsCsFfy5VCYFkEAgEAgEQjKIADYoeJ0vYxowvCMBUXKIABIIBAKBQEgGEcAGBX8OoGEAWYvOAiQQCAQCgaAHIoANCr7UzzQM+hoIgUAgEAgEbbxuCOC3v/1tHHLIIWhubsbJJ5+MJ554Quvf/elPf0Imk8EJJ5wwvQ2sEJwACANAxvJywLQLmEAgEAgEQhpeFwTwnnvuwcc//nFcf/31eO655/DmN78Z559/Prq7uxP/3cjICC699FKcffbZM9RSffCbQEzDoBQwgUAgEAgEbbwuCODNN9+MK664AldeeSWOOuoo3HLLLViyZAluu+22xH/3T//0T3jf+96H008/fYZaqo9IDaBJCiCBQCAQCAQ9ZPZ0A6YbxWIRq1evxnXXXSf8fvny5XjyySdj/90Pf/hDbNy4ET/5yU/wxS9+MfU+hUIBhUIh+Hl0dBQAUCqVUCqVqmx9PIqlcvDncrkcpIDzhem5H0ENNtY05nsW9BxmB+g5zA7Qc5gdmO7nUOt193oC2N/fD9u2sXjxYuH3ixcvRm9vr/LfrF+/Htdddx2eeOIJZDJ6Q/SVr3wFN954Y+T3Dz74IFpbWytveApGigCQgQEXK1euRGHKAmDgiT89iZ6X6n47QgpWrVq1p5tAAD2H2QJ6DrMD9BxmB6brOUxOTtb07/d6AshgsIPyfLiuG/kdANi2jfe973248cYbccQRR2hf/9Of/jSuvvrq4OfR0VEsWbIEy5cvR2dnZ/UNj8H2gXFg9ZOwTBMXXHAebtv0JHZNjePkN5yGMw6bX/f7EdQolUpYtWoVzj33XGSz2T3dnNct6DnMDtBzmB2g5zA7MN3PgWUaq8VeTwAXLFgAy7Iial9fX19EFQSAsbExPPPMM3juuefwL//yLwAAx3Hgui4ymQwefPBBnHXWWZF/19TUhKampsjvs9nstDx4y1cmDcO/R8b7GogLk174PYDpes6EykDPYXaAnsPsAD2H2YHpeg61XnOv3wSSy+Vw8sknRyTYVatW4Y1vfGPEvrOzEy+++CLWrFkT/PeRj3wEy5Ytw5o1a3DaaafNVNMTwTaBMBUzS8fAEAgEAoFA0MRerwACwNVXX40PfOADOOWUU3D66afje9/7Hrq7u/GRj3wEgJe+3bFjB+68806Ypoljjz1W+PeLFi1Cc3Nz5Pd7EuwgaH/zLzJ0DAyBQCAQCARNvC4I4MUXX4yBgQF8/vOfR09PD4499lisXLkSBx10EACgp6cn9UzA2QbX/xowq2LMBQSQFEACgUAgEAjJeF0QQAC46qqrcNVVVyn/7o477kj8tzfccANuuOGG+jeqBoQKoEcB6UsgBAKBQCAQdLHX1wDurYjWAFIKmEAgEAgEgh6IADYo2IdA2Ek2bBNI2SEFkEAgEAgEQjKIADYo5E0gTAEslokAEggEAoFASAYRwAaF40uAQQ2g6T3KskMpYAKBQCAQCMkgAtigYDWADLmMvwmEFEACgUAgEAgpIALYoHDlXcC+AlgiBZBAIBAIBEIKiAA2KOJqAOkYGAKBQCAQCGkgAtigcGI+BVcmAkggEAgEAiEFRAAbHOxLIHQOIIFAIBAIBF0QAWxQBHtAKAVMIBAIBAKhQhABbFDI3wKmT8ERCAQCgUDQBRHABgerAcz5CmCZUsAEAoFAIBBSQASwQRF8Cs7/mSmARVIACQQCgUAgpIAIYINC1vmypAASCAQCgUDQBBHABoUbHAPj/ZylGkACgUAgEAiaIALYoJA2AYe7gOlLIAQCgUAgEFJABLDRwT4FxwggfQuYQCAQCARCCogANiokoS/HvgTiEAEkEAgEAoGQDCKADQo5BZwxvUdZpE0gBAKBQCAQUkAEsEER2QSSoRQwgUAgEAgEPRABbFCECqDHALMmpYAJBAKBQCDogQhggyOiAFIKmEAgEAgEQgqIADYoXInnZUw6B5BAIBAIBIIeiAA2KFw/CRw5B5AIIIFAIBAIhBQQAWxQBN8CDr4EQp+CIxAIBAKBoAcigA0PfxOIfw5gkRRAAoFAIBAIKSAC2OAgBZBAIBAIBEKlIALYoJA3gVANIIFAIBAIBF0QAWxQyJtAMsGn4NzgkGgCgUAgEAgEFYgANijiNoEAdBYggUAgEAiEZBABbHCwL4HkOAJIXwMhEAgEAoGQBCKADQpZ42MpYAAolUkBJBAIBAKBEA8igA0KOQXMvgQCACVSAAkEAoFAICSACGCDQt4EYhhGcBYg7QQmEAgEAoGQBCKAjQ4jVP7oLEACgUAgEAg6IALYqGApYO5XLA1MXwMhEAgEAoGQBCKADQqVxpfLkAJIIBAIBAIhHUQAGxTssGcuA4yMSV8DIRAIBAKBkA4igA0KpvHxBDCboU0gBAKBQCAQ0kEEsMFhcFWA2UABpBQwgUAgEAiEeBABbFDI5wAC4S5gUgAJBAKBQCAkgQhgg0Kl8WXoHEACgUAgEAgaIALYoAg2gXC/CxVASgETCAQCgUCIBxHARoeQAvZ+KJMCSCAQCAQCIQFEABsVwUHQ0S+B0EHQBAKBQCAQkkAEsEGhrgGkg6AJBAKBQCCkgwhgg0K1CzhHm0AIBAKBQCBogAhgg8JFdBNI8CUQhxRAAoFAIBAI8SAC2OAwOAkw638LuFQmBZBAIBAIBEI8iAA2KIIUMPe7rOnvAnaIABIIBAKBQIgHEcAGhSrJS+cAEggEAoFA0AERwAZFcBA0fw5ghjaBEAgEAoFASAcRwL0IwSYQIoAEAoFAIBASQASwwcFvAsll6BxAAoFAIBAI6SAC2KBQbQLJ+JtA6EsgBAKBQCAQkkAEsEGRtAmEFEACgUAgEAhJyMzUjX7zm98of28YBpqbm7F06VIccsghM9WchodyEwh9CYRAIBAIBIIGZowAXnTRRTAMIyAuDOx3hmHgTW96E371q19h7ty5M9WshocBePlgw0g/Bsa3S0U97VTfrKvlngQCgUAgEGrGjKWAV61ahVNPPRWrVq3CyMgIRkZGsGrVKrzhDW/A/fffj8cffxwDAwP45Cc/OVNNamgwitfujgO3HA+svBYZK2EX8PZngK8dBjz74+QLP/tjz2776mS7338K+H/HA5OD8TaOA/zwAuDHF4VEUIXx3V4fHroh+Z7d/wt8fRnw4i+S7VbfAdx8NLDr5WS7ldcC3z4dKIzH2zg28MMLgZ9dlnyt8V3AracAf/xGst3WPwPfPBF47cFku2fvBP7rNGBwc7LdA9d77SsX423sMvCTdwMrr0m+1tgu4PtnAat/lGy37Sng+2cD3X9Jtnv+Hq9t433Jdn/4MvCLKzx/iYNjA/f+I/DEzcnXmugH/vtiYN3vk+12rgF++n5g97pku7X3A7/8cLKPAMD/3gY8/IVkG8fxntcLP0+2mxoCfvdvwI6Ud3D3a8DvrwPGepPttvwR+MNXPD9Iwkv3Amv+O9nGdYG/fM97F5NQmgSe/BYw3J1sN9oDPL0CKE4k2+1eB7x8X3IcATzf3PZUsg0AbHwEGN6WbOO6wJY/pbetlPeeVVrbpoaAoa3pbRvfDeRH0u0m+gG7lG6XH023cV2gXEi3c5z0frLrEWY9ZowAfuxjH8PNN9+Ms88+Gx0dHejo6MDZZ5+Nr3/967jmmmtwxhln4JZbbsGqVatmqkkNDfZ+vXXyQWCkG3jqu8hZCV8C+dU/A5MDwG/+JfnCv/kXPbu/fMcL7i/cE28zvBXofhLY9KgX/JKuNdKdTp5+dikw3gvce0Wy3W8/Bozu8EhqEp76LtD3CvDq7+Jtel8Atv4ReOVXXqCPgfnHm4GB9ekk9q53A4ObgP9+T7Ldbz4K7H4VeCSBVDgO8Odvee3b/Hi83dY/ARtWAU99L5lkPXyjN5H99l+T2/bD84EdzwA//Ydku/s+7LXtj7fE25SLwGP/F3jpF0DPmni71x4AXvyZ18YEWKv+HXjtf4C7/09y275/FvDq/cB9/5Rsd8/7PR9/5vZ4m+IE8D/XAU98PXmCf+VX3vP65ZXJ9/zdJ4GnfwCsOC/Z7vtvA/5ym0cqk3DHhcBj/wms/XW8zdQw8IvLvTgxNRxv9/J9wO+vAW5Pbpv1P9cBD17vvbNJWLEc+N3VwJO3Jtv91xuAn38Q2P50vM1EP7DiXO+/pAXRut8DP/474M53Jt/zkS8Ad1zgLVCScPf/8fxpfcKiznW9Bd03TwRGd8bbje8GvnG0d70kEtX9v8BNy7w4kQDj+buB/1yS7L8AsOqzwJf3A3peiLdxHOC/3+st1pMWRJODwG1nAPdcknzPnheAb56U/uxf+Q3wrTckxzgAeOImb2E62hNvUy4Cv/048PMPJcfCoS2eTVLsAoBNjwH3XglsfiLZbpZixgjgxo0b0dnZGfl9Z2cnNm3aBAA4/PDD0d/fP1NNamiw0JB1wxWgfwoMimVF4CiMVXaDYsILzisJSSvQyQH1n2Xoti1NSZJRmtK8Z0Kg5SfDqXi105jU9NukcVUhgXRigh+PhD5M7ObunzDWaWojg+M//6Rnyk9epQQFhVeIknxpmCNWCUqWsfO5+GvwcG3v/0mEjb9P0nPjVcQkuySCy2PdSu//Toq6w+6166V4G179SVLre54P/5y0WEtTVn2YL/hKYtLzcF1v4Qd4KmUcRraHf05SFLdwk3AhQfV68lve/wc3xtsAHqEAPNIeh3IB2PQH789J6mnvC16WwLWTMxNr7gLsIjCwITl+/fxD3nv4/N3xNgAy9/sE8fGvxxuN9wFPftO7XtLz3bDK+2+kG+hPUM4fvhHoexlY+9tkEvv9t3nPYNVn420cG/jZB7z7PXtnvN3udcDDn/cWppsejbd76V5g9Q+Bl3+Z/Px//ynP5qHPxdsAwJ1/C7z4c2+x04CYMQJ48skn45prrsHu3eFktHv3blx77bU49dRTAQDr16/HAQccMFNNamywTSAIVzFtthf0lCngSiV5I8E1eEKRRDz41NREAkGyudV6Yhqiwj5kmuL/jl8lJt1zjLNLmkBLk+Gfa01/8OpFU3u8HT8ZJk14/PNKmtyTrqFCLqFt/Fg1z4m3G9wU/jkp7cX3IclOh4jzz6d9UbzdEEeIk/q6+1W9tvHKTxKx530p1oYjB10Hxdvx5NBMKPnmyWmSH/CTZq1+zseH+Uvj7XY8q3e9nWvCPyf1YWC93vUY5hyYcC1uPJL6wCtrTkIqfmhL+OekxcRYgorI4HLzQJKP8PdMipn8ArGY4KN8rE/yZTYOboISxy/UHTvebnQH17aEcePtkoQHvg86ft63Nt1mFmLGCOCKFSuwefNmHHDAAVi6dCkOP/xwHHDAAdiyZQt+8IMfAADGx8fxmc98ZqaatFeg3Qmdvb3sTbrKFHDSS8bA/7skAjjOBe4kUsTbCaRRAj+ZJRFFHfCKh5WLt+MDQZKSpWvH9yGtZigNfHBPeg48AUwidrzKlfS8+LGLS4/wQTiJ2A1vCf+cRLD5ySc/HG/Hq0AJdoaOmsyTtJZ58Xa6BHuE85EkAsiPb6VkWwb/nmSb4+141TxxkcBdL6lmjH/+SQoVQ6Yl/u/4sUpSO/lnmjS+/MSf1Af+nYqb3Hn/txKIM09wkt573i7JR/kxrTRrIyHjcO9d0gY7vt1J5KmkacePaa2xkB+3JOIs9CHhnrp2/Hjp+HmDYsZ2AS9btgxr167FAw88gNdeew2u6+LII4/EueeeC9P/hNlFF100U81peLBXrMsJJ/S20iCAJpRUKWBePSuMq5UlgUQkBIyxXeGfkwgbv8JPUmbGd4l2c/aPt2WI2zXMX6ucoLIIbUsgdnxfk+z4gDg1qB7fpJoTHvyYJhE7IcWeYMenrpOux6M4piZ4QtBM8BF+AtZVHZNqz/j7Jti5hgWDpXcdBzAVBJqfVOwEcsoH/iTiwV8vyY73x/xIsvqYBt22CfdMIEW8XRJR5MlTYQzItUZteAKQNGkL45ZwT13yVNS0Myzu2lPqPpS58dXtQ1J5hTYBnNCzM8xwUR8TCy2eACaVVwikM4HYCeObRBSlvtbi50VNgq1rp0vYecGkOJHu5w2KGSOAgHfky9vf/na8/e1vn8nb7pVgvtfhhIGzuTQMYDFKKqLBpxUn+9MJYKKSwf1dkrLHB/UkosgHujg7+WUrjKYTlKR78oFAV9lLsDP4CXRyAOhSpI1kQhpHYvl7JpEnXTv+vokEkBvjqSH1+PLXSkrvCPccrr1tAuFJsMs0he0qjAAtiiOlhHFLaFtVJKsOdjziSCxPUHTJkzaJTSKKHKkojAIdiyMmJleXnKjs6apdgl0diCL/zsWRWJ5QJKUedUmnrp2QSUggWTwBLOeBbFRpFQhgorJXBYnVttOseY6NhZqKna46yf9d4pjIz2Fh1IZ/nxuUDM4oAXz44Yfx8MMPo6+vD45EUm6/PWWXEkGA60/WWTckdjnXe+GVNYDCxB2jjAk2CbJ3NSQg6eUtawQqeQWbjyGA1UzGiQSFn2gT7EoaREYmgHEkViCTCSlbftwSNqhotQ2IEsq5Byfb5EfqS2KTxlf3efEr93wMAdT2kTorgILdsNpG9vPCKNDSpbiWbtt0yVMVJCuGKFqOtAM3Vomtpm11SJ/KdgoSq01itJU9zevpEkVefS+MKwmgkAJOVPYm6mynoRTKu7Ttorr+sFjFuNXFToN4CnWQjUkAZ6wG8MYbb8Ty5cvx8MMPo7+/H0NDQ8J/hOqQRfgiZf3VduRTcK4rprriUqNlDZuIXUIKTdsun24nt8eOOeaBt0tK72nbVdEHHYKta5dIxDXrDsuaqoKQBoyZfIRVrx2/ANBNKeqSMR3C4zqiEhtHFPlxzw/Hr95LmqSzGru4PsjPW8dOlzwlKoWaqWLhvuq2RQhgnM9VQ5607WokuzJJjPURXdJZTR9ixs2xRWU1pg+iAlgHcqptp0Ge5JMB4vqqW5+oW9unmwLWIoBce5yy3pmMswwzpgB+5zvfwR133IEPfOADM3XLvRosHuW4dEvWVwCLsgIoExcdkuXa3jEYqgJogbAlEcUpTbsKyWmSXUmDTFZkp9sHDUIpT+6xdprkVLBLOPdM6GuS3VS6ndyHcgHItaVcK2nHq6YvaVzPcqUAHOsjUmG5UwasbLJd0lE22hOjRq2VPL5xZEGb2FWTPtUl4hrEg923OXoEWFV9qLWvrqtHxvjn7Trev1H6eTWbO2pMx8qLrhify9j1VgA1awCLGn2QdxEXx4C2+VG7kmbbdO2qIooa5JT9rFLrZzFmTAEsFot44xvfOFO32+sRngMYTtSW/+eIAliWJ+04kqVrp0metNWzqXS7qtqWj1+5a5PYaVQxdfqqPW41EnG7FJ6Nl2Sn3QdN0llVX9V2pqw81fwcdPugScT5PsQq2JqLBOFaBT2FSptgJy06uIkxjojLzyFOxa5mB22ikqWhxpULEDfEaRDsRDvdGkCeoCSQWJ0UsEyeYgiPQMSdUvxzrWaDivaGlwrIk9KuzptAdBRFx9YjgBEiXuOO5z2AGSOAV155Jf77v1M+M0TQBov3TPUDgKwfeCM1gNoKYBVKoa4qVivJirRNIwUMxMvy9SQoriumHmslHlWpmEl94HcDaip7NauYU+k2QHUqZoydJW840O5rnF0Vu4W11WTN8dVVYmP9XEPVBSRiF9M2uyymHmPsIgRQp6+Jz55/DkmbSjTs5Elb18/j4lcxnRBHrpdoxxOPmPIKWY2OIR6R5xBLxqqpT4yxc109kqWbAubtylPxh8DXM1WsS+zk+zQgAZyxFHA+n8f3vvc9PPTQQzj++OORzYopl5tvTvnGJ0EC2wQSBjqmAJYiCqBMPHTVHZ1aQU0FMFEZ0SCKtfQhozgPUJecapAxM5J61CB2SXZyOjluo0Ud+1A1wdaxmyEFsCrikWhXReo8zs9dV48U10LEVX6uS8R1VMyIOqm2y8gp4Ng+SARbZ0NRzQRbmtxjCXYVdrUSbNku7jnIxDB2QSQ/h7g+TKTb6LbNLuplEuQ+yL4VZ1eaBCxVOcGEaBMHHdU5kp6Os5OJeIVfeZoFmDEC+MILL+CEE04AALz0kvjpIiPpkEpCIvgUMAu89VMANdOscdBZ9TqO3pdAtMmTZl91VTaNvpqy8qSbYo9N7yk2vKh2yFWTeqw1/a+rjFRVA1hbzWaUANZa6lBF/WeselaEkHrUrrGswE71EQdt4lGNOhnzHFz5OVSgYipJrAbxkK9XK8GOkKxalW6NPji23jut2QdtIl7UHV8dciqRIm0lVtMu7kzGoqafFzXIrqxO1ppJmMWYMQL4hz/8YaZu9bpAmALmagAdVgMoE8Bq1TOdTQqaqUfttKhm22oN8FXtFo5ZacsKYOw9dTeyKAiKigBWQ7Jig5mCdKpQzW5sp6R3nl3cuDmO+HcxdhHiUWtftVOUOsRDk1DoLhKq2lBU4+Su2YcIEa+ripnUB35yrzPx0CoTKOqpmDWXJuiRrOhziOurbpmATq12FVmOetgJ8SGhTEBHbJD/feKiTsNuFmPGagAJ9YULwIKNDEK53bKZAiingHWVvSoVwFo2WmgTitlbx1j31GM16VjdTQraqlgd6xgBPTIW209N5Un7OcjpJ43npa2eaZLOSnZZq6D7vLQVQA0VU1OdjKQe65pmTZi0eXWo5vR/nWsxdXxEO3bp+bl2aQr/biYRbMEupp/yv09KFWvZadb18nZ170ONdrMYM6YAvu1tb0tM9T7yyCMz1ZS9Aq4L5CA6HNsFWXIcuK4bjrf2pF0FCXCd+GM06nm8y57ayayVetQMtNXsAlb9u6BtOil26cwwbYKim4qvIN2t+matTppVk0xGUvGzScXU3nxQhTqpa5dYn6ix4UVTdYxuxqmg1EFpp1FLLPurtp2mulMJkVGpmAJB0b1nbSTLdG0tO5EUJdRiavWhCsKm2zbVv1PZJfm5jl29yeksxowRQFb/x1AqlbBmzRq89NJLuOyyy2aqGXsVmiQCyBRA1wVsx0XGYgSw3gqgwk5JAOuZMqizAiifP6e10SJupa2pPNVbPRMmxlpT4tXa1ZFQ6m4+iFVidZ99lSqQXQRMBYnVUjGrUKYT7TSvp5Pycmxo1SdGUmNqO8OV6rS0J9oa+lD1pB1HKKaRyNRzPBKuZ2o/B6kPcQv6upKnau1qUDHl+kHtZ6r7HBovBTxjBPAb3/iG8vc33HADxsenf/fMt7/9bXzta19DT08PjjnmGNxyyy1485vfrLT95S9/idtuuw1r1qxBoVDAMcccgxtuuAHnnXfetLdTFy7cCAE0OAcsOy4y7Jvn1Sh7gL6CUi4ATR0KOx0FsN71idX2VVGAHjkbT1cB1FWyalQA9wTBrmYns65djSlxS57wtMlCBXYqFVNWULSutQdSY3EqZt2Jh6Q81UgohaM/4gibPLnHkl1NtV7XTrcOTEeF1+2D5rPXJ4CKPqQRwNhnVV8Vs64p4Krfwb03BbzHawAvueSSaf8O8D333IOPf/zjuP766/Hcc8/hzW9+M84//3x0d3cr7R9//HGce+65WLlyJVavXo23ve1teMc73oHnnntuWttZCVwXaDKkFDAXuIWvgUxnDWCcnetqTu7V1kbNQB80yWm02LoC4qy0q0LtLBfUtZj1Vk5106zadvzkXhthi054NU7aETtFHxxHWiTokh3Nyb1W4qEz6en0U3mtWp9DFUrLjBFsTbtqVKVaiUeEnMYosRFCWUNfHVv8zrYuYdP28zqSMdeB8rzAej971feMGwx7nAD++c9/RnOzYlVdR9x888244oorcOWVV+Koo47CLbfcgiVLluC2225T2t9yyy249tprceqpp+Lwww/Hl7/8ZRx++OH47W9/O63trAQuoilgQQHkN4LsiZ1ZdkkMGDUfPVNlCq2WTSWRF1x9TyOieMT0QTc4aqsZvJ2rDo6RCUrznrqTdlLtoWCncd8aJ4voc6iVZGmMiW69W9XEuUYVU+d6VT97TeVJd3LXsbOL6oWONiGe7hq1PZECjiPiujWAGn2tu7JXpV0tz1WXdEY22dTYh1mMGUsB//3f/73ws+u66OnpwTPPPIPPfOYz03bfYrGI1atX47rrrhN+v3z5cjz55JNa13AcB2NjY5g3b950NLE6uC6aIDqcUc7DMg3YjiueBVjNAc+JdvILorCrWmWpYSJT2ekSFJ2JMa4GEJopr8j1NIliJaRNTmNrk0ndPlRB7ICE5yARQFUtpibprLrmqZbJJ2IT90zrqDoCimevWcumup622qXnlxEiXispVj0v+Vgk7dq+OsclLfXMqW6hU2N9YtWKuBYBrLcSG/clm1oIZWud2lbjAmYWY8YI4Jw5c4SfTdPEsmXL8PnPfx7Lly+ftvv29/fDtm0sXrxY+P3ixYvR29urdY2bbroJExMTeO973xtrUygUUCiEL8XoqPe9x1KphFKp/rUBtu0gB/EFd8t5ZC2PAE4ViiiVvCJAs1SAxdk5pSnYijZZ5YIgCdv5CTgKu4xTAj9Fl/PjcGW7Yh58FYlbzqNcLEYmd6NYEJwwrm1mqSj0wS5OKdtmlUtCH8qFiWjbFH0o5ceB1rQ+FFCWrlUqlSITXmwfypp9sKU+5OP6UJb6MBHdpFAspPYBAIyS/Bwma+tDuSg9h8loH1wXWUnFLBWmIvVHRnFKaJvuc4hvWyG9bQAytuwjE4Bsl5+UxreoHt+C2AennFePbzEvjm8ppg+lvGYfimIfChNAU5doVJD7EOMj0nNwStE+lEolmBI5rclHoHpXJ4AmKXkV6UO+6j4A0fG1i3l1LCwXpVioeFfL0jtoF9WxsDCp1TazOCW9g9G2lUqlCAEsF6fq5+e2rp8X9Pxc912N7UMx2odMm9SHCb0+yD4S1wdpXlW9q2zunw4OUI/rzugmkK6uLuXfbdiwAUuXLp3W+8tH0AjHpCTg7rvvxg033IBf//rXWLRoUazdV77yFdx4442R3z/44INobW1V/IvasLbXQFZSnibHRn2FxsCqh/+ARS3e7w/b9RKO5ex2buvG6pUrI9c8Zcc27M/9/MrLL2DT7qjdOeOj4F+tP//xcQy2i2Q6Vx7D+dzPBlz8fuX9cA1LsFs08jxO534eHdqNxxRtW9azFkdyP3dvWo8XFHan7erBPtzPLz73DLq72yJ2b89PCh9OeOIPD2GsZZ1g01LYDX5p4hQmsFJxz/1c8eDtwb6d+JPC7pgd68F7+abX1uKViajdGf27sYD7+dmn/4ye9dGalr+RSPEjD/4e+ZyoUndMbcdZ3M+F8RE8oGjbgQPP4kTu5107tuEphd3x3ZtwCPfzupdfwPqBqN2Zw4Po4n7+y5NPoL9jQDRyHbxT+ncPrvwNylaL8Lv5Y2vxJu7n8ZEBPKJo21JpwtuxdSOeU9idumMb9uN+fvn5Z7Fl59yI3fKJUfAt+dPjj2CkdbNg01Qaxtv5X5TzSh/ZZ+RZnMb9PNy/C08o7I7c+SqWcT9v2bAOL+Wjdqf39YCPRmue+Qt2bIpW9FxQmBImvccefhATTeJiuC3fg3O4n0tT4/i9om0HDD6Dk7mfd/fswP8q7I6TnsP6V1/GupGo3VsG+sCP+tP/+yf0rZU2BLou3ikpLQ89sBLFjLjprGtyE87kfp4cG8ZDirYdsnsNjud+3rltqzIWnti9GQdyP7/y0hps6ovanTUyCL4lf/7jYxhs7xFsMvYULuR+9mLhb+Ea4vS7YOxlnMH9HBcLD+99CUdzP3dv3qCMhW+QFkRxsXD55Jjg5088+gjGWl4TbJqLg+C3QNqFKaWf7zv8DN7A/TzQ14snFXZH7XwVR3A/b1r/Kl6ZjNq9sa8HC7mfn336f9Gz3o7YXSgRz0ceegD53HzBpmNqhxgLJ0aVsXDJwGqcxP28a2e3OhZuWy/GwldewvrBqB0ArFq1Svn7WjE5mfDZOw3MGAG84IIL8Mgjj0Tq/datW4ezzz4b27dvn5b7LliwAJZlRdS+vr6+iCoo45577sEVV1yBn//85zjnnHMSbT/96U/j6quvDn4eHR3FkiVLsHz5cnR2Kr5dWCP6/rQZPVtfEX7X2pxFSzmH/GQJZ7zpLTh8cTsAwHxyA7AztNtvn4VYfMEFkWtav/gZMBz+fPSypTjy9KhdZsN14LPPp592CtyD3iQaje8CXhR/df7ys4GsSIaN10xgU/jznPZWXKBom/no8wD3CA86YD8coOrD3T8ERsOfjz/mKBx7kqIPa03wAuqb3/jXwL5/JRoNbgK4ITbhRNpWKpXwyj1iKcG8OR3qPjz4J6Av/PnQgw7AwcsVfei7FeAO+z/p+GPgHqu43hqReJ71ljcC8w4VjXpfBF4Nf2zKGsq2Gc/uBrg9UYsXzFXaWfc/AHA8btnSg3H4WxTju+M/AW7fzmknnwB3qfQOlfPAGvFXy89+K9AqBm5jUwuwIfy5vTmnfA5bf/xr4XcH7LMQ+6r68LO7gJHw52OPOhxHv0HRh9c+Cb7M9k1/fSrcA94gGo1sB7gvWxpwccHblwOmGFqNtWXBz+d2xPj5w08Bu8KfD16yHw48X9GHH38HGAt/PuG4o/FXf6Xow4tivdyZbzodWHikaNS3Flgb/pg1ofaRNUPA1vDnhfM6lc9h14ofCr87/NCDcNjbFG3b+TWAm79OPfF4uEdKdnYp4iPnvPUtQOe+Ytu2PwVw67fWpox6fJ/qBripZr/F89Wx8L77gMHw56OPOAxHvlHRh82fBbhs6OlvOBnuwdLpEpODwAvir84/9ywg1y72YUNO8PM5bS3qPjz+EsBxzIP23ycSC0ulEka/c5Pwu+OPPhLHnqzow7pPCH7+5jeeFo2Fw1uBl8MfLdhqH3mlAHBrpPlz2tV9WPWk4OeHHnwADj5X8Rx+9F8AtyY46a+OhXuMwu55kRSedeabgLmHiEaRWGjqxcL58+JjYX/487LDDsbhZ0afw6pVq3Duuecim1XsrK4RLNNYLWaMAM6dOxcXXXQR7r//fmQy3m3Xrl2Ls846KzG1WityuRxOPvlkrFq1Cn/3d38X/H7VqlV45ztl/SHE3Xffjcsvvxx33303Lrzwwlg7hqamJjQ1RT/Xlc1mp+XBm5YVKoBmBnDKMJwyspanArimGd7XEImC6dowlW0S7Sw4sFR20soyY7iAbKfYXpQ1kWpnOGX1eEX6UFb3QWpbbB+kWjattrk2splMJHVjuppti4yvXf34um7ETt0HkQAYdilmfEU70ynG9EG0s9yy1vhmUI62TT63D0DWcKJ2rG2GCbgODLug7EOQ8jIswLVhOiV1H1iK0r+e5ZTUfWDKk2+XgZ0wvgbY2Cj7EDx7zy72Ocj+68SNr6iyKceX74OPrKoP0rsVN76QMg5x4yunHmvqg3zGJoCsmTS+Hgy7qDW+sT4i98GNeVelOsYMFG1TxULVOx15DjF9kJ9DTLyJPIe4eCPV3yW+g8GPtjfXmGJGR34O8eOr6+ca4+u6Ebusyk7uQ9w7KPfB1exD3Phi+nhArdecsV3A9957LyYmJvC+970PruvipZdewlvf+lb8wz/8A/7f//t/03rvq6++Gj/4wQ9w++23Y+3atfjEJz6B7u5ufOQjHwHgqXeXXnppYH/33Xfj0ksvxU033YS//uu/Rm9vL3p7ezEyMhJ3iz2CLJOwmKpmlwICKHwOjk3GmZbATgkWkAO7mA9vB3bN8XbMxuI2JejYpbUt1c6u3/WUfVDUjEC+Z8q46bbNzCa0jQs+OnZJNsI9/TVhWh8CO93rpexQZqUBKjtGYphiEnPPoAYwsEvZzJDrSLEri9dTbqDwr8Wfg6kq8ncku7SNEbkUu2BMOuLbxh9RkzQmcj+dsvdvI/csiXaxB6Oze+r2IaFt/LPO+unLpI0sSTb89YKYGWcnx9aUPiRdj/3OagJYpVqSHRfPk+/J+ppyHE+KXeR6Om3TtUvbQBHMNSnPi9nFnTjBkHQ9+Z6p45H2HAp6drMYM0YAm5ubcf/992P9+vV4z3veg7PPPhuXXnopbr755mm/98UXX4xbbrkFn//853HCCSfg8ccfx8qVK3HQQQcBAHp6eoQzAb/73e+iXC7j//v//j/su+++wX8f+9jHpr2tunBdN/wOMHNAp4ys//WPMr8LmAV4doitvPuuWrtMgl1AxJo8BSXOLgi0LeK1467HXt7UttXBTraJsQuIR8X3TOlrVqNtunZJNsq21doHDTuexAa+pDq/i03ayfc0I32NaZvm9SITgdJ/2aTClbYo+1Dh5J5LmIz5ewR2KUfUJJE2mYilXS+FiAfEI5dGPEqiXRoBTOqrzrX43yeResGuwusp28Z8pCncvazsq8YzBbT7akZ8RNPntH0kgWSljhtbEKUs1iLXS3gH0+7Lfsfu6ZSSjxSqh//OckwrARwdHRX+MwwD99xzD5566im8613vwmc+85ng76YbV111FbZs2YJCoYDVq1fjLW95S/B3d9xxBx599NHg50cffRSu60b+u+OOO6a9nbpwgTAFzCYyTgEsqgigtrKXphRG7xt7LSuTolBp3jOYtBNUR/562YS+um6U7Ca1jf/6g8IuSAEnXUt1vVQlVkNh1bVjNq6jVne02yY/hxQfCSa8hPE1zHDnby0EUH4faiGA/HdDk+wChaIpVDtr6EPULlrw7tmxSSpc/MXa6NoxG74dSrtkghIqgHUgY8zGzIY+nGQXEIpC8uTO21XbNiBK2pJUYisbqv9JfagTOQ2eQ1Jf+QOeE0kWIzucj6jaV5b6oE3sUuySiCL/u0Q7ibDxv0tsWw3EeZZjWmsAu7q6lDttXdfFd77zHXz3u98NduPadkygIyjhun7NDCDI7eoUsK6yZ0t2milgpbrDpQCtrBd86qFQadsl9JWv2UuakAMSk6zuBAqgtspWByVWUAA17HgS65QAs0ltp6tO6iqFOuok85G4+wakM4HEgPvyQWCXQp6Srsf/2yQ7NjmY/kLHKacQwOQ+6NtJ6SxVX4X0acKYyOnOuPtG2qYe3+BbwGnPwZFIRRI5tXLeYpL/d8prcZO76pu22kqhrFDpprET1DMrhzAFrKGy6ZKitAO5dVQx/nqJfWjy/byUogDqklhWJpCy8E8cX9/GMPVS8bLSHfkEqNy2GvswizGtBPAPf/jDdF7+dY+MIREP1w5SwKUy/9keXWWvQjsdBdDMJNeV6Sh2gl1aCk2jD4J6pqNi5oKNAMoaQEYodRXWtD6wySyxbXz6VMOOT2PbpehBujL511Yx4/rK+qChsAo+opFmjU09VtqHhOfFB/2kvrJ+Wjm9PiS9MxXZabyDwe+MUHmqKY2tqcS6UtviFgkRQpmWSdBRWCUSGyGAMvmvYZHAbz5IJLFskZCN/k5ll0pOGbFLJoohAdRQWHXtrJwXO4qlZDKmS7BT06wyKU7wXysXPm8dhTXterqp+LQ09izGtBLAM888M92IUDWCFDAny7dmPDJSKKtqACtMsyrVMy59mlgDqFJ3klLAmupkkurI/75S9SypOJ6pOzEqZrAJpOIayxSVLVGdZL8zwhVs4vhyhK+m51CpipmgUKkIoI5C5drKL4aYEeUpRT1LHF+VepakUGXDHZHKvuqmdnVTxRWkgPmJMc3OP1FAK1UcSwCluJRKspJS7HzbNPqQpmJGnoOuEluLwsr5SNCOBLtcsp9rkVOolNgEcqprZ2XDfmiRp1pTwAXRLqk+0cpxG+wSCGC2mVvQJ6SKA2KnmQKOI4qzGDN2DAwADA8P46mnnkJfXx8cqQ6J34VLSIfrutFdwADaLG9ci3xKvdqNACrHV6VPE3efWnq7VNPIqS6JjahsKUEvcZMCT2Jz3gueVAOoWztZF4VVSj0Cegqrrp12jWVaOYFOCthKUXckosCub4nhK5qKryHNKkyMGjWA/MRYSwo4ku5OIU+J/qtQJ5P83MqmEEBJmU5VACtNdyeRpxxHsHV9pJZUfAXkNO16fB9YrNAmsVE/12obeEVcow9mmv9KiwTWtjg7XfKfaleBwsrXWCYRQEYUy3m9DS9p37FPqv+c5ZgxAvjb3/4W73//+zExMYGOjg6hNtAwDCKAFcIFuF3AYdBrsbzav0KpCgWwks0dQAU1gAlBT1aUXBtwHMA0k+3qsUMZSE4XMhJkWlz9UbQPhpx6rEWd5O10FVYzoTaKTz/55+PNqBJbaQo4qb5LmNxLkYkxmnpMIx4JfQ3qiqyU9KmKZGmkgGPTopp2kUVd0sSYCclTUro7LY0tP4e4VLzWs7fDI2p00tiMnMb2QSo5iLWTU+xpRDypbTwB1FisWdnwOSX5kpCKj/q5LomNEvGU9KmO//LPIakPSfesyE5D7VQuEtIWExUsOGut153FmLFjYP7t3/4Nl19+OcbGxjA8PIyhoaHgv8HBwfQLEAS4LpcC5laMLYECyBNAedLWnVSS6oo4O530qfxv4+4Zd19thaoSEmv4Z3Ol3DOlD5FjYLRrLGtQ2YJjdlJSMrwSm5i6qVRh1TwGRieNnao+SIE2xi5UPOqgslU6qZjZlBSlVPPklGN2qVaqUOkoI5rp07Q0tmb9nKHzHCpWWNMmbUaemsIzJesyuWu0DdA7xqhS4qFrF0cAdcowBIKd9Owr7QP37JN2Y6ftxK9koWNmU9rGx/OkvmqMG3+PNF+axZgxArhjxw7867/+67R8F/f1imAXsJUNgp6eAlgL8eD+re4mkEpqAGOvVyGJ1VEnrWy4uq6hD5HNBzWfs6ihsummT4X0XtJO2yoVVmWZgKJONFUBTJq0VQqgigBqklidjRaqcUu105hAeT93Ew5brssRNbqKB08C6nAcT7D5QINgA3rqjnaKsk6p+GB8GWFPWSRYGmlRwS6hD/JO5ir7oEfEefKvu0hI6Ku8uALUfi5vdEuKSal2vNKtcZpAaizUK3WI2jXeSSYzRgDPO+88PPPMMzN1u70eLtxwFzAXHFtM73fqcwDrQZ749GnS5MMTFDaBJiiF8jElaXZxRcMRO01lL5U8xaefDEg1gHFn7VW6G7tSgp1qp0F2k2on+X+bpBIrj9lJUScT03sKZUT1HCITXlxdkZwa053wNO100qdxdjopStU7mJQ+1S0TqFNqLFgQ6ZQwCHZp5FRjkVC39B63YSDOLqjDTfMRnqAkkSfFYlhrQ1HKc9BS4VN2WVdqxx+tkjSPsM1pSeMh2M1gH7Q366XYzWLMWA3ghRdeiGuuuQavvPIKjjvuuMg37P72b/92ppqyV0BIAbPi13IezX4KuFBK2ARSlxpALn2aRjzYNy4TDyrW3KRQ6WHWujuUddOnSV8C0T1rr+JzFutAYgU7DYKdelZk0hEqitRYXYh4jqtj1FAAUyd3zdSjjmqju9M2dZdqBeRUsEsgChWlsSus76p2Nza7p2EmT+6VEnFTkyimqTuRRUJC2URaXVylxMPKhrtUE0kWi79qlTg4GL0u5EmxWEskdvKRQnHnjmpkOQS7BHVd99mn9dXWaBt/vTS7WYwZI4D/+I//CAD4/Oc/H/k7Ogi6cggEkHPoZtMngEk1gKk1anU83sXMwtuykmLH0tixmxTY5FPhYda6O5RrqgFkXwJJO2tPGl/t9GlK4E48IJdTYnXIbsWfeNMsE9AOyBoF6LbaR7SUJ/7stnrWFQkKVRJ5Sql1rXj3qU4KOCUtyqfQElOZij64Tlhz50NrN7bu+PJxRGuhY6XYVXrYvYZCpVuGkXbepWxnF5Ptkogdr8InEUUhFiZsFKq0D3zs07FL3XCYRGJV5FT1vPj5MunIJrkPLvQ2JhIBjIV87AuhdgTHwHDqQ7NlA7BiagBTdlxFlMI6BTMGnVRm2dYjKLEktpRup0yLVk+yIptAYuy0noNqh3Jq+jTpGJjoIkEr7cHS2HFBTyfFDlSQxtYgHszP7YKyD1rnngltS7LjU4+6ylOF5Clxo0WlBDtBoUo9ZocnWTrpPUndMWMIYJJqU3HaTlN50k5R1vlrRzqp3Yr6mvV8QUdl01bP6qEAppEnlQKoYae8J09ik+KN6l3VtUt494V4XgbMXIxd4xLAGasB5JHP5/fEbfc6ZPlNID4JaDI8tU2sAZTUs7orgCmrsqQUmhBYNFb49fhkXKVp0ZSz9sygBpBf9WqoD2nf+NWt79JSYjVrBXVJbGJRNhfwE5VCzbSSoBTGTz6Rmifd9HTqPStNsSfYcRu2Eic9HfIkfOEjTT2rQHlKs0tRdyLvg1LpdhT31CQeyuspCGCSXVLbgGhflSqbLunUVagUY6JFnhQ2Lv8OatR0p8Zz3bjP+7mZft+spp9ndPy8mhpATT9PWmA1cA3gjBFA27bxhS98Afvvvz/a29uxadMmAMBnPvMZrFixYqaasdfAdd3wHEBOQfEUQKCo+hJIMLm7yYEl8XgXlfJUffq0YoKSNLkLxwawzQwJK0HtDRSaNYC6tUC66VPdQ6oTx1dFZDRqAGOvp5Ni969lmNz4pkwWdSAokVR8qgKooXTzqd3EXcBp5EmToGgpTyrikUACKrJLmNxlZS/GLvw0Yh12sev2QfARnfQe64OLyIYtx0FQtpJ2lqHcB91nn/pOJy0SKvCRVLtZrMTqKqx8OUFiva5q0ZygiKcdx6OzGJ7lmDEC+KUvfQl33HEHvvrVryKXC6XU4447Dj/4wQ9mqhl7DVwAWYMnHp5D5wzVp+AUmxR0dirWpfasCoWq2oOKhd2nOhNoJbU7GjWAumRXO32qs4EiJegJJFYj3S0fQptmV69nr70bO97OkNWd1NTYdNUV1WGi1amNqrSmLLVtXB1YovLUFP0dB62D0StVlOptl0RilepZPVK7mspTpQpV6kJS18+T/LcaEluBn9d0remqAdTdjU0KYCruvPNOfO9738P73/9+WFZYM3L88cfj1Vdfnalm7DVwXe5LINwxME0GUwAVu4ArTu9VnxatfJJKOy6mkh3KXB/qfYRKEvHQnnw00qKCXVrQ09nJzJMnDWIHxDzXChcJ2ipx7eTJlI/jYbtUhWtx46t7CHjFxCOFLCTVO8pKd+q1NMswEgmFanJPUjtzXHovYUGkre4kbJ5RKk+6dgljkkQAhTiiS2I11UmtxZrmc9WtAdQqE6izOlmxAliHBYxubZ92DWATAENt5zih4JC0SJjlmNGDoJcuXRr5veM4KJVi6jAIiRAOgmYE0D8HsKBKASedQSakTzWP7rCSCBuvPOlMUpkKFSpFGlulnqXtUK7DLuCg9kw3FaRVA2jorfDrXQMo1KjVQQHUUhXSfEShYuoogED0ENpqiF09VZtUOx0VU1e1mUaVLW4Cren4kVoU1gpJbFJ9l1I9q5fCqkMU05RYKU6rzh31bdx6PNOIne71NJ5X4i5r3QUMX+ZSR3UyaTGhu0iY5ZgxAnjMMcfgiSeeiPz+5z//OU488cSZasZeAxdATjgGhqWAk2oAm6K/Cy6oOrw3bTJO+EaqanOH9llwGjWAquspFUDNCa+GL4EYQi1mUh+k3WW6k0q9dmPrkl2d42ISaywV5L+mFKV/TyNZ3VEexxMXuHXTQNqKh+bxI7plB/VURirqa40kQDh+RFfBrvSeun2oMr1XsQJYjcKqS2J1FsMQ09bVXEub2OnWAKa9D6wPunXOFb6ryo1zmn6usyte5SNxG4pmMTIzdaPPfe5z+MAHPoAdO3bAcRz88pe/xLp163DnnXfi/vvvn6lm7DVwXReWcBC0Rg0ge8mdUlS1U5KnFKUokaDwBbcJwVFVmKtTHA94fcjGBHLdI1R01ckEkjUtNYDVKHu66lnqbsssgHzy9bQU1rRJRbFyr2kTCHsfuOMa5PMY2bUMzU1MhonkUgeenGoQRUN3YtRNn1ao7qSWYSSdBadRa6VSz3TLBOqmUOmQJ5bec6N2yg0UaepkhW2rR82mvBubxQHhWilf2VGqjmnxYTpSwDX4iK2y01wkVLu45uNektI9yzFjCuA73vEO3HPPPVi5ciUMw8BnP/tZrF27Fr/97W9x7rnnzlQz9hq4kGoAfUfNmv4xMCoFUCALOulTTfUs7YBnrVpBzbPKkr6kEPxcwVdKKt2hrGibKdQA6gS9hN3Y2m2rtAawgklK55NxWgprVp/EaqXGkieCsAYwqb5rmtSYiiYVjQN32aSSkN7TV8/MxHGrWLVJUloqVs9SVJuqSGySnYbyyJP/itOndVZYE89E1ahjrMbPtUlRvYi4/3OkXrfCa9W7BjDp+96C2NC43wKeMQUQ8L4HfN55583kLfdeuIDFJjxu9cZSwAXVJpCkF6mqwK0T9CqpAdRRRhK+MakiMfUgsSkBWV8BlDayMDv+IF2VYqdL2Op95qFsp6oTrSmNrUmyhBrL+FRQuPkgqdRBU/3VPuNNb5Gg9w4qjh9hdvwhtKoawHocAq5tlzB2gnqmUwOoWxdnVqBQVdBXpxRPYuut2FUSMyvepVrtQqeWPlS50In1czuMZUIf0hY69a4B1IgRvD8kbbKZ5dgjB0ET6oOMEX1Bsn4KOFYBjAuiFac96nweVOqqjFOV4ux0v/WoHI80Eht/Pf0aQEaeEnZjK5XTtMLnBIVVSLFrTmZxqXhVfVcN31DWJ+J64yukgOMOodV5FyJtSyDYSqKYZJcwqaiOH0myq4h06qbtakzvKReSdSrD0Nplzb+rVe6gDhTAen/ird4xU7EoUPVBdzxqJf9CH3Q3UCQs1nTIZJydqm3aX8ZhMVOjBlDIcjQeAZxWBXDu3LkwpA+Fx2FwcHA6m7LXwYUbprw4EpBNrAHUeSmNClSxehbRV0gUnXJKwNCpGalPQBYVQJ2Ve8I5apUqSqnfeeX7WuOYKAO3n8ZWqphpimh91QdD/rqE6lNa1Ux4Fas2ur6kkT5NsqskvVcXFT6acUgksYygqD4rqOxDvXdZV7n4U51MkLQYTk0V621iqph4CrGwWh/RW+RWVQOYRrCBCjZsJRE2lV3Su5rV70NsLNQUG2Y5ppUA3nLLLdN5+dc1vHMAo8Qjo1IAdZSxOk/Gajtdolil8shsrEralkSK9F5yUyddyKdPLU0CqJum0LHTJooJ9+VJnBy44wigbho7UFCqbBt//Ah7rnYxJb1Xj9pJxW73anepxiojOj5Si/JUqV16HHHNDAw+nefaAJ9wqul4lyoJNm9nmOlEvKLx0FwM13p4vuuGJJsRRcVi2KjpDMh6x3OdhWSCXVWLYd3jYlR9qKAGkM9csa/KyN9Pn8WYVgJ42WWXTeflX9dwgXAXMOfQWbAawLgUcEpNgxwIXBfgVdy6Tz66REZn5V5FQK4DUTS0CCD3PNh3Ml0nnsTq1gFNh8Kqs3KPpCgV34etSmWrkijy45u4S1VjJ2vknhWqmNWqnZGJMW6Xqq46OZ0bXlJqAHkbZqfcpapLKOoVRzT6WimZnMnFMP9zUl/dCt/7qtTJKjd28ddPXAxPUw1gKlHUuG8Q47g4za5nNqFRMGNU9dlnn8WLL74Y/PzrX/8aF110Ef793/8dxaLiIGFCIkQFMHRUpQJYMXniV+7yDsRaAu00pwGrITu6NYAJJCtMPWoEjEj7ak3d1GFFrntfVZ1okp3uzm5tgmKmP/vgvqyvSeM7Q3VxcXYRdZIbX36ijbOr6p5Vti3OToecKvvA21WqxFapsEbsUhY6qsVwql1K/WfS89KJI4Kf68TzShY6NcZf/h5JRJFvB1sMK+2qWdBPVw1gXNt4BTDmerMYM0YA/+mf/gmvvfYaAGDTpk24+OKL0draip///Oe49tprZ6oZexVUCiA7GqZoO3BZwKokfSoHbq3gWGfiUfPkUy/lSSHzK/pqKp5DeuCupA/1IM66alGC8hioAKZeAbr2xp5M7akxeXzTVEztDSoV7FLVqqFK2kHLja8O2a3HOxNrl6Yoxu3wjFlIaqlsdY4P2p8frHYxrCCxdVNYY+z4GstEElvNPXUXw7rxRsPPDaOyxYTyLNlK56S0GkCdkimFTdz1ZjFmjAC+9tprOOGEEwB4X/8488wz8d///d+44447cO+9985UM/YauHC5cwA5AmiEQSpIA1dLnlR2Ve20TaqN4q8XVzPCHRugo1DVe7ddip06BZyQ9kgak5qIXb3TVEk+YiL+O5kVBuQUgq1VLyakgOu8SNDdoaz9vNIItv/3qSQ2gejKdnVZEKnGJIl4WNHfJ7ZtmhWquDgSq7CmLYZVfqnZh3qUCej0wUi5p6BOVkpia6wBZNepVImNu6fu+X6JcZr7xm9SXFLVm6vsZjlmjAC6rgvH30X20EMP4YILLgAALFmyBP39/TPVjL0HwjmA4csWqILwVEAAei+I9sqdX0XVY1LRqMkSgh43geqoD4kH6daLADrpdkLtTkJwVKYpaqnvqucEKgfuOpKsincLpxFsNumpSADE8VX6iMYzjW2brl1Cyou1UXU9nijqEA9hl2r1x+xU5COGJak7tabidXepJthF4kiFsVDnvEDtZ18lUYzEkeQ+uNUshhOJYkpfK1kMR+JI0iIhiZxWWgOoS7B1agCZ/8Yshmc5ZowAnnLKKfjiF7+IH//4x3jsscdw4YUXAgA2b96MxYsXz1Qz9hq44M4B5OotLC5FUCipFMAU9cGSaxp0aksUTq/zPcVI2+JWgnH1c0mBW7ErNcmuBhIbnj+nE1gM6KX3Khm3pElFobDWI8XO/z9WGamXEqtQKZK+QGFUmD7VtdP6hF5aH5L8nLPh/681vmnqpA5RTK51Fe10SWzac6i3wlrBIiGNKPKEOM0uiTxNy2KYxZFK0tiuYqFTA4mtNo7wC2YgYaFTzYa4hLbp1BwLPqJ5DiDfFyKAatxyyy149tln8S//8i+4/vrrsXTpUgDAL37xC7zxjW+cqWbsVbAUm0AMp4xcxnusRZspG5WmT5PSe9WkPXRIlsbLFlwvhShqT+58oX3apB3fB1N5DmDMPa2UgKEbkHUOK41cT/Mg3VSF1apPHyr2ER3FI6NZV1QFAdTtQ+p3dGOIOG8D6BHFafuOruQj/PEjCe++EelDSryp5rBlbbuUOlEd5Yml4xPtElLi/L+rqg8pi7CKU/E6i+GU+KCrxMaRsbg4Ejl4XnPcqqoBjGubrtjAzTVJfZjlyKSb1AfHH3+8sAuY4Wtf+xosy1L8C0IS3EgKOHTUpoyJYtlBoWRLQU/npeQc2inVaWLUeSmTyBOf9kgiirVsZNFd9UbtDOUmEN20h2bbYo/jmcF6x0gf4oiiqq4z5dnr1rLFqjaSepa2WSRCAKs9C05jc0fcfXV9RKfUIdFHOKJYbXovcvxI3NdMaulDmjqpMb5JhDKWACbVAJoaRzZV4ue2+p6ynfY7GNMHl/PfiIqp+JxmVXEkra+V9kHDR5JUx7rUAHI/86dERPyXy/ok9WGWY4+fWNjc3IxsNptuSBDgwpV2AYfkqUlQAOOCnuZLWXPdyx5Ke1SautEOGAoCqKoBTCXYcX1QKEVAwnE8dSB2gh33CbppD9z8WVoabdOZ3ANVIc1H5Ikx7jlkaq+Lk+10NncIfdBQbVR90D1+RCfFHtl9qrEI4/tS6+SeSrLqSGJ1SZaO6hhrp0ueak2xpy10VH5ejzhSwUIn7msrqmu5tuI4Ht0aQI1SHd4Hk0pJbFkBTPDNWYxMukl9YJpm4mfhbLuxBm5PwzsHUPXy2mjKeM5YKDmIStoa5In/f9JEmxi4p1N5SrPjzpbi26K6Xq3fDQW4L4EkEZSYiVGHYLPfq1I5lagPsTto3Qqfgz8WqemnSlSFGlNoPElktkDC7khL8hENkqW9S7XKT5pFJsYKjrJhv+e/vlHPco24haROJkF1vYo3FaTFG9WCM+a9DzaopBFsLhVfl88KZsL+VL0YluNI2kJSjiMaJKta/604jqTFc8XGHvb7WD9PeA6VfhHLMCpYrCXcdxZjxgjgfffdJ/xcKpXw3HPP4Uc/+hFuvPHGmWrGXgPvSyDqg0PFGkDuH2mpD5UEljoU5k4LAcyEdWBOuYbArSpCVimAPBGPa1tMzYjuyt0uqT+bVI8VeeQrGhpF2Vp9qKQ+MWGDiuqoiqTDkdm9E9vGfCTrPZs4IlNVjZr8zsh1uJWOr8ZB0MrrqRYwddplnZaKN6pYSKaR/ySFSkUotcmp7mI4QU3WWsBYgDvTi+HpXOjIpD7uazxpta4VxsLIQodfEGku6HXUda22NfYmkBkjgO985zsjv3v3u9+NY445Bvfccw+uuOKKmWrKXgPVOYBwwhSwpwByL6Xu7khAb+VT6eQ+7S+lIrAoCWCl6mTyOXXqY2B00x4VBD2lna4SW01tVNrEWEkqXvGdTM3x1fIRVyaAFUygqbWuGl+q4N+t1B3KGmdA6vZB8JE6HFMSWzsZlwJW98E1LW8bmU7NZtCHJB+ppg9xPlKBCs/bJ54XqLmBQosA6pQ6SAudpD5oLYbrWaqDKuN5BdkQpV3ClzsAMUZYuu9g2mLN99Wkxcksxh6vATzttNPw0EMP7elmNBxc11WeAygqgLY6EPh2AqqZfOpSM1JN+rReq7dq1DN5UnEr+xJIRaoCH/Q0UjyqPlSS9qi6DxqqQqKdVT+Fit0vjnjEkYAku1p9JG58dXdHVu0jtUzucX2QjzGqQ42aoOZM46f7YjcKxShZ2j6S8EwjbWN2NfpSyvga2kRxGkp1ArtaSValBFB3ruHt5DR23LOPq69N6cMsxx4lgFNTU7j11ltxwAEH7MlmNCZcF1lD5dA2chavAFbxsvH/r8eKMYkoVlqXIbStjoGlLmmPpD5UmPawsgh2IKb1oeK0hxT0Yr9TXEcfUdppTD5yXVEMUYxOeBrKE6CpUCUEd6WqEEMUgutVOL5JRNEwwrrHJJ/T9nPd+FDrWYaVTu51JLGVLiRrzoZo+rlyM1mK8qSzmYzvS2IfKj2MvV4LyTSiqBtHEjJccderxyI3yW6WI5NuUh/MnTtX2ATiui7GxsbQ0tKCu+66a6aasfcgtt6ijKasYhdwKnnSLS7mCQpzn2lO3UR2XNVLfeBTN2np0wqL4+sZWJQF6H57K/reblyglQlKHFGMU6g0iJ3SrlKCraMS65KnCp6DttKt6SO66qTOGW/s/7att6EodQMFIwFpfhmXipd9JC1FWckiocaMQ9XvYAWlDmyXatyRTcH32WP6yezq1QdDM54L/ltlTXdsmUC1i2Hu2bOFjmsnj4lOH5IOPI+MW41zzSzHjBHAW265RfjZNE0sXLgQp512GrZu3TpTzdhrYLrxASNQAMtOdStyXTs5vWfy50vxBKXONYCpRLEKglLrpKLdhwoOgmb/T9yBqKmMVPKVklrrY1SqbtJ9ExWPSgl2BYoH//+6fuar2sldM60kp5+sLGAXqiPY2n2IGd/Uw8J1NpNxO5l1zzxM7EMdjzES7JJILB8LE3apyv9W9XMlJFbnvEuhDzXGkaR6RzmOxNZO1rIYVhFA3XiuzpjF2gAaRNEU7YkAqnHZZZcJP4+MjOCuu+7C9ddfjzVr1tAxMBXCiKSVQkcNjoEpJymAdSAokYCmOmA0KZhxuyN1PrydmrrRJLs6aWftPlSb3ktbke8BElvJV0p07ZJ2IPKEXYtg8xtedNuWRmIrSD85ZYW6w0+MKcQjOH6k3gSlAoVKuQir4FvWlfilVh8shF8ecpP7GhAKmRDLx4/UK41drdJditmlWgEB1D3wXPc5pG3u0a51TSjpqfodrIAopi504sow5C/Z6I5vXHyI+5xdY/GYGa8BfOSRR3DJJZdg3333xa233orzzz8fzzzzzEw3o+ERJYChQwebQJQEcBpqAJV2le4+1bCLEBTdXZRJaQ/fxpV2TAOa9Ym69XNxk0racSbTkLqp9dkHzyFlIrAyKRuPVPVzup/virmWdupGrqHSndw1fKluiketBxWrVJuUFHDFX1pJILuJbasi3qRt2mB2sYuEajeTVVADqGuXRgB1xkPog3qTgltRDWCdFpK6PqIdpzU3RRkaz55dL/WZVppJaMxdwJl0k9qxfft23HHHHbj99tsxMTGB9773vSiVSrj33ntx9NFHz0QT9jokEcCmHEsB2wkvm25g0Z0YZyLoVUpQKiSxrg1hTVQBiXVhwEgqQo6tY6x2cq8mcGuQSUDj2VeqAmU9m6TnlZYqZNdLTXlVUT+Xdj3Zz+PUHZ0vGvBtrJooys9B53uwdZ7ca91pq5ponVIKidVcSFZKPKqtd1QpTzr3VdpwPpP4xZtqS3o0UvHCkU12+G/k62nPIZr+q/2uxrw3/M5drTpcDbt6lZLMcky7AnjBBRfg6KOPxiuvvIJbb70VO3fuxK233jrdt93rYQgBQyQeggJYTeF+oh3n+LUeMDpdBFC3r8JGloTraaWnqyV2dbCLIzFC+3QmFc2VdiXqpHYfUiYBwPfzNMWj3gRFXuhU8c3g2AlPs9ShHoriDG2giO7GjvMRKYWmU3eaRtYr7UPdiKKiBlCwq6RMwETibtaKFwmV+IiC8Kmup71ArFe2qZpYKNnECSaRcoIKawDT5ppZjmlXAB988EH867/+K/75n/8Zhx9++HTf7nUDdvacbViwpDRbcg1gpTttkwhgpV/bSAvcaavUOtUAxk7uVQSW2CBVa3paV91Jq1Gr5Zidetlp1DvGraAj/lahsle1uqNSRpLs+Oege75fHAlII4oxfdDZQMFKHVgKPFIbpVsXV2v9XBXPoeKFZB3Szol2XNv4XaqJhN3/N9o1rGl2Grusta6nKunhvzxUgRKr24fIDuVaCbuuSlxFLIwliimp+FmOaVcAn3jiCYyNjeGUU07Baaedhm9961vYvXv3dN92r4fhH7fgIKra1KcGsNZC9QqUJ6Cyr5RUrFDNBAGsMO2hvXLXqQHk+uA66XaRyaLW9HQdJtCKA3LahFdhjU9SvZjgIwkKcM01e1VOoFoTY4y6E6mN0iCTSW1zZTuNL1UkXU/wXw2VuJ4LSe3xrYNCpUs8Kl5cpT2Hakp66ngGpGCXthjW6Kt8HI/cNkAzxV6njNksx7QTwNNPPx3f//730dPTg3/6p3/CT3/6U+y///5wHAerVq3C2NjYdDdhr4TpO6Cr+OZm8Cm4xBrAal82XSWgwqBX76+UCHYaGyiUdpWkT+tEngIlVreOMSGNHftx9lpr1Kqsj0my066fq/SedfpmsJE2JjrEo159qJBgG1a8ilm1MqJLFCtccCZ+bk13IVlvgpLSh0qIYs3vTIUExZD7oLmQrOY4nopFBLkPMc8+sqFIvp6iBpD/9/KfEzc7VfFMk9o2yzFju4BbW1tx+eWX449//CNefPFF/Nu//Rv+8z//E4sWLcLf/u3fzlQz9hoY8BzNUbwcogJY5xVNNSvQWOIhK09xk0CMQqVLUJImlZond98m2HgyQ3UvOmftVf2VkkpTj5rqTtJz1Z0EdImizreW+f/X45NmqX6ZtjDRfVflIyg0+iD4SClqA4hEsWaCUumCU2exxt1TUHeqXUhOF1GMea5G0hmb1abO0+wquJ5pwTuOR7KLlAnUqrDK/ltH5TzNz4OjmNLewTTyr0lOZzn2yKfgli1bhq9+9avYvn077r777j3RhIYHOwjaURxEGSqA1ZwDqGtXxXmBtQbQ6VCeKu1D3OQeCQS1EsUKUspxBLBidacC1VGwq8NmkWlTC3SJoq7yyE8q3DmWZkZjN6PuwkSXPFVgJ/iIHbWR7eImWU1lJHr8iO5xRwnvoOpwZdmG/7/2u5rmc5XWO+osJFMWCboLmHoeBB1nFykTqHWhExcfaozThkYsrHpuSFnAxD2vWY49+i1gy7Jw0UUX4Te/+c2ebEZDgu0CdhWf+mmaznMAdTeL2HzQq1QtqPWlTOurRh9cFzobKGK/QaudPtVdgdZzcq8Tca6nWhSn7kR25VVa21ctCZAmdxVRFMa3guL4inef1kOdjFN3ZJW4TouwqlNouupO0uSe9s5IMVObiNchfumOW42Lq/hvY1fRVzmOTJv/1qH8I9VHdMk61QASZjEMMAUwLQUsK0+aKxrtrf51CHraL3i1X6qoQkGRJ0btHZkVBoyq06f8+LIvKUAd9AI73YLxeqmTFRCe2NodvfEwtImirhqnQRRjxzfNLzXtKjlDT9kHjXc1+DP7fJfu5J4WHzT7mkoU4zYplBQ2FVyL/3/dFKq4g6pr2OwUq8SmfIIs8l3pGkjWdC8kdRdhcc9LNb6ynRtXNlGH+S3JbpaDCGCDgm0CceRNIHYp5hgYzUm74q9tVKBQyV/bqHvA0J1AZYKSFvS44uK0yTg2dTNdO20TiFFkd2SNgbaatJ1uH9I2KaT6W1zb5ENjq9gEwv9fGF/u3xhW5ddKJXaaJKsWRUa3bTUrsdX2lbNLVXfqFR/ixk2XFPMLGEckH2zc5FjIH2ac2Ic6bzqLjEklC520tOh0lUQkXI+v6Vb6SDRjJiD2HMC4OEI1gIQ9AKZ4uAqFojnrPdZ8yY5/ier5ge40O17d4Q/krJhMzmBwFIJetopr1bpJocIUpcoueMZM3ZmulXsdFwkAqlN34satSnVHh/DEKSNxE1mg2szQ5gO5D6qx0yGJSXZVE8UK1bhIfZeGSlyPjT1AbURGOICYW0jKf1fPhZ9gVwclix9r4QiVOnzGEqh8w1Y1fY1ca5q+Z0wEkDATMCMp4PBla856f84rj4GpULWpJkUpF8fHrtx15fYqA0stClXc5F7zpF2hyqa967WCyV0O3Np1nZWqmJVsZNFVADUn93qe3cb3JbZMgCcoLrSU7prPMqyU8KgUKl2yXmHqvGKiqHG9NHVHu35OjplVpM7ltgHJ7yCz42OhlhKbplClxBHFMWFKOx3yVLevlNSZZGnNSXE+knatGhecsxxEABsUbBNIcBA0F3xafAI4VbQRn3qUXzZmV4caQCHoWVUEvVmgUMWlTyMHjE6TOqn7PePIruKEyb2WHa+CXUpfbc3rCUfZcMqIrfAlXUVJURKR2IdK1Z2koyVU3wgGEtJKms+haqKo04dKFdZKiWIN9XPy8SP8/1WlDqnvVpw6qRsfqiC7SQSwJiVWj8i48nOIS2Pr1LqqnlXccTzCteq0Qzn1CJ2EuF+pj6TVWOpm1mY5iAA2KCzIL3joqIECWFLUAGrXxVUaHBXEg9lVGvRqJoB1SJ8Gf2bp0+RNCunfoNXtg67KpmGnTSZZ/WcaUdSsj6nmufLqjjI1pjmRVUvE05SsShRWQE0U09RJbaJYKclKIIqzTmHlCaCksMbdN+7Z173MpQ6xMLXWtV4LyWprXRXvV5wNID6jaYvTSTGOyzYlfVou7p2J/QJQWjxnRDFlETbLQQSwQRFRALmXoyXnK4BJNYD1CtxaaY8Y8hSbUqx3DaDuRKChTsr3De5Z7eaZap+DDomtMpVVsToZ09ckdTJJ3dHpg6u+Z3RBpPkcYq6XrDzFKCOxdglKHN/WtMVarCpWxXNNereqUHcix49UrLAmxBHeXvClCusJKyYoldYxxm3EskJlSf67aks/Un2p0rifEM9llTBiF/dMp3EhKfiIziJhusk/EUDCDIDVAKrOARRTwNOlsum+lJn40/kjE15MMJNTinFFwxFCWYcawDR1x5Uni0pJZ71SaBX0QXtyr2KyEOw0yCkQPs9EH6lU8dBVxSolirziEdM2XTvtZ6qrxmnWACaqO3F9qHQRNg31c8L1khTWmHvGKaw1b6DQUFhZmYAQC+tRDhOjEsfGJXlMNHYfxz1ToE4lPTWk4hN9hPs73V27Ogs/wY5qAAl7AOGXQOJTwFMlG26kHsv7u3JZt2A8JsDrTNr8dSolKIltq3H1pkMU49TJqvtQqzpZxURQ8eReqTKi29dKJ3eNPsRO7npKof7zSqgFioyHGf075T3Zs+KeQWLbdPvAj5t0/EhsH3Qn97hNIJp+WU06Vndyr9Z/tWvKaiCKctumrQ+68aHei+E9HM+FXdYVxEI2bnJNt6vx3vPXTuvDLAcRwAZF0jEwLAUMcETPfynytndg8EvbBjE8WQwvKAV4dr7g1v5R8cZS7VnZd6FtA2OcDfeyGYZ/Pe+6Q+OTUTsppThVKKJkpxOUnYPcPRV2tn/PLbtHJDuxr2U/jb5jcDzWhg96oxP50C5mw8PoRB62wwWWGEIpjJuqD1D0wXUjdqwPPUMxz4HvC4CJqbzCTlQdB0Yn4QpKoRj0WLq1O+Ij6uewle+DYnJnPtI7nNQH/5DzYsk75ijWzvt/z9C41AdR8WDvz6Y+2Ufi+jCqsAnHldWC9o9MpLZtfCrvHdYea+ddd3usj7A+eGOyWfCR6CKM9WEb/94kqJiD41OpfRiamBL9nFe8OLvu/mQ/d1TvqrwRC2Fc2jmg6oN4T8cuYTSfvllk9+iE6COu7OcsFur1QeirggCy6yljodSHQrEgxUJ1H/pHOX9T2Ln+ImznUEq88X2pdzjdfwFgZELhI9Kzn5jKq32E+a///76RuD4w//Wu1zvEx2k+jvh2fizsH1XYyZkVAOP5guKejCj68XwyD8dR+QibL2P6MMtBBLBBYSQpgJnwsZZLIvH446ZhAIDrlPGb53eGF5Re8lf7vOD0yCs9GJmMl/k39ntE4vuPvRYGUYkkuq6Lcf9Xtz68LvZaY0Xv35dKRfz06W1RO/9l3DrkvbAbd43glZ38hCyqk2t7vT7cv2abmiz4xJNd7/uPvRbbNtsFyq43rrf9QdUH7zkMTnnBejyfx+9e7Im93np/3F7aNoCtA/HBdu0urw8/f2oLymwikL9SAqBn1BvgFY+r+iCSf89uPWcnBr3eMe/fDYxN4tF1u2Pbtq7PC/5/2dCH3WOFWDvWh589tYXzkSgBHCl47Vjx2IbYPjA/su0yfvznrbH37B722tPdP4qntwzFt83vw8Mv70wkC5sGvOf1kyc3xl7LdV0UHM9Hvv94fB+G8t7zmyoU8IvV22Pt2Lu1ducQXt6pIEb+fV/xx/e3z3aHfq4Y3+0j3oLvh8q2eTYlbkr4wWPxPrJrwvt3g2NTuP+FnbF2r+32xveZLf3Y3D+hsPP6yuLNz/6yJSQLQR+MgPj3TXj/7nuC/4p9mCp7fm7CwQ8ej39eO/x3ZufgGP6wri/Wbp3fh8df3Yldo/zCSezrhgHP7kd/XM/5uUROEfrwt4RYKF5rrOD9+0KxiB89uSW2bSx2rd0xhKc2DyrsvPu+1OuN/W+e7cbIVHw83zrk+ch3+RgnE2LDgO37ybcefjX2nrunvH83PDGFnz/Dx3PxeiyOPL2pT/JzdRy568+bOD/n4jpbQI57/+7Wh9bG3pPFcgD45ireTrxnjx8LdwyO4f6EeM789w9rd2JLf+OQQCKADQozUADlVZmLjAHkLO/Rlsu+yuevANlEZsFOnBhf81/KDGw8+EpvrN3OMS+YTOYL2Lh7XGmzfWgKJf+Fe/zVnnAlJQWMv2wd9e/p4P7n4yeV1dvGArvfvhBPYjcOFgK7OCJjOy76p7z29A5NoHckL9r4JPG1XWPByvKBF1WTdsbvw0hwz98p2+Zd44Wd46GdEFjECWPrcDH4/VNbBsVr+Xb5ko2xkjfpvbpzOAzwUtte7AkD0++e5wOySNif7vaegwUHK4W2iXav7PKuZxkOHni5N9Zupz/RTkzl8TIj7FLgHpwoBuTpyfW7UChLAd6/1vM7xv222Wri4b8PawI7uW3imGz23wfTtWN9xHVd9PuEZ9fwBLYNTirbtn1oKphYHnxxO+fn4jNdsz3swyrh3RJ3Fr7sT9oZ2HjolXiCss33Eccp4y+bVT7i+fmITyo29Y1gcKKovNaG/pDg/GFtgv/uYO+gjT+8yrVNUkYYecrAxmNKkuVP2v5EWygW8cL2YWXbpoo2Jv1fvdg9ECW7AakPlbU/rlM9e/EdtODgsYSFDhsT03Xwpw39sX3dNe79PDqZxyZGAuQFIufn//varijZ9e/5kk92srDx2GvxbXvJf6ezho3HE+x2jIRx5OnAR8QyAdd1MeAvYHuGxtE3lg/+Dd+HbYOhn/95Pf9MxffhZX8BnoGNx9cnjK//DmZhi+Mr2TEfscslPL9tWLTxzygs2Q5G/a6u7x3BRKEsts1/t17j/PwvG+Ljw8s97B108Kf18W3bPFgM+vrkxgE0CogANiiiNYDhChNOKfgaSJgCZpOF93MWNjb3qyRyj/D0+ZHWgo0Nu3m78CUfnCii7Fq+nYP1u8YlG+/v1veF5CkDB72jcmDxVZbBkJxu6o9XxdjK3TLs8J6Sneu6GJi0wz70qdMy24cmYfvBLAMb65mdTIh3jQXp7mIpTC0ZUh9YILAgt020YytLCzZe61W1LYuy7WA47wZtC+yEyT2LDX3jQdsysLEphoiv2x0Gvf6R8TD9KNlt8VWALMpYt0vVNnHSzsDGOqEP4fOfKJQxwbg0bLwa9MH3Sz9wv9o7GqSxTTjoHmAkS0wrMeU0Awfr+8ajiiKbpIbDgCyqxGJf+ybC5xDYSQeZ7x4voOSGbQtUCsnP1/aMBsoIXBu7IhMoIxSMFDkhIVa0jSl2Fhy8FKOMOE7o5yYcvLRDaptvt7l/IngHLdhcH8Rxe6VnHI7rLSZ2j0yGqqjUh40D3uLKMhy8sD3aNjcgHqXgns8r7GBmUCjbGPZVUQt2dHJn49s7Cifwcwdre0Yj1wJC4gwAa3uGwxSqdD1+Mfxs9zDXNvG5sgWMZ6deNA9PFjHl/5iBjefY9aRxe3HHSOAjjlMOY7D8HHzyZMLBs1uHFH7O4k1B2TY+LrmuG6hiGZRDO6lMwFvAePfPosz1Qbznmu3DgS8NT0yGi2ZJKXzVJ7EWHDy7dVgxbn7afyj089Vb1eNbsh30c/F8NeuDrCb28nONypc8u+e2h/Fqy+5RjMcQRbaAiT57iRSPFNV2sxxEABsUQQ2gqnibqwMMU8AWXNcNUmMWbGzePaFMVeRLdpDKzMLGpt0qMmYJxCOLsmLV608WfRMcQSmH14uoMUyxs7F7rICxvFrJYhNjJpbEZtA/XsSEnwry7BihECf39bvGA+JhwQ7le5nE7hoXAktgJ+222zyYD2y6ByfDtK1ETneMcn0Y4GqBuFrBrYOTKPrk1DJsbJFJkW/Hq5MWbGwZkMfXI/Xr+yaCyd10HewYnlKO75bBcHLf3K/ykSyKZQe7gkmFu6d0vfV9/Lg5YbpbJti9YwIR3yr3laXO/YBsGi6miiX0j3vjaMQQQMt/DmHbwuc6MlnCSMEJ7tk9KLXNt/MmFb9tRnzb1vWOCb4UIbEBeQqJR99Ywdutr7Dj/XzboKJezLCwc2QKUzbzc358RYXVa1tInrYNTol2rA+7wr5a/H2ltm3i/Hz70JRC7fT8vMfPEHj3VD0Hj5wygp2Bg21Dar9cv4sbX8Pm7MR3laWdAY8I9QyriThLd3r3VNXjZZAv2QHxyBgOtg+p6yLX9/FxxIkdN6EPsLnnoFbFMrAxUbQxNCnHQr9ueTStDxaGJ0tB2tlSja9/Xz6emwl92CgtOIP7xqSnsyijdzQfq9j2jpUCu+5BfnzD59o7kkfB8f3cUPilT9g294dzjQUnfPdj5hoAsFxVX/36W+4d7B6cjMZCw4LjuNjtlyZk+MVrA4AIYIPCiqsBBDwC6O8EtjkFcGSqhEmfFFlwMFG0gwmUf0G6BydDZc9wQkVJstsiqApOArGbgM0F+OiqlylPjHi4MOCENUPcS1ksO0EdEHvBQ5IVBozuwQluInOwSb6nb7d1cDKc3OHEktjuwUkhsMT1lVdtyo4bThic3Wi+DDbsFhyxZoSz2zE0JbQtGA9bDNw7hqaEyX1Lv5yi9CeL4SmuDyqy66uTHLEby5cxHJl8MugfLwTkVCBsgl0WPcNhusgjp3Kg9cjptqEpkYgzIiOl2dj4sr5GCI9PPHZNhMRj58gUl1Lm1N/h0M9NOFFix+yEtjnYGjOp7BieEslunB03aQPgJilxETbkq7+W4agnH9PCzuG8SDrle/r1czu5tinthD5wk3uMHSP/FhwUbYdTO8N3dWiyFJBTiycKQh8yfttUpFP233xK23y7kbDGLYmg8Orv8GRJueDcNZpXt03aiCX2wYm9587hPLfQcbB9SN1XRpxZLFTZOY4bkFMTDnqG88oF5w7h2fPXEv1854jov6rYBQA9IynXY30YLfttc/2+Rwn7VNHGqM/FTP5aCX1giw71+IZ2WZS5Ra6s6uaDuJSBjR2RxQTzc0b+bRTKjnK+7J8oBOTUgh3eswFABLBBYURqAPkT5sPvAducotQzEk4WTaYXKII6D86uf7wQ2GVgY9eousB/YKIorAR7R9Uv5eB4USAePXKdHdt1OhmqFhYczi58KYcni8IkULJdDCjqmQYnSsHknkGZUwHEoDc0UQz7athckBL7MDRZ5AKLjZ0jsp03/qyGJuOf0xi9nlfvxt9zZKoUrVWR7CzYisDtTe6DXNushOA4OBHaeWpGdJJyXTfYpGD5BEU1mYlt89REVT3TAH9PYUUubTzhJlpBaZHsWPqf9TVomysSj7wdKnau6028QtsMy5/cOeUpQp68+/aO5IXJJ44U9Y7mBT+PIyi7uPQ/oCKAMvFwMCks1kI7bzJWKXvypM1PePHqTi8XIxjxlO0cx0XfWJiOA6BUO3cOTwkLv12jBYUKZAlxKWMk+MhISMRNJfFgaWdO3Ykhu1NFOyyvMDw/V703O4fzEeLhum5kI5bQB+EdlIjdiLjQiaqY7HmFCx0rhox5xCOMhWXHxS62GYuzE5+9Ij4EfeUWiIYi3jDyNJwXFsPbY9TknYH66/1elXHYOcItXg0HY/myoobZ8tvGxZuY8eXtTLihnRu/mGDxS7TLoGw7wWYntlhT9mFYfPa9oxwRn+UgAtigsCLHwJgA/F2eXArY4RRAb4LySUxAAKMBQyYe44WyR1CkouHBiQLKyAR2fYwoSi/l4GQxsMvAUd7TdV3sngxfGkuwC/vgXYuRWC+Ah/fl+1AQJvf+8YKXppKCHk+eMn5KTr4WgMiYqPpa4mr2soYtjS/boZz1iZj36uWM5OfAT+67k9rGTe67x/X6oLreaL6Mor+aZYuEqJ0l1H9mDBu242JoUiYoFoYmiihxabt+xbUAYBdHsizY6Ff0wXXdIF3k9dXGQBwp8scj50c41fV6RwrChDeaL3tKIe8jhuWTopDYRYmYXxM5kudq1Pg+hG3Ll+xwkWB45QjqtoXvanPscxDt2DN1FccE9Y5OBW3zUs9RQsz6wE+M0XfLwsBEEX4Xwncwtm1+iYiR3AdbaJvaf3tG8sL70KtYIALAztEibNdQ2HGEgiMezX4fotezBMJmwkGh7HjpWCmT0CMprD2RBWJUocrAUS44bccNVHjvemq7Ho54tFgxKpuRkdRfL454fi7WAPYMiwuiHTGpc1EpVC2GMxjNl4JNR+zZR8mY2DYWb1R9lRXWHcOMiEeJncOT3ZgFvTAmhq0gdhZ2jRVQ9Ak283MVoeQzNVnDhc0T8VkOIoANCgMsBcw9QpYGFlLAXDqDC6CMeOxWEJkhjngIAV4qGvZUtjAgxwXuIU4ptAx1gJ8qhTv8AE++3z0qB25x40lExeSJ4kSJW1l6q+PByWKUAErqpGrCAyCRMY48+cqpa2YwPFkSghTgRidaSXVs9gO3amIc4shuBmWM5suegpKk7KGMPsW4qfoQfQ6SOgl50g4DN6+Isj4oibhEsOMJSkgWMnCUu1QHJ4pBSpGNcUT9NTz1jPUh5/tIQBS5yaeXUwCzfl+HJkqRibFXUgoHJ6R+MvI0mhc2RQ0o0kU8YQM8lULVV/6e7B2MtXPD8S3ajlfQrlIAOdU5HLfwvbcdVxg7CzZ3z7DmSSadYttCux6uD8xHVGr9zmGR2A1NFj01OaEPYttC/50olDGWLyf3wX8OTjBp27Ft40kn68PgRCESR2SFdVDx7AFJJTZUffAyMEzZ866nfl49I+Gzz/k+Ivuca5rCPVlfPT/n/NcwIgp2xM9ZWlR4Dmo/7+OePftqlWp8d42Gi7BwfKPPy7ML/bxQ9kqYImn9MbEPA4rFVdl2/CxXGKujizBLUOGZSjwwEZ0v+8bCtD4j4v1EAAnTCVNWAAElAXTscBNI31ghOrkrXhCPPHl2rRk2ueeloJcVSIAFL5UpEhQvLSoSFFtJUHji4V1PTSiHuLblIiomR2K5trX6w9I3KgVuw5QIiqMkKK7rTdIlbnKPHpHg9aEk9WG3SsXkxiNKYqX0qRTgd48VIkGPJ4qWwQUzOwxmJdvBqDAxcm2zxedgS5O76jkMcMS5hbVN6UtFIdAWbQejU+XI+PaNFQQVSDWp7BoNbdj1BiIqm4U+zi6bELh3c5NFi+/n/ePcQsefGL33hp8YixEfKZTtyAJANeHtHhf7kInpax83MQYkVjn5hNcTiKKkTu4eK3ATMkc6OUI8PFlE2XGF90HVh/7xQuCXrExAace1TSBP0negBybCuGTCgevCO6Re6sMAd1+xbdy1/LHkSx1UhGJAKMNwwrbxfTDEBRGb3AfGFQtJ6b2ZKNqRxRqLI3wsVJHYgfFixM+HFH3w3nvRz1WEcoi7Z4sfCwcmonFkcKIoKNhxfj5RtIUNW6o+8AtwE14dY/Q5WELbAhKruh5X+sPsBvnn4PfBG7vQN5X3nCzBdRHzHERf4mMSu748vl4s9ON5RiKxsxxEABsUkRpAQCCAzSwFHJncQ1UMiFeeghUNI09j0VUvP7k3WWqC4vipQZ4EqO7Jtw2QFSqeZIWTSpA+jShPWaFtAYkdyws2MAxRnfQVlJGpktC2qZK34pSVLO8BiOoZs4n2QVTFGFFsMmUFUAyOLLC0+yWeu8cLkYlxcLworI4HJopeDYr0TAGIKqaCsA1x6WQW9GS1U1YAhWcvTRj8mLRl2KIjL5DOiaKNojS+qknA64MhBGV58nGlMgGm7KkUGb5tbJHgkaeogu1w6k7JdjGaL0vkyRsbXmWLTIyGqVjo2Epix49vRMXk2sfXxLb6PtKvmBiHJzlFHB5ZjfqI1wcnUWUTiQcrRWHkid+Nzbetie+DpLAOccS5jZ9ApTgyMlWKEHFV2wAEm+PE8VWPG6tRU5FYPhYKCpV0zA4/Jux5yUR8oujVLPOLBBXx4NsW9iGmbczPmbLHyjBcmSiKC3pBAfTjiOcjIXkq2S7GBDXZCvzcNlQ+os4QeGOsVvWHeGLHSCyLS/LixCf/bb6feyQ2HF/XdUVlz3AwPFXy1eRwUccWyOwLOnEEe2A8XDSxWBiWufAL9dAuotbPchABbFBEzgEEghcZjh0ogK5EAIMX3I1fMfJ2zbxD89/ClF7yDv+l9OzCgDGaL8GRVlthikdUz8TJXa0+8Opk7Mo96IM3+QWrXsXEODRZRNn1/tymnECzwRgFQc9Q7wbjAy3rQ7QOzF/1uuLkHiHFlkhi2/w+CATbP6R6kFcCfAVFnkCH/F2x7FNaAomNGTfLLQNwE+zEidFrmzy5h3btWS99Kywm/PEAQuLhKVSsZlMkRQDvS+rn4ClxIRED4ib3kHiEKcpkhTX0JakPbGIwWU2s6tmzyT1tYvRJkauj7vBqPUI7zqZY9tLC/DsIQCyJ8NsGhEdLZfgUmss/h1KgFHnpPbWiODTJq/WcuiMtJIe58VW/gxllHJks2t4ROgoCyCZ3tUIljpsZWSSEdc48KWqO64NhCj7XxsdCaXEFhDGbxUJZZRuaLMGFKZx5qOqDQOoNeZHAx5s4Pxd3zqvKOgZ5wi6MbxiDle8WFx+AJMIezegMKk4d8PogkVheJTY8gl0oO4KKGarJomLn9SF8V6OlJF6tK1sMm66sdPOEkhNCTOldneUgAtigYHUVwTmAgKAAhilgteJhRlY0ttKuSbWaBTzFazwauOWgF7wI3MvmuMCopLJFJ3ebW5WpV71B/ZEiYAgExeQDhqxOhsGRqWxCYPGVPX58M/A2xggbBljKVlIxByeibRN2T/uBW7Wy5J8DS1HKwWyqaCNfCtWzjpz/HHg7KySxLkcAIykeKyOQScAnY7KPWGLbcganAvETo5XF4HhIdttUBMXKBqqCYYVtc1xgOOIjjMQyIm4riIclqbre+Ko2WvBKS7OQ3gvfhakiU399H2HjOyFNjBNhqQXrw1i+7B22HSFF4sSoJrG8Wh+fZuXtWlQ1amYGw1Pev2P37cgZ0efgEzsgOjF6PiKpMZGFjirVxilUQhzhyZOvnLvJJDY4B88UlRaRsIcKVagAxhFsMVUY3DPBrslSqJOGBccVFwlsoRPtg3d9g1skBGqylCEAIMS5uIU6vxjy7hmT0Yn4iPjsWZaDEZ7ARyZj4nnQB6/0R6Umy9mQ2PR0ZKFTgLzhkF9ItsYs6IPFiskW9OrnwBRhNndaMXNNP6cAMsFlMOLn3n0Z6QzS0yxmznIQAWxQRD4FB4QE0C4Fu4DD2jO2c5OtaDxHV9dvRNMZAnkyLBT99IAtvZRxBJBN7oygDETs2OSjmNxja8rE9FNk8nGl1ayUkhnNe+kBOc0a2wd/fFmqYniS2zBgZITNM6x9ShIr1QEF93Rd8LWC/KQiFNFzNkEwMxgB9IPeeDHyTNmfvbZ5OxqnSjZEIhNNY6v6wKvEYeCWd0eK6diWIP0UMzEGPsICt6hSDCtIbLTIW1SowhSlHLhNj4y5MqGQSZGo2rTHKFTDUh8E1U7qqyssErhNJTFpOza5e6ojf5C5JSgozUF9V5GbPENSZPmKsegjUXWHJ7GFsncETVq5RlqqOMcrVJyPlGH6mzbEco1Bidix65t+Hzqb+MldziSIPjI0WZLUZL9tUixMU7JyKhJrZjCWL/vqpK/WZ9VEcUha6KhjpsX5OaeyKTIJPBEPatSU6djQR5QkliPYbNyChU7Ez/0+BIthNj+UIu+DvEiII9iyn3uxMJpJkNVJeUHPFnlWxvOROfxCh3u3gsUK14dozaZYi2n4m/qiC3VLqCfNGpxy2gAgAtigiBwDAwgKYLOcAg6OH/F+z2p1IpO7JW7uyMVMZMPSKpUFPfmllAlgVxMUdlwakHspQ5VNrSqEk3uyAtgUE7jDScUPenGpG2lyn9OkVlAGJ4rR1I0ixcOrbEEAnSgJZ4s5EGuj2Mp9SCKxTHliQa9dWLlzE6OUomRkLLKK1kzdqAmgqABOlQ3kS06EAA5K9UdsfNnkPqfZ60O/RGKDSYojsWHgVitUwQ5EeXekYQnp2KZAASwon30m682I8eoOmxj9PjR5YyinlIcn1DVUoo9YQkrRUr2DAPK2gamSHarEloJkce8W85G4RRizM0z5eUVJQPzkLqqi/GYM71oFwc+H/aNCGMFu4Uksl2Zj8cbKeAadvp/LfRiW/NyE430HmVeTDfZu+bEwskhQK1liLIwSZ1MidvJigrXN9NvG/Fxe6LB31eEUqtF82fukXQwRN2P6EPi5K24UGpD7wHwkmxQLuYWkRix0EO7Yj9towauTcX4exhExFg4IxC4hFgptM8PFGlOTLU7kiFEdvecQn+6ObjojAkiYRhi6NYBcIOBJkcF2Zk1GAwZvlzUUCiAXpLJZ72VrjUktDAWBW1IfpAAUvDCGGGyHpZUlv/uUjYFMYouupyrIRfRxxI71Ia4AnRFMFuC7msM+BEXvQpo1VFCKwXEFYko5msYWg95oyRXUybC4uKR8DkHQY2nsuMld6oP8XKMKoHcshyMdy8ErKGFNmXiEysBUaA/IKcroBgo2vnNifCSY3BlZUE1mhli4z3xE3mgxaRso2W5EoYqoMX7bsv74soVOXA2gaXltm+uPb4SMBTVUoUIVpgFFJSu60UJURob9z9gxfxN3AUf9PJwYoegDR2J9Ij6v2btuv6KvtkQAI0e3+MSDPxrFew68nxsY9n0k47dNnaIM28b60OkvJGWFSk4VM6VQRRTDOOIod6mWYWI0X4pRAKMEMPCRQNkrRJ6p90dpkRCjsrGymfDolngizhY6MgGcKAFlVRyJjBvrQ07og0gUORKrJICi6ggYQip+qqSq2eRquvk+cLFwqBCq2UBcfaLllYwAyGQkFXNS/bxYXOpSPgdxEcbaN8QWa/57WHYN4XSFyGacWQ4igA0KZQrYD9xwymjJmsGfAaDgmCjaTlDgD3hBOV9yhJdyyja8WhDIqaySGMx8RSWX894ytnIfkl42Rp4sS1y5D00UxV2lUm3J3Jb4OhqW2g1WvZLKNiqpCrkYEstUIabutCrJkxWk6IL0k5KgcJO734fWrKu4HtvcwfrApeL5oMcOC/YniyZTUWdnZoK2MRLbnuVJUZISayrsLCFlC3gE1XGB0Xz4/EN1UlSohH4aJob8L7s0+T4SBG6J1Acqm6zuxKhxzEfmt5oKO0uYGHl1hyex7MBuNh5scpdTu6ECKE7ucRNjSFDiSKxIUFQqhafalCLpPYGIIfQR9g6q09ghKcoydSeTooywyb3ZVPZBVccoF9sXXdM7LkSa3GWyw+JDTvKRgfEi5F2gAD+5823jlT2xD/OaFXaKHfuWkHHw7MaKrnRciILEcu99LueTWD6168qkiFcxOTtFH5iPMCIu1+MNTYbHthhOmAJ2HRuGXyYw5MdC5pdxO5RZfAgW9EI8j/oSi4X8Ylj13rDFSYtik5VriMfAmC4/14R+Phj4ucf6m1RlSYKPsFioKoeJprG7lD7i1c7KSnfZEWs2x/1PqwZZH3nD1iwHEcAGBZsU3LiDoHNiqpdlwNgLDnBpQO6llCfGjKrA3ycKAJDLei9ls+qMLI6gWD7J6ohJ3QRKJFMfWvygxxFF1w9UwVl7bLIpO5gohClU9imz5ibvnkI9lh0N3Iyg+Lf02mJHJ6kgcDfx6pl4vh+7NgDM5wOLzY4JYeqkmLoZniyG320GMJS3hT6ExcUl5QSazYord4+MifWf3h/FwC2rCnLqhtnxtYfjZVGdFBQqRX1iMLmbXBqQsxuW1J0OX92JkjGxhqrLf2C8z7mGqFB5/u96m0omC2D1c8O+j7Q0eTcTFcBQcWD3DBc6ySSLKSOdPsHul0isnIpnJJZ/v/L+Ys2WlO7RfBmlUugjrA9NTYwA8rWCUT8PfCQ4RkOtjMhKtypV7PqnuwHAvBZuMcHaWhQXYZZK3eHuKS8S5NQ5899MhqXi+T5E+xqd3KOqMz+55xTqKfuiXJNP7JSlDma4ASjw85jyimCRINVixqXiWZqVjS+veNnwFK9yoHRzsTAfHkI84sfz5pwYCyOlCWyR4PeVLYblTVFBqlha0MvzQ9xijR/fSdvw1UmxpntosgiHfcAAwLBPAFkflDvKuT4Ei7UYP5czDsxHZPFieCKsJfb6Cq4Pnt2Ir07m/HcrsqFoloMIYIMiUABjdgGzGsBAFSt5L01na0tgvsCfQPkzoZhDtzV7E6PF1ai5TlSxyzV5b1lcYS4jKBmp/ig2RckUQIWCUnBM4Tw+w7XR7K/yhsbCj4gPSpN7JqaOMVAfmAIYkwIOa6gkEhshuyzo+SS2NbpyZ+qkXH/kuMDYZD7oQ/8kI7HNXhtNXmUTd7wC4eTOAreQjuXTgEHgVq96vT4YgYo5P/ARbmL0JxU24bHAPV4oo1AMAz+7Z3OTqFDJaewheeWe4wOymFIEOB/hCLbBpXYdF4JC1cUUlLGJ4HdDbGL02xbnI6wgn/lIqO4U1BNjkN5T10bJNWrz/AvyZHfMJ0+MrBuODdPn5MPjnJ/7E2MLIygxKcpgcs+mTO7SZpG4PsiT+4LWKBFnR3O2+HGEpSinSjbyhfDfs/FozjGlW61QDUmTe0AAxwti3VZQrsEWOlGluwTLPxYn9JEFisUEi4WtUiwcnCiKsTBQAD27uJ22LD5YWZZJQGJfZT/n+zBZhqBOGk4ZzX7WZ2g09BG2kGTPISzpkReSop+rN+NEywnUKXaLU7pZRodb0Pt9ZX7OVF1GYm3HxdiU/8k1w8SgXybQlBMXOkIs5JTTjFwOI8QRM9gVL6ex+feh7BoYK5SFOBLEc+6+LJ63NIuxcGSq5NVsznK8bgjgt7/9bRxyyCFobm7GySefjCeeeCLR/rHHHsPJJ5+M5uZmHHroofjOd74zQy3Vg/og6LAGsINtCfQdddx/2ea0NQfm8xUEhalnYdDz/n3RdjDFAreVDchTs0+ymlV1dpYihRYQFO7ltaIbMsRVmTipmJmwzwsZQRmfCn43NOUKfWDpp+GpEmyWdvY3uwBAk0xihT5kI3V2LHDzK0ZWOwmEClVAULjAwpSR9hbvORhOGZ3+sxL64H8Xr0WlYvJpbBa4c8mBm6W7TT/Az2E1VNz1mDrpGwJQr9xHio7fB+8ihmvD8hlKQGI5gs0mn1gSKxGUQMUUSKwVUdm6eCXWFZVuNh5ASFBGJkKCPexPjK1N4uQ+XuBUNk6xYyqQzyWlg3SjJLYtmHxCO5baBfjJ3esD/+WLUbYIY+PrlDGnJSv2wTAx5E+M7B2Mq9cdkkks60NMCi3086hKXPQXYezfAKFCxaeAmZ+3+ROj4djIWobfB9/PuWfK+pCLWSSwtskkVrX71Puj5CNcHyb8xTCfPVnYxhY64Zdg2CKB+S8rdSjZLibyioVOQGK5o0ASiHg7P75udLHGSOzclug7OFoUsxwAMN9fTAxyiwQWC+XF8NBkEbYdHbecnA2JlIj4i4RsfE23Y2Qii7X5AgEUF5JtQSy00d4kxUKubS2Sn0dI5xRb0LM0tur0Bz7joCp1CAk2AEHpXtCq6gObL70+mK4Dgy3WGAmexXhdEMB77rkHH//4x3H99dfjueeew5vf/Gacf/756O7uVtpv3rwZF1xwAd785jfjueeew7//+7/jX//1X3HvvffOcMvjEZwDGLMLuL0prAcEEHyYu4sjgAv8yX1oPB9JnzKCYjp2sLIcY5MPpwK0SCnKIUl5kleW7UKK0mubw63eWIG0qraEqZhzeBXTD9zDE2HQG5jyJ3f/pWQE0HWBianwrChGippyYhpbrLWJ1seodoIW3XBiDAhgS5TEsl2P7a3+c3DKmNfmjU04MWYxyAigtHL3CEqoNLLJPUxjqybQbISgsMDNt22i5P3ONBCmbhR1YOx76EHgtkuY68/Iw1zgZun/liB1wykoQf1nlpvcRRI7PBlOjI7hHQbsXVpUqPiNQmxi7GgJ/Zyt3Ic5gs3Us9aWcOXOAvd4np98SsL4MvVhWPKRyOTuv36enfdv8o6X8vL+iViLyRMZpip0+AQQThlzIz4STozBQsc/giJfclAMfCRU9sIaNTa+6nICNjF2CKUO/kLSfwezlhGqOz4r5t/9YSmOGE4ZXa1eH0a5PjD/lcs1hid5H+FVNtFH4mrULOm4mKHJUuBLY/7Q8D4SEHF+keDHEZYNMTmVbXySj4XMR/waNUs9vnEbLfg+2IYVLMLYhqI5TdF3dUyOIwhj4SjXB5YNaW0RF8OuC0zmVX1gqXheKYzWYmaZjyiIeN72MhoAX64R9fMRaTHs+bl3QXEh6c81Uiwcy5dRLoc+EiGxGX6BqCKAYiwcngrHd9yPhZ3NmYDEsrIkIZ7nWcaMLXTCxVojbAR5XRDAm2++GVdccQWuvPJKHHXUUbjllluwZMkS3HbbbUr773znOzjwwANxyy234KijjsKVV16Jyy+/HF//+tdnuOXxCFPAinMAnXKwkjIkqXpee1Nk5c4rTwOTTH3gCAoL3JNh4GbKU3NOVHeGJ4vc94fDlzfLAreQomQBwwgChqzuCASQTYx80GOT+1i0D61s8nHtQGUbn4qSWKY+sJX7kLThRU6zqlILbLHXlDHD+iNFH9iqt6OlJRhfRp74yZ2RJ6YCWZzKFtT48ApVEwvcftv4TQX+WVVANBXPE7txvw9zW3PBEQkscA8KJNYb386AxNqY6/uISgFkRJwF7qLtoFCKTu6s/kg1MU7Z3qQFcGlsBUEJJvdWnzwBmN8iLWAADEqLBMOx0eUH7vFJNr68j0hp7JidhXKdnegjXntbsha30SI6uUcmRtfG3BZpYuTOlePV+gzzkanwOYR1dkytj5Inl0uxZyJ+Xor4SFdrDobpjeu8lmgfhgtSHHGdwM/HuUVYuJAUJ/ey4wrlBGzSTlIxSzC9cy0RZhxEFVNMPc5pawJ8FXB+oBJzKnyeEcCon49zfj4s+UjOUMfCuDo7PhZO+psKDCNUAMWFjhjPO7lYyFS2IE4DwUKS+Yjh2OhokmNhtBazKebw/KEgjjA/jyrYzEc6mjKRWCiWknj2wmI4WCTw4ytmEjIIVbbJvMpHxIwOT8Rtw0v/A9FjkfhFAlOJu1pzQWaNLRJGJsJa4iBjxr+rfh9IAZwFKBaLWL16NZYvXy78fvny5XjyySeV/+bPf/5zxP68887DM888IxRh70mw1KwTqwCKdRVMAVzQnosQwFEu6A2yl5JTH+a1s6AXXbkH6T0/6DkukC8UInY5aXcZn6JkQa+jKRMpolcV3M5pCxVAFrhHufo5FvTaW7k+tEUD9+CEPLmHKlu57P2dy6mTObm4eDwa9Oa15RJ3l7EVY6eQivfsRwUCKJInww2JYvgcQnWyOVAxfZVtshicAVlyTe+LFAgJiuprEGxinNvG+YiQxvbsBqcYQQlJLBvfUZWPBCTWCRSUSY6ID0u1mC2K75XyPsLIKZvchYmxGK11ZX0Y4SZGtkO5jVfZ/MA9kecnRjFFyc4My5ccwUdGptRpbH7ymQgIdjY4yiaY3LlFR7BI4CZ3pmLyBJuNbzi5hypbqHQrSKwVHrHEjokqumagTqpVTDHFPrc1G/hIoGJy7yrbTNauGN8xhXrWwtXZNWV8Hwkm99DPm6TNOPyzZ6cOZUwjiCPh5M73wffz1tDPWZ0oTwBDP+cUKkYAefIklzpwsZAnsXF1dvz4stTjnJZsEEeEHeVs01iR+Qjn5yye++PrwAyO2WE+AqeMLj+ATaiIeLO4GB7Ll4OyGcewvB2wCEms6rzAYJHQxvtIdLE2HCyGw/Fli7BRLsaxtgUlEW6osk0WQj8P1HpWlqQggKzCxTCATHD+q0/sOLsgFvJ+3hwtJWHzKu/njaQAZtJNGhv9/f2wbRuLFy8Wfr948WL09vYq/01vb6/Svlwuo7+/H/vuu2/k3xQKBRQK4e6r0dFRAECpVJoW0siUPcc1gutbhgkTQLlUCNIQpmsDRqh4zGnOwDUtGADmMBWI20Cxe5yter2/dLmXcsSvLXENKziZntW9wK9lG82XMT45hVYAJccrpAXCIyiag+NMvNWxCWDMJ3ZdrVk4hgUT3Jl84wW4TgkGgMFJG4CBjpaw7oUdLD3sF/i7ZngifKs/4bl2GV2tWWAAGPVTxY4RHu/C6rsslGGZBmzHxeRUHp3wJhWmTrLUGDtwd2iiCHeON/asbqurJRuMbwd3ZpzrlGEAGGDklAUMhArKSNAHCwPjeb8P2aAPc1uz6B8vYtyfpPg+5PzxZZ9lK5YdFIoFNCNczeYyZpBWarHCYzmcTu85sJRXV0sG7oTXh86cC8DAwNhUEBz7/QmvvYX3Ee/+gY+YFvr9PrBNCo5dwtzWHHpG8hibnMI8+HWHzEf88eXTrE7Za9u4n9qdw/kIX+/Ixnd40gaQQUdz6CMByeL9l5FTv22uU8Ycvw9jviLuwPRqwrjxNZ0yMqaXyp2YymMO1D7SzNU7Ol1eH0aL/jvI+Uh7NtoHtoBhqUcgnED58WW7rNk76Nrec+gfLwQLHa8PPvHISD5iOygUPB+ZLPk7ijMmDF8Va+FS9k6714eRAteHMt8HAwPj+fDcxaAPoY+w8R2ZmAiew5DUB8cvJ+gdLWB8chLz4H1hI1RY/T6wut7JIuxSERZCYtfVmoVrmDAgnk/K4ghTbbxYmIFhF8MD6rlsyO6A2IU+wvx8bIL5khnGkSxbgJfQ3pTBeKGMickptAAoOQjUyWzGP5OPOz6J+flYgb2DYR/4cwVd2++Dv4Dp4OIIU6iGxsLxZW0LYqFTxtyWLLZhKuiDY5jhsV4Zdj5lGYbhqe5T+TzaAUz5cYQnT81cLGQ+wmLh3JYsXMePhbmEWMj5OSubGfWfg2tmInONa5cwt8X7hCRbDDsIjzHKWuxMPp+QFsool4rIAJjw/byTmwdZPB+cKMDNeG1j6mRncwbuOIvnXhv5ciMWC1VxZGAsH8zN0yUc1XrdvZ4AMhhMM/bhum7kd2n2qt8zfOUrX8GNN94Y+f2DDz6I1tbWSpubCtdcgoJ1KraN2Ni9ciUA4PSBISwC8Pxzq7FlczOATKAUbu4dBLAIOza9ipLtIgegf9tGAAdgw+atwXVf2bwDQA69O7YBAMqFKUwN7wZg4tXX1uOtAEbGJ9AzMQrAwPburTgGQH9fD3IoATCwfsMGLAKweXsPAO/Q6Z07erAUQG/3RgBvwETBRm/PTuwH4OX1WwAcBrM0ieGRMcwDsGvregBvwJbeARTMSTQDeHF9N4CDMNrfCxcGDLgY3rkFwHy8umETAI8Qv9a9E4CJndu8Gs/85BhKxaGgD6cAGBweQd/IJAADO7q7cQiAXTu3o8VyMO4Y2LhpE04EsH7rdgBebd3Onl4cBKBn63oAx6J/PI+h/t1YAOCVjdsALIEzNYIxYwqdAPq61wM4Hhu374Jd9gLQSxu2AViMgV07gzEf29UNoBVrN2wEABTLNjbv3A3ACPowPjoE1xkHYODV19bjSAB9/QP+5G5gx/Zt2AdA7/atyJouSo6BzZu34CgA6zZtA3AaWk0bvX392A9Az5YNAJZi1/A4Ru1BdAF4cf1WAPNQHBvEVKmEVgC7t20EcDjWb9ketPelTdsBdKKvx/+dU8bYQC8AE2tf24C/hacubBsdCnzkDQBGBnfDKk8BMPDaa+txEIBtPX2cj+zAUgA93ZsAnIaJoo3enh3YD8Ar67cCWAqjOInhUc9HerduAPAGdPcOoGhOoBnAy5u2AzgYI/09cGDChIOhnZsBLMBrGzd7zYWJDb6P9Gzf5vvIOIq+j6xbvx6nAhgcHsVu30e2Mx/p2YFm30c2+T6ywfeRJsvFzp09vo9sAHAc+sfzGNzdhwUAXnptC4D9YHM+sqt7I4DjsEnhI/2cj4z6PvIq5yNbfB/Z4fvI2OgwXNvzkXWcj3gTo4Ht27dhMYCe7d3IGi5KroEtW7bgSM5Hmnkf2boBwGHYNTSO0TLzkS0A5qIwOoB8qYwWsDiyFBu2hDXVr27pAdCBvp07vF/YJYz1ez7y6msb8A54pQy8j5wKYHhgN6xyHoCB9es34EAA23t2oWR78XfH9m2YA2DX9i3es3SBbdu34WAAazduBXAMMnYB/YPDWAT2ru6LHbuHMdk0hragD8swMbgLZdtFFsDA9k0A9sP6TZuDPqzd3AMgg17fR0qFKUyN9Ht+vn493gxv0dY7Phb4yFEAdu/qRRNKGIeB9Rs3YgGAjdu8Z2nC85FDwWLhKRjNl9G3qwf7AHh5/VYAhwKFCQy7E5gb+PnJ2NrTj6IxhSYAL27oBrAEg7t6gvYO9XjPhvm5a5jYtH0XABM7tnkxfmpiDCVzGCwWnghgYHAE/WPee7l9WzcOBNC7cztaLBeTZc/Pjwfw2hY+Fu7CEgA9WzcCOBr9Y1MYyuzG/MDPF6M0MYxxN48OAH3dnt3GbT1wyx6JfXnjNgALsbtnR9CHsV3bADTh1fUbAAD5Yhlbe/o9P+/2nvno8BDc8gQAA6+t34ClAHbu2u0duA9g+/ZtXnzYthUGXLgwsLW7G4cBeHVjN4ATkXVK6OsfxD5gsXAJegdHMd48jA4AL63fAuBYTAztRrHsoAlA//aNAA7Ehk1bOB/ZCaAZu/z50i4VMTHYB8DEX557AW27PL9dtWoVpgOTk5PpRgnY6wngggULYFlWRO3r6+uLqHwM++yzj9I+k8lg/vz5yn/z6U9/GldffXXw8+joKJYsWYLly5ejs7Ozxl5EUTr3XKxatQrvOPfcIGVj/fROYOwl/NVxx+D4v7oAn179UHB4qds8BxgF3nb6KciubAEmJ3HKsYcD26fQ0tEJ+Atfq2MhMDSCk48/DngYyFgGjll6MFb3d2P+osXAMNDZNQ+TYxYABycefxywClgwrwsHNHehf9sIFi1eDAwB8/fZH+jxUoqHHHYY0A8sO+xgWDs8lW3u3C5gFJi//0HATuCQ/Raiy10ITG7EScccDnQDttWMpowFlIGOhfsDu4ATjj4c+EsWsIs4+Zil+OnOIXR0zQPGvV2uVsscYGQMp5xwPPCgt3I88qAD8PLQTixY5LVt7vxFyPd7ZP6vjjsW2AXss2gB9nXbsb5vAgsXLQKGgAX7HgjsBBbOacWSAw8GBp/AsUcc6rXNNTCnswOYALr2WQLsBA4/cD90jMwF8jtw8jFHAN0Amtph2Q7gAs0L9gN22zjxuGOAx7wxP+moQ/H7nl50zV0AjAK55lY4diuAKZz0V8cBD3p1Mod1LcaGV/qw0B/fuQv3gdvn9eHYo48GdgEH7LcPFk60YOdIHgsXLgCGgQX7eX3Yd14n9tlvf2D4afzVUUuBbu/YlM72VmAKmLvvgUAPcNShB6JlewcwPOj1YZuLprZ2gJ2L1rUY6J/CSccfCzzikbcTlh2KJ3dtwbz5C4ARoK2jE6XhHIASTvor7zl0dbbj4MwCbN8wwPVhP2AX0NmSxSGHLQX6H8SyQw+Cud2b3OfOnQuMAgt8Hzl43wXoMhYAExtw4tGej5QzzWiymI941zvhqKUwns4CdgEnHX0Y7t45gk7mI5kcrDbPR048/jjgIc9HjjjQ95HF+/g+shBTA974Hn/cMYGPLHbaMb6b9xHv2S/saAl85JgjDgW2eT7S1dUJTIR+vnTJvugY9XzkJL8PaG6HNeECLtDGfOTYo4HHvTE/+ajD8EBvD7rmhz4Cpw3AZPAOdrQ249A5i7FxbR8W7rOPwkeOAnYBS/bbB/PGm7FrtIAFCxcCw8BC5iNzOzwfGXkGxx3p+ciUY6Kzvc3zkX28Phx16BI0b2sHRga9d3W7i+b2TsDPjuXmLAL6p3Di8ccAf/B85PgjDsGf+7Zi3sLFno+0hz7C+tA1pwMHds3Hjk2DQR/mL94f6PUU7GVHLAP6fotDDjoAbX0WJoo25s+fB4wAC/Y7GNgBLFk8Dwta9wHGXsYJR3njWzSyaG3OAUWga/ESoAc49ohDkHmlGZiawknHLAV2TKKtcy7gnxaU7ZwPDI/gxOOPBR72Nr4cfdhBeG5gGxYs9Py3c+48TPmx8ITjjwVWAQvnz8V+uTkY2DGKRYsWA4O+j/QAc9uacNAhhwH9D+GopQfD2O6pbHO7unw/P9iLhfsvxJzyfGByE0462nsOTrYFOZhAGehksfCYI+D+2YLh2jj56KX4xc4BdHbNB8Y8BdBs6QBGJ7w4sgpoacri8H33x9rhHixkfr5gEYp+LDz+WM/P9128EItKbdgyMIkFzM99H1k0pw37LzkIGPpTEAuLjoEuPxbO3+8gPxbuj/ahOcDuHpzo98Fs6YThq/mt8/YDdpdwwvFHB7HwxKMOxcO7dmDuAs/Pm1va4BRbAORxoh8LO9tbcWjbImxZtzuII/MX7Qvs8tTJo488EugDDl6yPzoHsxiZKmPBAi8WLvLfwf0WzsGiufsCo88HsbDgZtDe1gIUwlh4zNKDkNvQApTHvD5sL6J9TlcwX+a6FgGDo96zfwSwDOCYww/GM/3d2OfApTj3bQdj1apVOJebp+sJlmmsFnt9DWAul8PJJ58cYeCrVq3CG9/4RuW/Of300yP2Dz74IE455ZTYh9jU1ITOzk7hP8Crp5mu/+Trmxl2ppmLbDaLjqZMeJCzv+tx8ZzWcGt+q1QLYljB8RhzO9u8XzllLOjwajTYMTCukQlqyjrbPXXTdB3Mb/Ok/GLJk94Ljn+SfVsTrEy4U5HVstn+YZ8TZb8Qu72Z+x4sv7OQ1TF6zVzY0Rx8c3WBX88y6W+MMMxMcBxAV0dr2Id2rw95vyYn+BKHAbT5dTSm62Be0AfvGnnHDPpgBodeG8Gn9lh9DNs1tqCjGUaGHd8QHi3BDuQe9ifI+XO88QWAhX4hzUSB9SEb1LPM6Wj3+2AHzyFf9NMKfh86mjJoagqPIWA1myw9MGWz8W2CafkF/v5Ze64bfi6QbaBY0NEUHlPi1yeOsZonAAN+7c68zvbgd4v8PkwGNU98H3xfch3Mb/fHV+rD3NZccM5ixkRQy8aOqmA1gPPam8Ivsvg+MswVbzMfmd/RHO7eY37u+69hZjDsp5+6OkI/Z/5b8Ntmc/W17a2hn7N6x1KZ1c/5fWhrCt7B5oyBnGUKfWC7rOe3N3Of5PPTolOl0EdYnR03vvP9PCCrizPMbOjn/jtouHZkfNkXfVpzVugjcIJatrLfhyn2rraHfejwa/tsxw18hPn5PK4Pkc0dCL9A0dUR9mGBfwRAnjtOasSvUetsb/PH1+beQXF857XmYGXDWsHAR1gfbL9tbblgp3iH7yOj+TJ3SLX/HHgf8dN2fF0cSwPO495BNr5T/vjysbCjLfSRuVIcKfpxZG5bLth8kDGBTj+9HPgI8/M2PhZ6bRueLAWlP2yj0ILOFi6ee31lR9R4aVHvunPbuT50SH7ODnQ3DbQp/Lwciefh+LZmjWBzmmOzemg2vk1BnJ7L0v+TheArJexEBD6OLIj4eVjbN4f1wbW9zYwACkW2AcivqW3JBpuYTLiBnwc+wp5Da1P4DXg/FvKf7AxqXdtDH2F9GJ8Ka/tYTfdcLo7M8+u7Rwu2cp6eDh5QLfZ6AggAV199NX7wgx/g9ttvx9q1a/GJT3wC3d3d+MhHPgLAU+8uvfTSwP4jH/kItm7diquvvhpr167F7bffjhUrVuCTn/zknuqCHrhNIADQ3pwJP8HkE8D57TmwM97Y9zTHhIJmz7kZseML/Cf94Bh8GzNjBgW3vB0rfA4CMldszdvZfhE9K7idxxUNs8LcIvcB9AH2snGbFFhtFCssd7li62AjgGMHx2hM+USx5LJAkAsCLd+2kt+HgHi0xfXBrwEMiuNzkT6M5sOAMeDX7sxtaw52IM7zJ1o2+bimFdTFBRteHDu4J5tAiz6xm9eeC74awBeqMwI4wffB76vlhucPsj4M+XPfvLamwI7ViY5NhpN7/4T/HNq5zTh+HSPzEduwgrq4DsWRN4yIM4LdJflIuEjw2jZWihbus+/yFspO8OUWtvuUt5sTjC+38WSS+QjzX85HCsxH/M0mzZngWBG4dkA82OTOfKSLKxg3XNv7GYAT+Ei0sJx9r3SE+0oJq9f1SIR3bVbfxRY6rmkFx+K0c7uxWdvY+BYcIzIe/G7WUtAHROwycNDqf1HIsdlOfDvSB7bRYpzbiMV24vPnjrJjNFgfHFje94PBF9HbwVEgBakP3vhaETt2FMiEwkdYnSiA4FgZVsfIxyW2G1u1M7ajLfRfNr5sMRzEQssMaom93azen4vBIow9h6zwHAKSxfxciIX+5wL9y04U7YCIsw0q/PXYeXZsE5NrWBiaYj4S3YzDNusVXX98uY0n/G5WdqSQykcM1w7fVVv283AHbYcijrA5id/UxzZsMQLomJkgtcsfiyTPNQUWR1qyQhyZw/w88BHvr/h3tTmDYFcx83O2kBT83I8jgY/A8OvSuRjn2sGiebgBNoG8LgjgxRdfjFtuuQWf//znccIJJ+Dxxx/HypUrcdBBBwEAenp6hDMBDznkEKxcuRKPPvooTjjhBHzhC1/AN7/5TbzrXe/aU13QAxdYAG9SZTWALADNb2sKXspgYuTIEwt6weTuOpjnO3Q4MfrEozUXrPD4l7LICCALGG1ZaXIX1Qe2k4ondjkjPH+QTe5sYvTImLg1n03urpkJzuPrYn3gjhdg5KkQKHs5blLh+uAHvYkYAsgmHycgHuyYHZ6geObsU2kA0O8HDO85+CS2RQzctn+4t2lwGwG4cSsUveeQd0ISyz/7+YzE+n3gdyjzfWVqRhD0fILNE3G20zbPbXBixdtzOAIoT+5MYe1ozgRHz/DPoeA/B19kkSbGqI8wdVII3KYbHHvCJkZ2eK9n540PO/R6IiBP4aTS2cpP7lm/r97NSv7EOFcaNzbhhYsEfnyjfbAD8sQfLcEWCf4AOqGPMD/vEggKmxh98mRYwbE44i5V1gd/cg+Up6zYB985g0WCMDHyfc35zWPkKdoHtqM82D2N0Ee62hWTe0FcSLbmrPDgbt7PAx9JJrHlElskwO9r+Lws7ggoN4gjbNNZjvNzcZHgcjvA57QpFjBSLJzblg1jIbdIKMmxUFrodEkLHXbYPR8LmzNuoLKFO/GjJJbtxmaLMMcId/93tXNH2cgLyZhY2CUtEsaF8Y36OVvoDAdxJOojwUH8APp9H5nf3oJwoSPGQodXJ4PjeJxg3GQfEd5BNzzaSfYR3s507WDnLvORIaEP7NQB+G3jjuHyxYa53EJnTguXmZjl2OtrABmuuuoqXHXVVcq/u+OOOyK/O/PMM/Hss89Oc6vqDEkBnNeaDWoAbVhozVneN4KllTuCMwVD1WZOW7hxhU3uU8GKMUwFwCwG95wrkadJplBxZIcPoo6kns2XAsv8tibsGJ4KvvLAVAX+5WVHJEwWCkAuDBhNGTM8JV8RuPmUjGpFLk+McnCMTox+2wQFxUZnczNK3MTYP2UDsEJSbBeDoDc5VQDMMCUztzVMtYh9SAh6ThlzO0VVYZxXRvL8BJrFZnATYz66cm/NeCQr4x9m7BomRllwbOd9RCQo7Bul8jOVfWSqrCKx5UgKmB18y/fVcL3JbPdY+DmwQD3jJ3d/YpyaygNZBN/3NA3prD2JeBQEgs0pTzGqgmgXTu6hqhDtQ870j8YpcYuECc9H5jOfc0rh5O6PL/ORzuZMmAbi2saUkdBHmqAkT5LCOr8tBxRCu67WLHYMT3E+4oR2kkJl+c/AhRGSAI4Ash2esgo/T3oHQ4VVItjtOSXxKEsEe35bDhjn+tqWw2i+DNcRy2G8bIg/jv4ioVgqAU2eesbUyZDEusH3p6fyMnlqAvxd03zbipIKPz+mD6GPsAWiSFC6WrIY4EpJ2Kci5/F94AlKJvSRpowZHBMlLhJEFT6a5RDJE/PzyDst9YEd7yL4ueEgl8kiUw79fPekDcAM++CU0eVnEvJ5cZHgxUKubZKPsIVkdBHGVGK2I5jz3xIXb/xdxaHCGiWAHSwrVSwBzd4ige3s7uJjIf8Vq1mO14UC+LqBRADncgpgGaYXfDi7JtNFW84KbNhXRTqaMsGZd0A4uecLYj2LHLjnSavekDzJ6gOb3H3ypCAeTKUw4MDwJ5YBxaqXrSzZ5MPqtrzz+LLctdSpsXmtuSDdKUwq8qo3RmVzA/WMqZhimmp+e1NAwgFgSqEosq+eMEJRVk6MvMLqBcepGAI4T5rcmaogT6DseoF6NhVVJxnJYj7Cfm+Zhq+eiSv3qDKiHreipJ4t6GiCSmULVIUgcKvtwonR7wPXV7ZIYAQg9JEmgWAHqoI/vgV/fBdI49YV4yPzpb7KEyNTFby2mYHdvNZc8Ck6IFwQ8c+L+Qg7aqrssrY1SW3zU49FMfUYN2kHKXZ2zxifY2M3pFiEZeCgoynDnU3q9c0wxIlxTuAjTGHlFglG9JkGNazluD5I6lkxSjz4vjIfGZiK9qEt4y0I2HPgY2FTlq2Uw8md+QiLhTwh5slTkGJXKE8q9SxcJESfq4kwnT2gyIaw8WWpbvat4/ltuaBeU1josFjov9o8IeaJeElKsUcWwywbwuJIITq+hhv18zwTCBTlGpMsxR6zkOwK+iD6iHdPM2LH5hrm57Kqz+wCP8/z4+uXE2R9H/GP73H9f5+1DOFYL3b+KzsbdDaDCODeBM6hAc/JAwXQtYIid1mRYTZMPRMmbYQrd0Y8grqiGHUnCBjKtEdIFF2pbksmlHOlgMFqsvjUTRaOV6PlTz68egaubiuoyQnUMxVBCSe8QD0rcqqCoq8sYIgERZykAvIELzXanDXRmssICoplGsj6diXwbQsDcpie9jeoxBHAdnly9wN3TC1mkFYKaizFdOy81lzwDVE2Mc5tzcI0DS5FGRTReG10osFd8BGp9mye1NdgfCVVQTVJGXCCwnL2XPnn0Gy6yGXMwJf4iVFoW4tInlJVhZI4qcyXyBibGFkJw5CCeLDJh/cRGyayluF9sSGoofJVS78PJUGFVynYTGFV+0g09cjGVyYeoo8w8rSgvUkkbW2hjzj8xh7LQrBI8Cf3Ukm1kIw++1JQhuGPr0T+uySCPaJQnvjnxTIJzI4nnqaftmU108EigSf/CA/klusT41RMOX06L2YBIy8S5EXzvLawbUBIjPjY2mI5yFmcn7uKPvAp9iCOqFX4cJEg12qrFzqyn89vk9/VrNAHGyZasmJWip3Zyc6TVPt5OernwbsqKt0stcs2gYwK8VxsG7s2gKC2T5UqDj6nh9B/DSsUTNhiuBFSwEQA9yZINYA8+SizlBIQCSyWFPRkAsjST2zyCernpLqtYGMEC9xpqoJUP6ciYzwBLMPy1MmMKfSBV9mCFSNPFBAGbrYSZAEjunKXyFNM3cs8aWIcFhRAZlfyA3fYBwdG+G/Z6tgPtuw58DWW/LWCiVFSz2TldF4QuMWgF60DE5WR2JRyWxYZeDYOp7DyfWixXLRkrcBOqRLbJW5nobeYUKtnXPrUkdSzyOSTFcZXLHXw2hqqD/674E8q8yOTu/fnID3N1LMYUhSqCmplJFQV5PSplI5tk/tgYn5bk3fmKJdCa2/KcAQwuW4rTLGriDNfnygRwBg1jvn5VAIpNoOFJNc2IFTrmwwYRvgVo6KjSk9HVfggk9AuPvuglMRmKjHrg0yyfD/3swRlmJ6C3ZyN+FygYkLhvwgJCotdeSUB5GtYWR2uaiFpRxeSAQEUfUReJJRheel/y+TiiFcbx05+KAd9kMfX+3NQnyjEwmgKOIwjUPdVWkiqUsAIYhy/kDQ4H/HT1aZXE5oJYqGaYMsqMfvM4jwh/toRgj2qVFhtzke8+xYEgi0uOAOCHSyGuXcGQKdPAKdKNgpcacdsBBHAvQmRFHA2WJXbMLHPnGbJznP8jKSeCaQI3vc5O5szweQeFGXHEDsWMJTkiSMBwfEjBbXKJq96bVYvIvV1bmsWlhESXa/vYuDuzHqF1GyinUrtQ/yuPJ6MsbFmK1XVKjqYVMwsACP8t0K9Y0gUS8r6xJDYsSA1GZcaCwi2PLmLQY8tCNjnAlXqpGfXFAQ9Xt2R+8CTXbUywiusfk0OO3qmXR2QmaoQrNxllS0yMUZLHdjkzt6FMhTkCWGalREFMfUYVWJDH2GqmEyyRPKkLp0QFUDXMOHCjJCnoA/SIiE6HmLN02SgnsnEI6Y+UeoDI5Ts+JEyLDRlTG93sNSHiHom9cGSFBTmI9G6OHFyT1skuPImpnaexDKS5QbfT7dheTVlphH21V8kBAtJIRaGcaQ9ayBjGsH7kC/HqMkSeYpLsc+VFgkTJf69EX1JXEiawSYuvg88ySrF9IEdZ8LiSLxKLMVzRQ2r6Och8TQM8Tu6cjxnC0nVu8r3oRiz0JkrvYOT5bjUubhICGq127LCQocphczPbddCW85Cc9YS7LxFghgLZbGhI4tgc9rQLE8DEwHcm8CRLADYrzOUpcuwcOC81ogdr7IJaQXDCB3fFpWsvK2YGO2QoITnyqnk9uiKsQwLpoHIinyeYtUbTzwk9UwKekYQHOWgJ+0+jSFPcTWAJiOAsNARrMg5stCeQ9ZgqoJ6YmQTRqCMxNS9tGS9lAmzCxRAyW6+3AdBAYzWOwYTo2ty6iRfP5lNmNxFYsSIeF4gsdwK2g+07HpskRBVqETyZLsmTCN6zANPPABvcleWOigUVoF0wquJbeVqYgNlJIagRFUF3s6JkCfb9xFZweYnd+2J0VGT/znB+Hp2IaFokiYyUYUfLcaok6zGkiNP89tyvjppCXbKFLuqD4aYSYir72LPXqw9i5InZpePGRO+bYC/SIi0TVTZyirigbAmNhP4CDsXUd02R6kSq8hTORi7rGV4O5eluCTHwrg4kgn6wC9Kwz40B2q9uJCc194UeZ/5PowU1Qpr4Odu2Ieulqy3c1lWWA2RAKb1oRC3aPL9nKnOrExAJnbsPWJ+Hj4HkSguaBcX10qxwfXiPp9VC8aXmy8NTtllu4RnK4gA7k2QagAP7AoLU22YWCITQD9QBeQpUEayUbu2KHmSiUdHcwaWaQR2Y4qPrvM1gOHEaEZX5P5LlBUmd7UywvehqDoaxbeb1xamR1RnWvEqGyNF4c63JokURQNGOKmIx56ExfFxQc8W1TOVOgl4R/JwduImm2jbWFopTp1k7WB9LSETVSftkqSMZMK2SXZ8PWk+5gzIjGUKq2i1MmJDLspmE57oI9HJ3VZO7mxSYeSJm1S41E3oSwrypGgbO/g2qFGT1Lh5iolxQbtMTv30tLRIiJZriMQjIE888XBtZExDqIkdFwh2tG1sYgzJQla4nuwjZVetwgsKoCuTWLHWypJ9RFokdEbiCMIxEdLTUh/89H9zNl6d9J5DDHni2hYSwCZxMRzY+QsdW11TJqcUwzrRdIV1bmtOSP/LfgnAKyWJI9gRlTgaC/msSVCHK72rgcLK0v9B3M9G/Jfvqzi+sgIoLnTkchh5oVOw1SpxxjJFPw/iiEhi2WLQ4XzEMLwDo3nl1FNTXa6W3FS2bUF7E5cxi1/osN8NEAEkzBi4lxIA9p8TKoAlZDgFUNytxkhRQBQUDs2TACFgcDtoTdMQ1Axh9WaJihIAmFzqMbindCizKLcb4arf4gJQO08AuRW5MLkzkiVNjNJKsCVnCSpbGRYypoEOaUUeTIwQCYo8bvykzVLsaYGbnVa/QBG4+ZrN4IsGUtCTVbYyLHS1ZkV1MkjFu0JAixIU8Z5sYlyosONXx0wZWdghji8Af1OJlAaMqQMTCXaUPM2NTO5cCtgId9ry6k4xdmK0BZViQpk+DSdGXmlRqzbMz7lJRZnaVaVPVSomTzw48mRwYTzWz0WiOFdBTrtas8hwNWU8QTE5H1YprIKPIL4P87i+sk028uRuGIZQvqI+iilMYwc+4iqIh09i5VpiZSlJW6hOCjuUJbsuIRaq6xhbcl45RbDoUKYyQ4IdPgcVebKFGkvbr59TL3TCthX5eCMTQOVCUlbZvOsHJyzARM4y0c5tTlL5eVnp547wDkZjoUieM3ImoVX0X7iu0AflZj3XDpQ9RmJZ+l9UJz1lj99lXY4hsfPbFRkzhc+xODowTgSQMFOwxHRCsykqI8v26ZDs1KrCIv+TYzzJ4hVANjEu6hSVEQCRiaAtZ6GtSZwY2QTCB4NFHepJRa4ZWdSpnlQCVcEnFIs6mgDT5EiASCjZitzrQxh8WB/CejELC9qbFMoTC458H+QaS7FtrPZMZTe/jQt6ZQV5Yvdt4ydQNckKVbawbVHC5k0+ctBbGDwHMWUvp9gXKp4XT8bYBjgVAeR9yfZ9pEWqKQtTj+EiISR2Yk1OMDHChFdYriZPwSJBVcLgj4mqD/OlmrKsZQrHnrBJRVZtwtRY6Etx6mS40OHIqdRXXgVSEmfuvpZsJ6X3OpozMI0whRa3SWxuq3cUE5/ejfTBFTfjlBOUEb5tUzHkCfDqx0zuemFNWXSREBJsFSlS7z5V95VbSPKETeoDr+rHHQIORI/ham/KeN81V/g5T56i6X/RL6OlJHIq3n9XVelT7npyPJeJeC5jCp8TZaRIpU4CXCx01YvheW28j/h9UBBxPk4XUt5VS5q74k6myHD+G6TdIxsJRR+JEDupHjp+kWAHz5AUQMLMQQpA/NcF3nXygZ4CJNnNU0wWKjLGE5SpgKA0Cy8RAGlTiYlFnYzshHZsdRwEKiUBLAk1ZSxgqOzEmhwzxk4M8CwVIKs7AIR6PBuWgnSGtVG8MqYiT7w6yVaMyrZxQc8/gcAnsZICyKepYCoJNgApbWuqCVtbVD2Ltk0MekWZAFpi0LMkZWRhR/hZOcAFHDGNXeaL2TmyM68tB9PgA7fFFb2HfVjY0STYAAhW/XwfFrY3qUmRlN5b2BHtq1yADnjnFvKbSiIF+X66COAWOq6pSIt6CyK5bisurcTehylVagwI6pR4n8tlPD/hr2WahvAc4hTWqHpmKpWReW1N3LsQr3TP596HiZhNTOzf8sp5RLVxbe8LIhlTsFMTj+gxO+oyDK4Ol5EnFRnjlEL1RiFFLIwhRWyRwC+aVXXOc7lnn5ZJCFVHzpcElZhtKBKJjLzjFQC62sTazrh7AuJiQrUIU9VYqhcJIWFnX1CRj+ORU/Y2eD8Pn0M2shhW+blXAyj7SByxY/NgMU4B5EQOUgAJMwcpALH/u4aJz73zOM5OTQLYamtxZ1Sh4gkK2wkop7wACBNGybUUxMNX2VrFySdKFG0hmIUEMFllm+KJh2zXJqpx89uaIikvrw9NAkFREbaMZfo7GkPyoSJPfNui6pmYCgqVPWbXHF25t4WbSjxyGh0PIKqyqfrQ0ZRBsyWmxtREMSwTYCn2NAWw5JocweZX7iUhDRiX8spYpk/GOGVEkWrZZ04zNzHGqzb7zGlW155Jdos7mzmlxVNAZNUGAPbpbBbGVzVZdDZnIuUEwT05RXFfrm3llD4ENZaq9LSir+KmDakPc5rVbePsFnU0B2SHXU9FivaZE74zpYgCGKbiF3Pjpt6w5S0S+PGNa5thGJ6dkUw89ukMx82Bt8taRTwWcXYFfkMJIMTWxZ1NQiy0TEOsKfNj3CLOLo505jKmoJ7G1bAu7miOLHRUY7Kwoyk8rosnKNLzX9Qhjm94vJboI4s6moVFs+pdndOSRdYCF5dMro6cW1xxKptAOqU+LGgP33vl9+R5O+7ZRzcnsT5wz0tJxG1hIcnGWOVL/AKx5MTFERsLOnLIoozBkbHgK0WzEUQA9yZIJIu9AIaZ8Y72COxEpSVMn8YrVPMk9WxxZ7NyUpFr3lRkktnxAUh1T37lxohHqMaJO23DOkaZZIXpbkFVEMipmDqfJ6dPFaQTAOa3ZmAart8HU5meVqbYVWnsNlE5DQm2l9b0/qIk7UIzudRuuBsbEIl4nDppGAYWtITkzI4hgPNUfVDacTsQ/YlMINjMrl189qqUIgB/4k5SdzxlLyfVsKoUqn3mtETSRaqJdh9pclftxgUgkDEhbWeI47vvHHHiVqkPiznCFnxZInLEh4N9uT4wBTuyUcgnlPxZcLF96GwJ2+ZaWNARtctlTCxuC6/PSiLk8d13TktAxINd1gof4cej7Hq72lt51QYAXFsaN4Wf+33YVyC7aqV7TksWrVk3sAHUC5j9uPHNB5mEaAZjvzktUt1sTjgUPWybaLdIsfBjdv9/e28eZldx3Yv+9jmn50nqbvUoqVsTCCEJIYl5kDBGzH5c39gGzOBL4mts44B5z8ZD8myTYPCNk+eXfDG+4Sa+3wvk4ucHTkhMCDIzxiAmmdEMBgQCCRAISSDUwzn7/XHO3qeqdg1rD6d16F6/79PXOqdX712rqnbVr35rVW1pLNRETfq7qqRozDcv1IdntURyugc0dkOzmqWxMHpEmFi/1WdQd5RYLudhOBjTKj4MdrVE7IZntQj9vOzD0KzArurr8KwWaeHfkPciO/bLPrRIi7XBSNlK4T3EPjI4K1q/rY2F8IUHwX2HAjtPLZtMTocDHxS7L+X/BX/5wslYufX/Qb2CCeB0QiQEPCl/H7ErRsIUjYVc9VR0ZQeiqCr0qySmkpjbI4RHJpFHv2agBYIQT3Xy0SlZDflceAh1oADqBjNRZQuIQlMhr/gQTVQf0JBJQH6DyqTka3UDBQDMaZPJU2RALk6gs7mAxpysAEZ8KE4o+UJ5DHZVCLbiq0qwTQN3d2t5BRrY6QZkAOhtFQe9nGAn50aJqk3OMyixbU3h5KO9Z2AnLib8vDAJyD6U1aLqwK2zK+RzmFMhKIF6Nnd21FdRBSpWQufBkSmykiVPFsOaawGyelZErjoJqBNoZ6O0SIiUzS+io6mA9gpBCSbGeZH7TmKgS1aUBjubKxt7hEWCQnaLyGHebHXzV0A8RBVIZ1f2YVg4Tkq+nqyMhG+yqRAPna8qoZjX3SKrNqEPskI1r1vfDuXJXWcnE/Ghjsr5iH7QR6K+Ds6SSX1jQa/+D0iKbV5TH5WydcnqpO4UhrIPzdJYGLUroqmQR2/lMPsgxK5r10GJ7OQxu7WhnCKi3FclRdFnptL2Ehkz282dJfeR6HNTXtC3FoJ+bn5W5TYtP/e5nBfZ1Des2M3V9Mty/bYI41JOQ9jKvxsOXqYMoARPeKbFhWRzNdTtlw82j46tZQIYLIh8sdx1BiaA0wkRAliUv9fY9bY3hg/lJHIY6W7VEo953S2SujPS01axkR/KubPlVe9or2IXDBiz5Yd3QXg9ZQLtqE7uDXlPSwLKakz1WqM91fePiiRrSBjM5LJVbQBISkAROSxQ7YIJVDlncYHGV8/z0BcM3Cjvxp2lCXsMKEpRWL+qXac8+UR8CMIenXJ4JCybslGovzIxlnwPvuirsFGouSGPzso7lyeRx/DslnK4SPK1KIVHJpHHSI8yIGvtclE7ceAOFydCu6pKVnshrDfPg3YimNPRFBLxyUr9Vvu5oO4Iysikn8f8bn3/VZW9qg/V8DQADHWJE2Me8zU+eJ6HvpDElvNjdQrVQJdKdjT9XFHZitCc/ympmCIZMxDFDnlyn6/6WlmsdQv9vLe9sRp1kMrWIh1OHymbaBeSIj3pBNR20NkFz2q1fgFofe1oKqAtGAv9HOYGxEO5r6SeGY7XAqCQsZyW1Jd9kMcbE8kaEMbCnAdByRJDxVUiLhE2IJJ2UJDuqfpQCutXJOwmkjVXIE9lUhz1wfM89IfPqmkRNikR4pIvLq7kTX1lolhur5JIOj1lASO0wyTyZrJbeVbLCxgvSmL9EpoKefS0BKJEAX0dTdqxUJxrSnVMs+q3ZIz4MCqAeaOd53nhAF9EHovmtGvtRnvapNyzhXMU4gEApQksmtMuhYoXGgjKot42YSLIY8Ec/UQ7Mrs8ERb98qSd1wzIzQ35UI0rl03vw+I57dKmElPZFve3SyQgSgDLdgf0Nkv3CQcqgTwBwPzZjWHZRkViJ26gaGtEEKmb9AUiJl1vEkv6OqSBe0Fva8QGAJb0d0jtYCJZi3rKPgQHWVd3yMl287oaw2uNasnpBObNbkGTQLJCOyUBfXFfu0Q8IouJ0Id2KbFcR54AYEF3U1gfA53N5XPgFLt8zpOI4oi0SKjed9GcdklBidRbhdgt6euQy9atXyQc0FudgGXCY+jnFcKmW4S1NxXC94xKxE6xW9In11uU7FTqt69dWCRoyJjSR4q+h0I+r1HhZQWlqBIP4b59HU1oyfuCnZ4ALprTpie7StkWzmkn2c2vkKUiyqkVOuJRzims9pFhrQ8lzJ3dKp0SECEUlTzGBb2t0jNoIk+jPa0SKTaqbEH9+uU20G3qK+RzoVJYRB5DXeIYVW2HkZ42aYFYJTtKv+xtqz4PEhmT7ebProaASwa1HqiS2KB+df28o7khHAsnxPpV7OZ1V4nzBApaxRmAJEpo2yGw66r238Z8ThvlACCR2PBayvX6O5vR6AWb+lgBZEwFDJtAogpgYFdWvMSVZUjsxL8rTaC5IR++B3PSz2Fhb3v02pUJVCQoIRlTHqIlc6oP9ez2lvLZUpKdTJ4mkasSNsmHSkiuLR/aSeRJDHe3NaJNmHwWqD5UwthL+tr1KqZCshb3VAfXodlt5Xw3ja/zZgk+aOs3qgLJdlVf585ukSafajvI9XFgf4ccpopMjBOSDwFxjg7IZbsgxFP080o7mCefRX0BAZTzoxZLxCOPRepiouLD0oGOcBXd3NRozANb0N0s1Ieu3iqKYkWxnUQOi/v0i4S2pkK1nyOHxYb+Wy5bVZ0MfVXt+qv9vK+zVaOKla8xWiGxk8hhSV+HxgdZjZv0c1jSr/dhjkKylvTpfThosFPKoYqqyZW+1NdSKVt5gahbhAHA6Oym0O4Abf2W88X62htCu6XB0VRKeG/hnHZpgbh0sEN7z4OHOsM+ksuLJEBu+wPmVH1YOtiprTegenh+ETksM9g1N1RVoKKfr9opYexlg12SerZsSLGr1O/K4WpdzW5vMfbzJXOqJPbg4a7qvRTFa+6sKpE5eEjvQ3dbIwLRrogcVgTXU+pj5XCXRJ6qPsh9ZPlglQiNzOkS+rlctsU95XaYQB4rhmdpywYgDNkXkceKuYKd4Ov87la05KvEeWVwPaV+D5k7K2yHkpfHAf0dil2lLw20hn4uH+4U+rk63lTGcz+PlXOFdhDs8jkPfRWiuHOCCSBjKmBUAE0h4PJDcVB/ueMXkcfHlvYJdspuqrbq6u3Ihd3Ra5cmK7tUyw+lly9EcwUr11olDHorR3qEe8ok65ChtvCeJ0hlk+0WCkTG5kN3SzWncO3obNmmUifl/I2yD7M7WsuvqNNc69C5VR+OWDhHuKfs67KBav1+/KB+o938WVWV7YQD+7R2uZxXDcf6eSw3DNwL57SFA/eSgVmCWqBMPpX6nUQO6w8QfVAmn96W0O7jy8w+BCrbJHJYd4C+vZob8iFByeULRoX1oIH2MH/u0NFeTci27MPBg+V2KPo5rD+wV+ODTLJKyCl9RFYCulurKtvRi3ui9REcQlvpIz2drUa1YPlglcwdfYC53pZWSFYJOaWfq4uJ6sQo95HqTlvP8wQSm8fqkdnKtarKSLBIOGBwlmYRFvhQfQbXHWju54t7A6Uwj+OX9BrthgSV7figzynhvXzOQ7AnpaW5EQdGJu2yD4v7qgrg2gVzNP08mNwDH3I4brGubOVrLOyuKrHHWnzoE1Sgoxb1yDYVu5bGPJorxejpaDGqYgHxAIDVo3M0i7By2Zb1B89qHkctFMdM2ddRYRw5ckG30ddATZ5AAavnq32kstGtvSkcz4e7O7TKKQCsqNRvyfdw+EJz/VZJbB5HLBTLpuTjdVUXCUdofZiU+nnRK+AgwyJhpKc1XCQsGZilDdkCwPJwnM7hsFFd2QJFvLqYkO2U0H57+e/eGWcCyJgKxCaAlYe3MsAPd3dgTTBZSHaVldRQeaJdd9BgNI9NsAsUr8s3LBMGM5mwBQ8uAHx1w0HGsh1YWbk3NTXirFXDRrtD55Yf/tE5XTjIssIPJrPTV82Phgordp7nYU5Fybp0wzJjfcwRFLsvrFso2MkDRjA4trc048SDzJP7mnllH5YNdxvzu4AqoTz7yAVGNaYhn0NFaMGXTzzQeK1A8fByBZx35IjR19WV+u3pbFUmH9luzbxy3a9dMKe6G1e0q+RZLqmQhc8du0ibiwcArcK4+cUTzD4EKmYul8N/WjUUtfNlH4a7O3CIqCqoikGln5948GBUsQPCYx0CleKi4xYbyxZMsgDwR8cvMdoFi7DW5iacunxAU7ZJyYfFA11GFRMAllX63Fmr5xvJv+d5mFUp34XHiD7I9wxIvZfL43xtH6moRZV6a2nIYf0BZvK0arjswyHze6qkSGMXqEWfXDNi7CMN+VyY23n+MYs01yr7OlKJJDQUGvCZw+cZfQ3KNjCrzdDPK75WxpFjDhwwjIXB81XuIxccY+4jYj//0seXGu2CZ6a9tRmfOWyexq7sa7Aw7W/NYdW8LqNdMI6ctXp++SB2oKqwVaIhQHWj2BdOOMBYtqCfl3IFfOkEs69BP+/paMUnDtE8q0r9rh7trSp2QKQPB+kJFxy9SIjAyG3qeR6CU2m+YqnfQF0vFBrxh8cu0NiV+1kwhwz3dOAkaTGs5B5WQsrBRsZ6RMFtwvjIQCWARRMBlMlYcIL78nk95XCdwa6lkiB9xCKBxAQH6frFql1F3TlkxKzGhGUEML9XL6OLP+f1dAKNwkipEp7KKnXNAkGh0Ni1Vj4euUhDxAS7IJdt5TzzJFAdYIQjCCS7ykRbqd/FA7OAguiD7GuQM3L4IocPlT87QueDUK/BqvfgueZVavCzo7UZHR1NRrvgTQXLhruBfM5o15Qr2x25WBgYJV/Lvw9CN4fbfBB8OXDIvDAJFxXNebQECoXmeoHatWbBHCDnGe2Ctj9miWZwD+xy+ZB4HLZQpzgr/dzLY6EU2s1Jvw/eFrKgrwtoEvqjUragTY9Y1K88q3KdNIc+DGhson3k0FGzahO2WVOjkvMk+xr0kcE2D00N5mc16OdHLRbqLbArjod2wRmVRy8xK6colcK6WznP4kNwPFJHK9BhflYDH1bM71X6uexrU648xh29WFM2oXxNFV9XjejKFu3no3PMod0wZWdWm6GPlMsW9PPh9lyVOEs+BON0+ePaBRrlP7hevhC21wppLNSP04VCQzVPUONrMNfM7+0ELH2kWTeHaOyC8dzafwHkK28UOmjYrIgG12xraUZbp66PBM9gZTzvn2UYC4MFYvnzgHBaRL2hfqkpIz4MHTpKAKm5gskUxaqdeTIWH07peqFSpNiZfChm4INm4LbaKTaRbf4mX42bceK214TFB99+vUjZNNdKZRfck1onYtmqifaSLSDniJkOPFeHs0zLRu0jcZ8taturdlQfzGTdeL3Yz71ctujzoPpQ6Uv5BsWOUCeqjS+OI2l8iGuneR6UdzJL9qKvkfoQfPBsPpjGwoTjUtE2jkSvJ/uQdq5RyhYhu4528GP0Eaed457Gsrl8KN/f9+qXZtVvyRjxkXLgzo4oagiPqWxe3qBkZDVwmyZQ06CnDMpWH4LEYhPxmCD6QLUjEI/g975vIIqE+pDsqCRWtTNN7nEWCZPR30l2cluZiUfcCTQuAaQQDyL5N07aln4pfo60q6Z+hfBelQQQ2sFI2GRSFGkH8uROaC/Vz6D8EbukPsR8BvOCneZgfG17GZQ9eMGZjpD/xvbMWMoWIR6JF8MxxnNqP4+0Q4aiRORaperbOMS683KKHXGMM0bW9GUr8TmAjClB4sGMqlC5JtA4ylPWK3LDAKTs3NUPZmICuoWMmZQnJ/Gola+WgVt8/ZBkR6gPyc5CKMS/y9KH4HeSD+7JxzzhOUhW2PYWO+0igaA+UAlxMKnkqfVGI2PmRQJFoYqrjLgWRFQirpA7yjhi9CGpup5AJQbM5I40Fhra1FcUcdcit2gg4iYf8pZxxHTf1OpZWlFCDu1bCbZTJSbe06Y6StdzjEt1hPotGSM+YhO7rFU2yqoso5BB7EklC5VNnbQrA60x9KhOZFT1wUTGbCRWuHZpUp4Y00w+1D7iDMXHUGKV+oWXI6nEkYHWNPkQlSzJThvei6FQkZ/BjBUq2yKhVAIqB+lKv/NMbUVb6JiJh4XYxfVBRwBJ/Zy4yK2pQhUQu5iEgtyXAiJOVYlNfUQJ2U/Fgj5SJwmeG9O1TD741H5JVDFDwh7MD6wAMqYC+0N5otolVQFcOYC18kGrPqhErPwzOtDq7ZIrrDHCe4Gda9ArEgkx1S4xYdfl9jlURwOxi7aDSRVLsJjQhffiKFSJCQVBUbL5IIUolTSBkhg+pYT3aDl7kQkvbSqJTqHSEUDPku+YdnxQSXFcskDJh6bWB1V5IufEivUrv1awnEoSZ0Hv6udxw6wJFkSijVh+m534k/ys0lJOWAFkTA3iStqxJx/H5B4MijpZ3kgo0qqTrgE5wcBtUkYMAzJ9Ewh18kky6CkDt3HQ209KbCQUr7kvWbHT++AmHq5wbA0VKidRcJFTVaFytBclwV/qI4QcQOKiyRwCVhUUlWSpoXjXZqeSXDZSLnENFVag2g6+0l62hY5R2UuqYFeeB/KCyOKrKZXEEP539l/nOJ2F2CCUwS9Z8kTT5jnTylbyFLs6AhPA6YTEk4+L2KmrMur1NAN3kICeRokDaIRCdz1nEr06MboVqmjuWR0oseIOOAKJTaxO5ontFV5vwmwXV01UQjxmBbDkKFuCnDffr95fuzsyIXFOuknBGLY1EUCCSkwOjakLomyVLOPkLj6rRuXJsdBRiUzMMGui8YusPCVd0MfMAbSOI0T1zNVHIqHdrHy1pGGEPphyAINrxcyxjDmvsgLImBpEVDbH5B6xS7nqtdmJq/1S0ULsUk6gVEXRNtGKgx5hcnfmPNVMZbPYhT54sB4FkpaIx/bVlj8Xd7KQy5Zo16PNB+OGDJU8URLL0xI7ajtYFC9RJfaL1QWdej1TW7lUR+OCKIHyZPRBHEcmY9Sb6dky9UtTfleyjQC0hQ71WrTFWlSJjUtkYhDAmi1yXb5qCLtpoZMrpDxxwqJMi2VwzQ91BCaA0wnkyTjjh1dU40RlxKg+CKsy58MWMwcwi2MeYg56pUjoMd3A7SRPLhJQnMiQ2GU9cKvtpSOAJaBUil02t+LhInYxFjrGPkJVE5UjKLJqB1voUb1eZosEeWI0bz6wEDvtfTU+qHmMRmKXtN7SkgDhvhSV2PdpbUUqW8LnwTbeuMKnzh3KSRfqMUUJXf0GvyeXzdCm1J3MERW+QsTrmGbVb8kY8ZF1YrlRjbORJ5PcbngoqZNxYmJXo1WvMHC7FQ/HYFa0hEV1dnEG7qT1YQyx1zCUKeXuFGP03woRTzzhEZQn1U7qI+Ju4biKHVE5jRC7hJOZzgfqrujUxMNFTgkLncSTe4YLROl6lufLFXoEKoudFIqoxc6ZE0tZdMRNJbHVh+RDwjmJNI4Q+0jsPMaY5NR0HE8doeA2YXxkEJm0DSfuh3YxQl7iT2r+XKpVWQbHtmjtCJOPOOhJOwvVgdsx4SXeQZuBXSmvtzGdi+gcuE3ELsvkbbWPmMqmJ0/mCc8Vjk3gA/kAYocPZGJHDT+pz7SFLHgl+TujD/FUx+ju07RhbMMiQQzvmfyMHbINxkzqOGJ7Bh19JLRz9cuY5Mm5GYdIeMRFWOSQ6lqNXa7+S8gBVI9sci1eqSkn1L6k2HEOIGNqEPcBj7uicU4qlsRyzzBwkweMtGFW1wBU8UkNn+pyRhQ78yaQZDkjZNKm+iraOclTDUin1U6oE3KaQFrlKa4iHihPhEnKpXSHm51q9Kq9LBRxaspBTMUjcyVWOo/Rq44lfjE+ISYe3ZHNIswwFqZVMYl5jOTngZIPnVn/db0GkDp3Wdo10keIzz1ZnYzXXvwmEMbUwPhwTKXyZBr0cnLeU8zBzP1QmuwEYhfXB5NNaFeZ8FTlyRQ+VclYRIklKKzS9dIM3BPE3dg1OAcwbpqAS7GjKh6uHZ7qCt+kiqrEQ1ok6FXi2hM71VdKO1CvZZrc9W9QIW/Gsal2pSK0RzFFfIibP5fR7lNS+FQcCynREFfINl5fMkYm4rxZxEXsgnxdcj+vTb4jbTzPOo1I9UH/arl6DgEzAZxOSJwDmOXDJoZPCSQg9T2pA3ecHEDH0TOKD5mfA5j6OAiCwgokIyiJ1WRRYXUklgfXiX38iIvYUfMTY0zuzkWCi8TGVKhib3qw+FqjM9mix8CYNgwQU0myILGZ2amLNUu7UnIAS8XYxI66SMhEiXUtwAGBsMPeptR7xrEzvmVJ05fI/dxRbzGPQ+M3gTCmBqnJEzU8QhiQ1ZwRyS7GLtUps9OFxhQ/DWHs9MeP1HLVaxm4SepDDTcfqHaep6jErklFJhTukFeGO55dBCuwoxK22GdsqvdV1QfCpBe3vxHTCdy5ZwRfTX3EZJfVAc+x8xMt7Rq+yjAvq8RSjhqFoCTMPSO/CYRCsA02Ebuszvej9F/Dgf3qfanh5LjPIHGhzjmAjKlB5qpNgofXZKNejzz5mAbkpLtU4wx6mklWE8ZO9M5NyS4O8aAMejbypA7cWRG7BH0EsE8YZMXDlXsWtx0IaQcuYhfYxSb1aTeoWHIspesJE6Nxg0op3qHtJsUjiTpp7SNiO1DfABR3kZt2IWlpe/W1gjEJhXuxRl0QxWgH10Ins8VrnDxcsY9Y6iQrgp1woc4hYMbUQFwJSudLpe3QcfLnDAMyoAyOVEJRq9BCgvw5gx1dAXQRFIKv1kFPaC9XfYTXq9U5gDZiZwiNqdfL7PiRmAsdCqkg1a+NxCbtvzEVVuth1g4/VR+IC5j0588JBFtrF2Oho94zcXqFqrCmOGZHvW/sxSvtechkQUQdR6hvUIkb7qb2c5tdXFVXba/IKwoN7aWe7Rm2Q/3SrPotGSM+Yg/ccRP8Y5wbpSVPml2qqQc9V2gsicoWkwA6FY8sdxYa8ucAhaA42iq0M90z61ftaepXDY2Z7Ij3dIa80k4EJNVGDe9Rd6mmfRewSRlJ0M+N6g6NPJnfQKGSAEIfUQ+pNtml3hUdd7wx5ZMSUklMPmSuPFnqzarsCj4YCZs612Q4xlntTIthxc7T2EWIXcIcQJevSq4r5wAypgbSwE3Js0saGkuQM2K0y0Cxs/ogToyl6sNpJU/UgTvYfGDJdSSVbUL+mcWq19qmHtEO0Qkv9QTqItgxJh9FsSMnvZMnAgIRdy4SiPlHTkIRY2I0nVEYKZvj2YrY0dQd8qsRreTJYBPxgbCRJUEYm358ksVXUjSEkg7jWuSaCKBtnKaq8Ca1y9OTLOc4YrKj5rAmGQsdzyD1LM7QLmVkoo7ABHA6IeXAHbUzHBhtJVm2yT3G5EMduCPHu1h89eMOeraBu2qXPAeQSmI1yinVjkxQUq7ciy67uHmiFjsDYYsMtJHQDYEslIpIlWMp2WW5ScEVnjYpgLb8OcczE7FLOOElUYGs5EloV9e1AGW3e9YRh6QLHcpYSFWo9PmOVkU87ULSZJf6GKMYC07JB0OdUE46iH2UDWGME35yCJgxNSAP3KbwXobv0VWvBRhWvYYH12mnlo1AZGyDXngmn0U5NVzPmQNIfh1YnBxALwWJpSiFJoKdkijalD2AFrqJ3NPwyiVjHzHZlex9RNt/HQoVNexsPM7C5IMtPE1Z6FjIk+nQ9qTHj0QIe9pUEoq6I/pAIVnUs/GyGgsJKptxoU57Bq0LU7GfJ0l1iNiZUhiShlldb2RR+m+iVBKhDNZDxROok0EZwQogY6ogEcAs1YdJRY3LYgOFg7A57YgqW/g+Y4HY2e4bx4fgXY+RHEDTmzuo5ImwM1ZbNkJYSfxOfesJqWwJ1WQtwXaF2ImJ5ZX6NR8/EiOERgqfFs3ETixvovAeVaEibJ6h5ljq8hi1h7arRDGwCchT8Dw4cgAzSyUhjHERuwwWMFIqie38OWIqSZYbI4Sf9hAwdaFjeAYjdtQxzpTqkKQdKGOhOI5YCCCJiFPVSfmZ5mNgGFODzPMyxDyaUvT78DNhRR6xczzgVLskA4bWTpd7pvMhGma15p4lyT/KgpzGJoq0sJJZOc3KBzF041C74ENU7ZwKYOy3N2TRDqZNGyZS5LLLavepwwdPN4FSiTgxB9B6iDJRPXO1KdUujsom9RGLr1ktEsJTHUyEPSUBTHJgv+RDnLkm7XFSacQGW6qDSGKT7hRX7IqGyEQdgQngdANlFW1alVHCReL34ecM87tqRgCFlbZY5jhlE/9OqBPjeVtAwrdt1HDQM9olLVuCxQSVoLiOYwHKk6NRiTWUzRrysuVY6kiWqx2yekeqwweKYgcYFojUPpKWeMTIY4xNnhx5jBTVUfw5pYsEU7+kpsMQc89097Qe2J/heB57HKHkANrGOMJiIuu5Rny2hLM4I68KrSMwAZxuyHRyjzvoEWX5IpUAxsgBjHO0RNLQmMHOmAOoXo886NlyAAnEzhbaVX2I/eYDi514ALGNyNRIJXbvAnbVrxDy0k2MVJJF8YG68zhi53qmXfUbU2XzY4RPQ8XDcfyI8ZBqqvJEsJPetmHLY6QuYFIQQLIS6yKxROUpGJdU4qHtvylU4lgE0DXGmcYbSg5rQh+kXFfKs1oZG0iRhOpCkhVAxtSBQsZqRQDjEA/jA56DdEyJMfRoUEayUJ5i+mBUPEK7jNSHooWwide3ETuDD9H6NYR2bcdjkDYfJFFGaATQfSB3nHf8Ug/vtalsFiVLJFjSoe0ZhLFNG0rU+1IWa1YfTDlPhJAi4OhLhvEhYmdQTk1v23COhSYlVjOOOO1SLnRiExT5WbUqsdS2Jz2rlo1dSeYayS7Bu6xVO+M9lVxX02HW4VwT5LrG2azHOYCMqUSivAyHXXFCmdxtkw9x4LbtBBXJR9wBw6o8UQa9OJNPZZeX6bgFqg/FOCtL4oBss8tr7IwkK8izo6g2MZURcjtQCSCVYCd4cbx6PSoRd4WyAIVkGfqvT1SonMQuxQTqPBvPlAOoIRRaHzR5h5kt1qhKd8x0GNvGI9tRNqRcbdM4Qt2NbQvtUhRWC7EDaEQxMo4QfUg9FurmkLTpMMqJCGrfDOctuY9Enoc6AhPA6QaSyqYQD8qgF+6O1J3MT5xAKcTO5IMz8TlOWMk2EFh2tIl/KzzkxtAjQAt3u1bH1HrT2Tlz1CgEhbKYcBFAKsmi5O7oc6Oc5zFSVArrhBdzAqWET512KXIskxK7iB01lcSUi6khYtbr1W6xlmkOYK4QTSWhEDvJB2qOWox0mGBhalMATWqXer24fck1jpBes2h733nMHMDihOOZ1o2ZaXcoyydOsALImDqI5K4WOYBW4pEgtJA2PybiQ4ahR5udEO6Ohh6VMDbldWBxB72kk3bEjqI+EI+LoSiARbE+XCqxod48Txu6MW7GcfaRymeRiNnqN47K5trcEdpR6reIsI9QlG6tDwR10uQDcRyxhuKlPmJ5IwuJ2MVfrJnv6SDY2rJRx66kYxwxHSb0sxKiNOZiplgkZDKOEIm41EcShrF1c5JtrrEu1BuqNkEZbXain9BEiOoI9VsyRjJQHhBxIvN98wCfRrEj27kS1Qm7wcSfSUmshthRJ0Ztki9FfdDVL0A//DRyz7gDPIHYua6nW0EDmqMlkrylJB4JMCqxavjUSp6ood24IUpigj8lL852PXLbU32NH96zbsah5omGZEdTvyIZs+U7xjoSq/J7Yyg+SX4tIeLgu8KshEWHgYiXPMI4ou2/NVBYI9dLuZC0KXaSnWM8z1OeVdNGLINdcUKYG3LRNIE6Qv2WjJEMukkqQuzEh5ISfopD7LJUqJIcVGzwwbbCi5SNGh4x5AAChnAs4QBtrQ9JJncKUSSElah2YtnIR0u4NloEfYn2FgLrq68A8/OQqn6TLmCoz2Ct+kgShcrwbIV2ptCj8Oq2gDxRd+JnteAk73Z3EBnpfEpL2wvHE2W+aLaNI8Iua/ur4GKmw1iJorCYyETpFhfDSV86EDcH0BIxEw+xF38mFUzqCEwApxvibKAI7QykTTsQZKE8ZWBnGPTsClUGOYCaDRSRlXYSH2o2uSfdgSgeo0FRUCxhNsnO5YNmUiH6at99ant7Q9yFSQw7o6KkpgkQ6ld6SwlFoUqoTkauRySAlGNgYi9MqONNSoWKusmmlouwLNJhbMePaBe51MVwwjEuyXE8scdCRw6g9VkV54cMj8SyjYV1BCaA0w0UNS7NqiyTQS8DImMkT1kMevHKpk3yJYXQkgx6FBLrGvQoA7dnWEWnfQ2gSz2jKlSUzTim+rWFHuMes5PRLlVK6NG6E1+nOurqV8ydzGgRBkghSnsImEB2fGIfEQ9Zp17PpZ7FGQuphC0psRO/I6XDCIsmpCHiGdoZj+Mhjuep8xiJqQ6UHEC/BPtO5iBXUBx/NW1aR2ACON1AeUBqRgCzIgExQ2iTY/rvU/tAPQg6gx2I4uSeeNAjhP8NPqQmAXFUMbJ6RiSKRUM7GBcJBCJOzo1Ko1ARdjRqfdDtxE/xDFJ9dYb3gtCjRWWLS/5THQMTYxEW2rneyJLk2UqowlPva+jnpAURWa1POMaZykcdp41pAtRNIK4cQErETJ/qYM4VdJStjsAEcLqB8oBQDxhNRRSyUqgI7/q0EsDaD3qR87Yidq76VQYpa24UZfKh7lKNs5s1BkHJbMKLZxeZ8HSbAADNocFpVAXXAiYlkYlNiiwkJmJH8bVkbldPT55IRLzWC5OIHWEcKY7rvwegX5S6SH2tfKXlEtPaIUU6TJa+7vc+QsgBDO0M16OSzjoCE8DpBtLDJuxMynTQy4DYAdCHHm0EcF/0b7X3rM2gZ1cAqUeoZKHYJdm1TWlXMaHdtPNtkpj0PmG3072uSkdkNKSNfvwIZfIhKh6pSFbgQ8lM2iQiVitVN6lqk9O2V/QA4qzzRFO0l22zkzSOpCWxSdJhslgkCDmApE0gjvolPdNFR0oERYnV1ZurPgg+FF12SXLmCe1gO2exjsAEcLqBPLlX7EiDHvVolFrmAFIJICHMmskEWvVVuws4zqAHAJPjlnvG3cgyGSN8Sshlk47GIYTGdKRI2jwzIX+nvR4xd0dqB8vkLi50rG9voEw+cZTTtP1cFyZ2PVtxw3HZnmeXXgG0LDjE76R+ntAH6RmMm0qSRb0lSYcx9XM/9MF37bK2LsIyJKcRO1ceI3VRmpUCGCMHkGrn2nhSR2ACON0Q96HMPH+OouzVKAeQfLQElRQ5lD3TAcSR61EI4Id6G7Ec5JW22A4uYkcJF05Ud0kaX39k8VO6FnHS9l1KrGgXKE8GdRKoLhJyDZo+oqtfB8mibgJJe2ZcKvKUtcpmU1rGw13WVgJIXZiE9ZGFwkpdhH0ofG9Z6MQ+3iXh+EC9r7afJ6yPpD6kzQHUnu1oI6eOZ1Ual1LaiTv2rWID5wAy9jfiPuQTH0a/Uz+TiV2SASPhACQ9lFmSJyopqpZN+67HOMcLAMDEPuI9ifldRZudTkGx9ZF90e8Sly2GHXWiNb4JRFO/mSh21AVMjH7uehdwIuJBJYqu54bwTAsLyZI19Fi5Vmbv+E1LnsRxhJpLTFSo0u6yptrpFsPU47qsdo5FmC5dw6UoZva+c6qdGL2g5qVr7IL+KhJA42KYcwAZ+wsahSryVgag2sknKZN7kkGPOrm77MbddiTyNGEf9MRXB8X0wa0AEg5JDUlsVooSlcgQiKKojBh9qIafEpMd8Z4JJgJjDiBQ7edO4hEonVTFjli/aRUq33WtKVBtrH2kOo74kTdQUBelSdo+3qHttHSYNLusqRuAiLmuusWE6Qw90QdnvWWdDpNyc1rN+nnRXG+m69nsSPOlo97qCEwApxviduhQAfSiD1JswkYkFFQVSHyRN8WHVMQjgcpWsdMrgEJuSXhItYUAhiSWOOg56y2uyqbL22uQy6b1QZx8xvQ2op00MRInC+LEaDx/DhAmRhdRiHlAbiZnwQkhdpPyBFTzRMnqTtbn1FnqZEIkgMq04mmeeyd5suWJiuTJNrlT6yQgsWNum8xVzDhqsikaolEAycQ5KztC/RbH4XzfOeDo57rFGjV/2XI955uidGOh6kOQA/jRIYD1XTpGfFCUJ6DaWanKSKDE5Rtp93QNetbwiG4isK3KPjTbSOc8ZUCKJLuyD3oCqJQN0BzIHYSffIcCqNtp65ikwoE2gzohKYCCnWvgzuRNFVEiHg0Bx1VGHApV7ONiHD4E15PCSgW9DWBPdfA0BFtrJ5In6kYAgp3gA+ldwJmkiGSQAyh+R1bP9sc5gBZlzNP0c2tUIkEOIFkRt9y3KITYbS8nKNpIbOX64iHgOrvM32OviYYYz1kUohK8C5gxpdAOGBT1jKoWZKBQZUbGKg/XxD63jTPnKYmvAfGgKSPpw9gx1MmiTUFJmANo22Qj2lEVVuukLQ7INEUmQgA9r0p4rOokMZdJW28WYketX8pGLMmHNBNZXPJEJGOVBaIPoc6tZZviHEBKnyPVr+tdwHFJVgZ24nE8FBXTJ7Z9go1YU9vPKeOIIwdQytsj5ACGY6HmfeecA8jY79AoVKTcHRtREO2yyO0rTtBy+2y7T8XvqMoTKaQYYxdl0RYCJqhnOjui6khf9RJD9pRVr638VDsxJENWCmntWlKPgRHtqOoOKXGfep4d8VgZyjmWgIPExpyMyZO7Q2lRxxHbtSQfHPUb+/w5V3sRfLWmCVDVX+oCJiYpFnZZk/qS85nJUmElEnHKhkPRLpXCqjtxwuUDoS9ZNxwSFyZ1BCaA0w3kFZLyUNpCu5Kda8KLufvURgJs+RY6u6w2nsTMAdRvAlHUSdd9JywkNk0YOws7W/2Kag9p4HZtsokbtque76d/J7OiPtj6m+2dsSa7VMqIojzp7CTyRMxjTHusSBI76y5rXZ6obTLOWJ2kEhQKwY61uIpLnmzhU/HAfsJu7EzCzjHUZMqO8tgKYAZpAs4cQGLeHqmPVL7zS/b6qCMwAZxuiD25E5QngLayFDcfOFeWts0HCdUzch5jBjtthQ0qVgVwYm/5p5dHJGQAVH21tgNVndSRf9fOaMIgGvigI0+eV72HdZFAJdjBgCyUzaZOC33EuhubQk6LxEVTojwwgvIERCc93RlkmZGnDEmANZKgGUcy22VdA4WKTIipJMsRKqbkQ9vUM/E7qkKVJfmntpfYzyNpAmn6eRaEnWhn7SPEnOM6AhPA6YZww4AYPrWoe9SBm5qjZiOdukM3bWVzqmeUHEDdypI44RGJjJV42DbZUO205MkxOFoV1pi7sV2DWcQug53H4nmMuvsG/UaYGO2h+LjnANp2drvIqUZ9oCjduUI0x1Jnl8nu3vi7rK0+UJ4tql1muX3U68XIAaSqv3GU2LT5c2QfdOTJFe6ukcJq6+exlVjd+CAuci2+StGVGOcA2mwAO1GsIzABnG5QVyrid5KdsrJ0kadABcpEeaISj7gKoGtVRghjx9lpa8sBDJOGLfUr+kBWH6irWeKxPaRNNjF9IOdi6gZuUQG0+RrU797wKy0RD4li0H9t9xwXJgEdOW3UlM1yPeckpeSwmiYLip1EOgkKVdExMZJVUUWJdRJAag5Vhhu2Ji27TyU7Qg6geD2q6pj1+XNJF2s6xS6Td1nHVInJC8k0izXRBxuJ1W0WSeiD1M8tfamOUN/0lBEfSQcM42GllWNKbLmC4ntep2r3qc7OSWJtdsQ8O/HA6MqAod8FTNhkI5YvtgJIDO26NmTYNtmERwVZ8ueAqK+pwtgCAaRseBEWOtp3MkeIuEVNFA9PtxI7ol1xnGbnUgvUELtWfRB8sE14kh2FxBLtxGc1Un7hO0quIJXYUVMYbIf3Sna2HbQaFTMz8kQ5pFogsYRcVz8zhZWYA0hSWOMSwDS5ruI4YltMCON56lxX3VxT3xSLFcDpBq0CaMtpsCh7QIqdtrbzAmO+gcIZPiXuUrXlsiUJ3VB2ATvVszhKrPi2jRThkZzSpkY7pX6dCmDMc9S0BFtHUGwKa7lNfdMiQbGzkhjArlBJSqFFnZSUQhtBIZRN64Mlb9alnJLtAh8cvqo+6NpUzBO1KoCa/M9UxEM3FtrsLO2gVTFtBIWosJLD00K9WRfDWSusGZ556FLFSDvKY24So5JYcTFMGgtNZSO8nrSOwARwukGXNEzZ4ekiWVnvtKXY2e4JaMiTZVIB6DlqMd9pm20OoGXQAxxhVo3KZiPYE0SVmNpHSCqmSz0LBmSBeNiIom3jCdVO7A/W3dgBKSKqNtRQsUsBVH2wKXtO1VEgpyR10rJBJYkP4zYiHteHmAqry86a3yUsaCnjDXURRiVZLkUpQp4s/RKg7bSViDiRxFqjTZbQOdWOSuzyurIR2t5p54qGEH2tEzABnG7QrVS0yghBPdNdL+sDnq3J8RbFTrKzlU3YXWY98ibmOYDCuVzW8+ec4T2CUigN3NQwNiFX0Hb+HKCZVIgEMNXALZKsGMcYGVWFGOFTyc6mUI3byyapmBSC4lIACQpVeE+x3iy+SvmOlnPUhBxL633DshnageQDsf9qfbAtEuL64FB3rEosMYc1rprsUuEjiwRXNMRiJ6b0UDYKST4QnlWn2JDxeaKUHEBqmoBzoUNcENUJmABON5DVs7gqG1GWJ+98IyiAVOJB3aRAPoKCklguvPqKMrCkGvR0ClUGRJysEltUMUDoI5YwoBRmteVQiRMjIZeNmsJAmbSddprwtPWA8rGMVcwMd+wXXT4ExMOhElOIh87OqrCKhEJHYnUKK2HnpjFNIKEPLnWStNBxqGwRQmEi2DHKBtgXa4l8oGx2cqiYcXbaUhVWJznVKd2Ecd+pYnIOIGN/IJKz5yIeRJUtk7P2ojto7SFKlw/KgOFUCjMMYwsDBu38OQfBpoSnJTsHiSW9goy6ycY1MSqDqE1NlHywkCfqRossVuSeR1vhi8SDUjbX0R3UyZ2SKyipmMQwK0WdHHepZ1RlhEJQYpJ/KkEZ/8BetuB7lx1F7aQqrFoFMKE6KV7PWjbdQieD+nWpZ2SVmNLPAx98e5i1QCWnGpWYdJoAzQd+FzBjakHJixO/z0Jli63sjQHwLXbEFWPcY0qyDGMLGyhIm0CM5LTBbacNY9sINnGTDTUkEztNwKVQEd56Qs6fcw3IxAk0QrJsk7tLtdGFHglhVvLkngEBJO/ujRc+NU54cXzwS0DRMrlL7RDjrEgyOXX5kMUiIWa+oy13UvLBEcYOxqpxWz8XnkHbO6+1iwTL80D1gZInChBJLHGxFpB/8TubnS6NSPw+tGvS29UJmABON6gKlXHSzhPtCNcLyZMwYBDDp/YcQCrxiOmr85gSQv6cdPyIZXKPnT+Xwk6rYhLqN034X7peXBXTld9FCZ/GXMCYiHgkzGoLT1PPKHTsxKf6QLGjHrUihU8pIfaKD5mHT12heMuzLy0SCMcdUdveNY5QQvbk/qvpSza7LBRWqh1ZJdYtdLIkT5b6BYCx983Xkwj2uNtOLJutn2fhQx2BCeB0g6rGpFHFgOrEQj1qhbJJgXxETdwDiDNQqMTEfdtO28o9/VzBED6NqbLVKkHaGgJ2TYzUdIKYfYSS7yipxDofsp4YKeqOGLbLcPfphCv0SFAnPU/w1XI9cnhPafs0ZQOEdqVuxrFcT5vflfAQcCDqg07RF+2Cyd0WKhT7iDWk+CGs/TwkFAHZcaRhOO2C6+0p/yxoFCpJPQvIk8VubE/1O9v14pZNd0+xjkI7HbETVcxxc9mC72zXkspmIZ3i92OO69UJmABON5AVQIJqI9nZQsCa/C5b6NF5SHXCQ5TTbHgh5wBmrewlPSTVRmIdOZaRnL0Uyh7VTjy81pqATg09UkPAWYZZKzaZhU9V0pki9AjEVHeIIUpX2I5MxJVwoY3Uu+zihk+dG4Wo6o5CAAsW4gFUfbDZSaFHokKlLRsx9BhR42zq5DgwGZAngg9ezkDEVXJqKhvBV3GhE7aDjcSO2fPSKfUhfm9THbU+sALImEpkeYiyaBd3lyoxfEoKUZoettgq216znbS7LMYOWvIRNVQ7B1GMmwNozcWMqRIb1R2CoqjbaEEJeYnXt9m5Bm5nmJWiAAb5c5P2VIdI+DSHch6nyc61WCOSrAgRt6mYLpVYIbGu8GlsgqKxy+WEHDULkdEpsTa7YNLWkZhYdgSSJfplIzzqtdS/Vcs2TvShcj3fpbKNEcoWO3yagtgBNIIt/n3og24cydiHUCl0EUCVULICuF+xc+dOnH/++ejq6kJXVxfOP/98vPfee0b7iYkJXHHFFVixYgXa2towNDSECy64AG+88cbUFToNyKpN0s0iFsIm2lFy+4zh0wzz4gCayib5QDiIdCpz+0Q7Sg6VcEahXWElvuIttppMJLtZnt2mex2fzi7VTltxoWNTsgI/HaHd8J4fyJ8j900YQtNNoGL4NGh/q7rjUm3ihh6JkzslD0wkTxSFijxpU9UzC6EA7IRSbVPx+lo7hw9Bu9qInXgPig9+URjPKaFdYpuSiV0KkhWmMIwTw9gZKXvUOqkTTHsCeO6552Lz5s247bbbcNttt2Hz5s04//zzjfZ79+7FY489hj/90z/FY489hptvvhnPP/88PvGJT0xhqVMgonalVZ5i5J6J96UoT8bBLG7ZXCpFMBgQwtNUO+oO5SzeBCL+fdFC2sIcQMfxI3FJZ9Hy+jmg6qvTLlBZY2xQcdqV29537bImK1SWgVsKURJUICqhoCpUoQpEndyp6g5hYjTeU603k12lfWz5XdL1bDlqQb0JuWfWdoh7T1cfsRFsoR/a+pLqQ77JvvlgjOpDFosEnQ+28ClVYc04z85av5V6ChZXYjl0ZQv7iCNC4HoGqUphncAwak4PPPvss7jtttvw4IMP4ogjjgAAXHfddTjqqKPw3HPP4cADD4z8TVdXFzZu3Ch99zd/8zc4/PDD8eqrr2L+/PlTUvbECB9eyzEr0vcuO8L1wmNK/Op32glUUV9chMKWHK373umDxc6Vk2SycxE72/WBGHWS0AcXYQfcRNxpp9zDNBGovlpzd8ar17aFT20kBqj6H5BOF3kKwqI21Ua6nsXOdi1d2Zw+TMazs+aoCc+qzS54P6pLjQkUZxd5CpVpk11BsbMQQNd4k3nZVDtN2YL3HpcmquWzhop95bNqp/jq6ku2e+ru41IxA9ieVdvfSd/H9NVo1+S2S/qd04fgs4MouuzqBNOaAP7mN79BV1dXSP4A4Mgjj0RXVxceeOABLQHUYdeuXfA8D7NmzTLajI2NYWysqrzs3r0bQDmkPDExkcwBC4Jrqtf2fLlRS7kCipr75+BJh5cUvTxKGru8l5dk4knk4GvsCrkCvFL1+wkfgGpXAsTHwc8XMKm5lud7sg9eXutD3stJZSsip/Wh4OUhrq0nfS/qQ9GH+qhOlKI+qPXrV0iS2g5q/ZraQa3foleg+YA8zQc/F/WhpPiQb9C2Q85X+kiuwdBHckofKZj7iFg25KN9xFf6SKFR30eQU3woD9CRdvDySj/X128+V3D74BPrV+0j+SZ9/SKv9JEGQx8p0PpIrsHdR5Rn0OyDWr+GPqL64JWvrrZD1Af9eKP6MIFo2VDKyX0kV8BksQgUi4oPeWUsbNSPhdQ+Qh0L843KWOhp+nmO2M8VHzzDeO4VIuM5oGmHSD8n9pFS1AfdM6jtI57azw1jYY7YR/IFpZ9r2sH3NP1c50M+UT8395Fo/QLRdsgKaa87rQng9u3b0dfXF/m+r68P27dvJ11j3759+MY3voFzzz0XnZ2dRrurr74a3/ve9yLf33777WhtbaUXOiZUtXJw55M4XPj8zs7deODWWyN/t+z1V7FE+Pz7V17Fsxq7Y97bhV7h82Obn8C2V6KrpNMV0nbn3fdhX+PTkk3Hh1vxMeHz2HgR/6G55/x3nsGhwuc3d7yLTRq7lVvfwALh83MvvowX3o/ardvzAWYJnx96dDN2PD8uG/kl/G/K3/3HHfegqKykZ3/wIo4XPr+/r6y2qO2w8K3nsUL4/Nq2t7FZ48PqbW9invD5qd+9gFd2RO1O/HAf2oXP9z/4MHa1vi3ZFIp7cbrwuYQcbr3t9si15ux+CkcLn9/d8yHu15RtyfaXsEz4/Mprb+Apjd3hb7+DQeHz5qeexeuvR+1OHp9Es/D57vsewN6mFyWb1rG3cZLwebzo4TbNPYd2PoXDhM9v79wNdEfb4eCtW7FY+PzC/kqeyQAAI3BJREFUS1vw3IfR6x276330CJ8ffvwJvPX7iBnO8ArI+5Ph54133YuJQodk07n3VZwgfP5gbBJ3aHwY2fE7rBI+v/HWDjyqsVv1xnaMCJ+fef5FvPRe1G79B/vQJXx+YNOj2Pn0bskmV5rAmcrf3Xr7nfIubQDd7z+H44TPu97fh3s0ZVv05u+xXPj82rY3gXnRdlj71g4MC59/+/RzeG179HofH59Em/D5vl8/hD0tWyWbxondOFX4XEQet2rK1r/rtzhS+PzOe/qxcOm2VyBKAb/fslU7Fh757i70C58f++1T2LalOWJ3agkQR8g777kf+xqfkWxax96U+vm+iRJu19xz+N2nsVb4vH3HTjyssVu+9XUsEj6/+NIWYGBlpB2O2/MBuoXPDz3yOHY8NwYVZyKHHErh5/+4424U87KvXXtfwXrh8/sfjuFOTdlGdzyPQ4TPW7e9hce1/fxNqZ8/9ax+LDxh7xjEmbg8Fu6QbPKlMZwhfPbhacfCnj3P4ljh887dH+A+TdkWv/kyDhY+m8bCw95+F0OiD888B3QfHWmHrLB3795Uf/+RJIDf/e53tWRLxMMPPwwA8DR5Fb7va79XMTExgbPPPhulUgk//vGPrbbf/OY3cfnll4efd+/ejXnz5mHDhg1W4pgUExMT2LhxI0466SQ0NFTXOt5zAF6p2vX0DeC0006L/H3urseAt6odeNEBB2HB8VG7/A3/A3j/d+Hn1YcfBX/xSVG7pxuB8Sqp+tiGU4HWHtloxwtA9VJoau/Sls178n3g1b8PP/cPj+h9+I97gR13hp8PPHgllhyh8eHNHwEfvhJ+PuKY4+HPPVw28n1gs/zVyaefGQmDem88Djxf/dzeVR5O1XbIPbodeL1qN3d0EYZO1ZTtX/8d2PlA+PngQ9Zg2SFRu8JrVwFj1UXLMetOBOYoCvb4B8ATQlkbWvT1+0oHIJCb2b39+vr9zYvAturn0SVLMf8EjQ83/RzY9Vj4edWaI3DIUo0Pv/8msPu98PP6E08GOgdlo91vAMJc2djaoffhdyXgleoz2dtfHnYj7XDnI8Dbt4Wflxy0HIuO1vjw7t8BH1Qb9rAjj4E/elzELvdUEzBRJYAnnXI60NguG739HPBc9WNb52y9D7/dBbz20/Dz0LwF6Ne1w7/fBbxzT/h52YpVWLpG48O2vwS2vxZ+PurY9cDgIbKRXwJ+K3z08jjt9DOgwnu9H3jhqvBzZ/ccfR95+HXgjf8Vfp47shBPlKLtkP+XW4D3NoWfV65eixUHa/rIlu8B71Yn8+NOOBHoXigb7dsFPCX43dSqr9+XWoCXqp97+ob0Ptz/LLD9X8LPi5YsxYJ1mvr9f28A9jwZfjaNhYXn24APqrln2rFw9+vAM18LPza3dep9eHYS2HJt+HlgeJ7ehzs2AW9XCc7ipcvwwnuadnjnJ8AH1UXXEUcfB3/eEVDhPdkkve3o5NPOiIZB33pW6uftXT16HzbvBF77n+Hn4ZGFGNT5cOsdwLv3hZ8PPuRQLFul6SNv/AWwrzq4HnP8CUDfMtmoNCn1cxSa9GXb2gu8eHX4eVZvn75+N70KvPGz8PPoogMw/0RNH/nFL4Bdj4Sfl69ag62vRtshKwSRxqT4SBLASy65BGeffbbVZnR0FE888QTefPPNyO/efvtt9Pf3a/6qiomJCXz605/Gyy+/jDvvvNNJ4pqamtDUFM2TaGhoqEnDG6/f1Cb9PtfYipzu/o0t0sd8YyvyOrsGedVXaGoDdHbK4NDQ3B61a5Lv6RWa9XXTINej0QclHybfZPBBycMw+pArVPOnvDwalPLqfEChXD+RdlB8MNZvQS1bq6F+5e8amjU+eGr9NurrV2n7XEOLoX4VHxpaiPVr8EEh0w0tuj4iq+VeoYnog6kd5P6bbzT4oPhq7ucNgBB1aWhuj+b5RPo53QdtO0R8MPUl2QdtHwHKR61UcvvMZZPvaS6b+qy2APs07VBQxpFGUz9XxxGND77SR/JZ1y+xjzS20HzQPQ9K2bx8ymdV00cAXTuo/dzig0AAG5pao5tUIs8qzYd8QzNtrjH1EbWf6+rXL0DMSyfXb4HYR4w+qPNqMwC/Zjwg7TU/kgSwt7cXvb29TrujjjoKu3btwqZNm3D44WXF56GHHsKuXbtw9NFHG/8uIH8vvPAC7rrrLvT09Bht6w5qsq5rt1L4ORrKiGfX7LaL2FDLltIHdeVq29EYJtAbrhXZ8GC4lmpH3WhhvB5hA0XkWiYfqPdU7dL6QNhUou7mde0qdd1TJWdkO1eiOirn+xE23hjvSfUhoa+2hHbXTvzEyfGEeotll8Xmgwpcm0BCO+IGijR9jtxHqJsPZDvnOYDhZ4IP+UbDDmVCW2ntqG1P9UG3yKkcGB2emrA/+3k0xF4vmNbHwBx00EE45ZRT8PnPfx4PPvggHnzwQXz+85/HGWecIW0AWbp0KX7xi18AACYnJ/EHf/AHeOSRR3DDDTegWCxi+/bt2L59O8aFEGfdgkLEtHYmkkW0E1dIXj46aen+1lg2RWUzHs5ZQ19Nk4X6t66DQ+OWzTiIEu4rvuwdsAxSxN29EeJhIthJSRZhcidO2n4aQhHLrlG2sR3dEedaus+x7RKQCjJ5ovpAJU8pSFsuD4jbAChkXXft2HYJfbWddxm7bGn7bwJfyf2XStiyJlmEMTj17t6M7eoE05oAAsANN9yAFStWYMOGDdiwYQNWrlyJf/zHf5RsnnvuOezatQsAsHXrVtxyyy3YunUrVq1ahcHBwfDfAw88oLtFfYGsniVV4whEJvN7Eu1MD3lDAqJosmlQQ8BUX02EMgHBpt6XSrDJ5JRKigmDrVE9IxJs9fss1F+SnRhOqzflKYG6Q1UdjRMeUSVOQrBNdp6nKFRZK0/UhZOpToTvXccYOe+Z1C4tkWkg2CRVYrPu54R2Nfmg9tepWiTUCT6SIeA46O7uxvXXX2+18f3qeVKjo6PS548cEqtiadWzJoJN1mVLSGSM5I5CYonkNAnptN6XSDwbmquHn5om40jZUpJTajuI5NmonhXkXExKWwHlgXdSY0cmsarqTKgTqvqbhuwAyScfCvHMWu1KrU5S1enG6hmQ+4tgUxYJ5PrIeDFBVmIJdlmnV6Q9Qy8J2U3bpmRRghVAxv5E4vy5DEmbMfcsR3soyWpXQh9STe4JFUCyOkkJsRvUM7V8ZB+oaieRjKUJsQNAQ6vbjpom0CAnqqfuc2KdkAmxqe3VslHtCGUDLHWSRK3PkDgDlklbKE+uoFfP1PtkrtpkaGeqt+DAaOe1ss6fSxICzjosmpbEJiCe+ykEbExNqRMwAZxu2G8KIGFSodqRFbuMFUBS2eTv/bQkK0m+o0k9A5TJPYZ65rqn1Y5IAlQF0AQKEaeqmLX01WSTy8nlpvpgtEuYE5vGB5V0En0wPg9kckrsI2L5yD6kbfsEKRHWfk6wS5Jeofs7kx0pfJph3mwsO6KvrndoAxkQ4ozt6gRMAKcbaq4Apsg9o9pFykbMPaOQANMGFWrZPC8RUcy0HcgEmxrazVoBTKESq9dLrTxRQ+cJlEJbO1B8oCqASRRFm3pGUjGbIG+0IBK7LNVOq0pM8IGar9tIbfsEdjYCIJFdA0GJEGfC4irr6xkXOnlFxaTm2WVol1ol3k+5mHUCJoDTDZkrgMR8JkoOoHqftDllWSp7AH1yp/hKnXyS2JHr17YxgrCLMvFGFsKkYpvcKWHsJKHzONejhJStk7toR1Xspko9I0zunkezIyuFtfSBSNjSKoVk8kQlsaJdStLZKJ//mr5OiM9qI8UHpWyp7QjPFkDrv3lloWMknUlTHSzlqwMwAZxuqKWylyukU8/U+2R+9uAUhKcBWgiNTJyJAwYlLAoknNwznLSpdlYf4i8S6KF4gp1p5yaQbV8ik3+qekactCnEI3I9atsTyVNq9Uy0s4T3KHl2VB9UpZBCANP6ECFsNGXPeA5gI1UlpvrQ5raj1luS+rX1X5EUq/UYIJeTf6eSUFPZ1M+6e+o+1xmYAE43eJ48uaYlWZScsohd1jmAKXMFswxPq+Uh71DOMsSeUgGk2mWeJ0pVMQl2+YI8uacmWRmrxKQcNSp5SqAUUgl25gSFGrInEJm0IWC1fFkqTwCNyFgJimineesQoOm/JjvFB/XvdHYmsgPIxMVGYkQf1Fcimv6+qUNvp9avyU68T5PhnoDsn9UH4Xem60WIHdHORDzrBEwApyNqRbKyIB4UQplvkF9Onzb3jDrhFagTI0UZSRiinIrcM4A20ZLzuxTVkbRBhUpQUqqdScJ2aUO7AK2fU5/BJOoZVQEk93NqnijVBwLhMZEYQFFtLJOseA0TCVDvY5rcGxSyQ8mxNJEY9Xom4uF5ip2JFKkKlYlkiWWzkScCsYvYmeqXqIqRSZZ4T0v9NhLKRrVTy0LxNd/EOYCM/YBMw6yEa6l2aUmWutEiy917ackpoPialmAn2MywvxTAtOFpSuhctbPmChLuW0uVWCXvIiSCYiAynif7aiIyah8xTYxi2Zos7y4Xy9NMtDMRDzUUb7qvRE6bLYsJkex00cqW1ge1fSgKlZXYicoTlQCmJIoRHyjkyULsJFXMRrII6lm+ID/vFPXMy9MWOmRlj9peBPJvuy9VOa0TMAGcjqhnBTAJocwyVzDtDlpAmvSM5zxFdshRlL3mdMe7qL+zkl2C0hJRRgwEhaKyALIP1gGZSmQEOxMJUH1oNpAK0a5lluWeIvGwEBSx7m12lPuqSqeJeEpkx1JvhQzt1FA8pR2o5NTaR4h2FBJADT1K/dymiiXwIS1RjISACQoVlXSSFcCU11OJrmksFP/eOt4kCAGb7ApNclTK5GsjgUzWEZgATkckOl+KQgAzUEYkO0uIp0AgKKqiRNmgYnsoqQqKWHdUEmCa3CWiYLCJXGu22U4iFBY7yvVUctvSna5slPoA5HYl2vmmdlD7rLEvJSBstvZqoF5PnPQI6pmVPAl2VFWM7Kvlejnh/dMkH4hEweoDtU5EMmbqI8rYRwk9Wkkn1Y6qshFIlmjj5SzkiaAmRu5JDJ9SQ8qUPDurOllDH0x2ngdptzArgIy6hTiomybkSLKqYWIUH7DWHvM9xQe2tddiJ9zXdj1xAm0zXI+sKojXst1TuJ61bKKdgRQBQGmi+n8KebJdKxHJSkkU1UmEohRS70kmTyntxHvaJkaJeNhIPdUH4vVEVcGoThIXTWTSSX1uiOHYotDPjepOhiHbrO3UPkHZGZs2ZEstG9VO7JdeXm+jlo2q7GWx0UJSzwgKYC4DH8iEsp1mJ5XB8BxK96zvDSAAE8DpCZG8tPfpbdQHzDQxtvfrrxuxE+5jImwRuzlmO1GRNN1XnOREsqWiTbinzQex3DY74Xe+idipMA0GosJly4ujkHpAntBthFIc6GzXE5GWPIl21jAr0U4iTwY7sZ9bNzwkIZ3UELDlesH7bAGaemZLKk+iimWhFPrF6v9NE7eUcmDbtJFA7SSTMYsdBVnfk0qyxH5ushNJK5U8kUPAKdVJAICvv7Z0LZFAGsYagE7YKLl9anmsBFDwwaiwEo7FqSMwAZyOEAcAG5GhQCRPtoGlY0D4Gwux6xgU7CxEUQznmvL2xIewaCGAnUPV/9se8M7h6v9t5En0wUYAbWpNAHEQnthrtuuaRyvbrPlC2SzETrwGlQCaINZvccxsJ/pgu2fX3Or/rWSMkIAuYnKf+XftQv+15X+KCyIbKRL7ts1OfKaMbzQQSN+ExQfxPrbJXSRWtrKJdWojihSIE6NfstglCbPayiaMEVkSQOoO5SxIbEkg2LajWwJ4lmmdvAkkw9AuILe5qZ+Lz4KJYKllSxvaVX+XNmxLaZ86AhPA6Q4baaNAnAxtA7ekFFqInUiYrAQw5upJVFJUiCRYHExViETGRpylsLiNAMYMAYx/YP6dSIpskAigpWzihGMrpy2cFEAkKB++Z7brXlj9v+kYENXOpgCK4XzbpEeB2Bc/eMdsN+fA6v9tk3avYGcjWeKig4I9b5h/17O4+v8Pd5rt+pdV/28jKLNHaXYdQ+bfBRAXce+8aLabs7T6f9szPecgoWyWdugQxqW0k7vYF9/+ndlu9kj1/75vtpslLIhs6pnYf0zkSYRtISmOa++9arYTF/G2sVi8no1Qxh7PLQt6cVFo29Qn1put7aUccdumEsJ4LgoXFAFgP4MJ4LSEZfWUBjby1EFUUESyYFN3TC/4NqE0af6dpBRaFCpxMqYOBNQz4yiwEUAx9Dj2vtlOnFRsqo04adpW23GVH5sPIlket/kgkFhbHxFVOxsor2Oi9pFZwuRuIygiCbDVoUgobchVJhabL+KzZVus9S+v/t9GnAdWVP9vm8wWrjf/TkTwPHRaCKPYR2zP1vwjq/+3EY8lG6r/t/XzQ88r/3SptYH6P3So2a73gOr/OwfNdktPr/7fthg+8ovln9YQK4CjLin/XPEps01TBzD3sMr9TzPbjRxTXaSJpFzFIeeUf7bMti+aT//L8s8F68w2APDx78nX1aFruOrj8Fqz3eKTgMFDyv2jb5nZbtW55bF/YIV9oXPG/1Uejw7/r2YbADjyy+V+sua/2O3qAIZtk4yPNA77Q+C5XwKjx9ntjv86cO9/A9ZdYbcbPQ545T5graVDN7SUB+ziuDzBqBg5uvyztcc+IB97GfC/zgaWnmEv2zGXAb/+EXDy9+12I8cCW+4HVp1ntmmZXV4NTu4DZi8w2x14GvDvX7cPKgBw0pXAjecAa//Qbnfc/wHc90PgtB/a7RadCPz+jvKAZULHYCVs78uhahWrLwTu+0vggFPs9/zk/wBu+M/Aif+n3e7j3wPuuBI49RqzjecBy/8z8MJGYNlZZrueJWWFJ1+wE8BjLwOe+Fn5mjZ89ufAjecCp/7AbnfqXwB3Xw187E/NNrl8eWB/+V5g8Ylmu+G15Um0ZbZdpfjYnwKvbQJWWSY8APjcrcAtXwFOcfTz//TfgYd+Ahz3v5ttCk3lZ37bb4F5R5jtFp4ArPxMWX22PasnXwXsfcftwx/9CrjzKuCEb9rtPvv/AU/+HFh7kdmmqR048/8Gdm4BepeY7Q48DVj/TVlV1uHUvygr5gefZbe7+H7gkX8ADvsjs43nAV96qDxm2savltnAf/n38oLOFkk48FTg3J+XiY8NJ/0ZMP8oe5sCwIX/Brx8T7l9TcjlgcufAd59CRiwjOedg8BXnynngdpOf1hyEnDpE3Y/gfIzveIP3KryJ68DTvmBfVNfYyvwX+8BJj60b8gYXAl89enyosmmsK78dPmfC6d8v/qcTliUzDqA5/s2jZqRFLt370ZXVxd27dqFzs6U+TMaTExM4NZbb8Vpp52GhgaNWvbW78oqhG3lXiqWQxlzltpDxRMflsMFLrVi77tlBUhUoXR479XySssW3vP9cqho1ohdUSyVyna9S+yT1MQ+4P3tclhLhw/fK4cf2i15jACwZzvQ1IkJr8HeDru2lgcz28Di+8CebXZlBACKk8C+9+xqAQCM7y0PZq68uH27Km80cIR59+2yKyMBxt5339P3gckx+2QBVNVmV9mKk0C+4H4eSo7BXSyfrR/FtZthcLYDY0rA7VAfqHU7pOUZrABOV/RZZPsAuTzQf7DbrqGFFqpq7Xav8AA5xGeC59lX9gFyOWDOAW67hmY3+QPspFREEPJ2rfAouXue5yZ/QFkRc5E/gH78AIXUxbGjbMTwPDf5A+i5q6azHyPXI2a7UEkdkz8Gg/ERB+cAMhgMBoPBYMwwMAFkMBgMBoPBmGFgAshgMBgMBoMxw8AEkMFgMBgMBmOGgQkgg8FgMBgMxgwDE0AGg8FgMBiMGQYmgAwGg8FgMBgzDEwAGQwGg8FgMGYYmAAyGAwGg8FgzDAwAWQwGAwGg8GYYWACyGAwGAwGgzHDwASQwWAwGAwGY4aBCSCDwWAwGAzGDAMTQAaDwWAwGIwZBiaADAaDwWAwGDMMhf1dgOkK3/cBALt3767J9ScmJrB3717s3r0bDQ0NNbkHww1uh/oAt0N9gNuhPsDtUB+odTsE/CLgG3HBBLBG2LNnDwBg3rx5+7kkDAaDwWAwpiv27NmDrq6u2H/n+UmpI8OKUqmEN954Ax0dHfA8L/Pr7969G/PmzcNrr72Gzs7OzK/PoIHboT7A7VAf4HaoD3A71Adq3Q6+72PPnj0YGhpCLhc/o48VwBohl8th7ty5Nb9PZ2cnP+B1AG6H+gC3Q32A26E+wO1QH6hlOyRR/gLwJhAGg8FgMBiMGQYmgAwGg8FgMBgzDEwAP6JoamrCd77zHTQ1Ne3vosxocDvUB7gd6gPcDvUBbof6QL23A28CYTAYDAaDwZhhYAWQwWAwGAwGY4aBCSCDwWAwGAzGDAMTQAaDwWAwGIwZBiaAH1H8+Mc/xoIFC9Dc3Iw1a9bgvvvu299Fmra4+uqrcdhhh6GjowN9fX0466yz8Nxzz0k2vu/ju9/9LoaGhtDS0oL169fj6aef3k8lnhm4+uqr4XkeLrvssvA7boepweuvv47zzjsPPT09aG1txapVq/Doo4+Gv+d2qD0mJyfxJ3/yJ1iwYAFaWlqwcOFCXHnllSiVSqENt0P2uPfee3HmmWdiaGgInufhn//5n6XfU+p8bGwMX/nKV9Db24u2tjZ84hOfwNatW6fQi2phGR8x3HjjjX5DQ4N/3XXX+c8884x/6aWX+m1tbf6WLVv2d9GmJU4++WT/pz/9qf/UU0/5mzdv9k8//XR//vz5/vvvvx/aXHPNNX5HR4d/0003+U8++aT/mc98xh8cHPR37969H0s+fbFp0yZ/dHTUX7lypX/ppZeG33M71B7vvvuuPzIy4n/uc5/zH3roIf/ll1/2f/WrX/kvvvhiaMPtUHv8+Z//ud/T0+P/27/9m//yyy/7P//5z/329nb/Rz/6UWjD7ZA9br31Vv/b3/62f9NNN/kA/F/84hfS7yl1fvHFF/vDw8P+xo0b/ccee8w/4YQT/EMOOcSfnJycUl+YAH4Ecfjhh/sXX3yx9N3SpUv9b3zjG/upRDMLb731lg/Av+eee3zf9/1SqeQPDAz411xzTWizb98+v6ury//JT36yv4o5bbFnzx5/yZIl/saNG/1169aFBJDbYWpwxRVX+Mcee6zx99wOU4PTTz/dv+iii6TvPvnJT/rnnXee7/vcDlMBlQBS6vy9997zGxoa/BtvvDG0ef311/1cLuffdtttU1Z23/d9DgF/xDA+Po5HH30UGzZskL7fsGEDHnjggf1UqpmFXbt2AQC6u7sBAC+//DK2b98utUlTUxPWrVvHbVIDfPnLX8bpp5+Oj3/849L33A5Tg1tuuQVr167Fpz71KfT19eHQQw/FddddF/6e22FqcOyxx+KOO+7A888/DwD47W9/i/vvvx+nnXYaAG6H/QFKnT/66KOYmJiQbIaGhrB8+fIpbxd+F/BHDDt27ECxWER/f7/0fX9/P7Zv376fSjVz4Ps+Lr/8chx77LFYvnw5AIT1rmuTLVu2THkZpzNuvPFGPPbYY3j44Ycjv+N2mBq89NJLuPbaa3H55ZfjW9/6FjZt2oQ//uM/RlNTEy644AJuhynCFVdcgV27dmHp0qXI5/MoFou46qqrcM455wDg52F/gFLn27dvR2NjI2bPnh2xmeo5nAngRxSe50mffd+PfMfIHpdccgmeeOIJ3H///ZHfcZvUFq+99houvfRS3H777WhubjbacTvUFqVSCWvXrsX3v/99AMChhx6Kp59+Gtdeey0uuOCC0I7bobb42c9+huuvvx7/9E//hIMPPhibN2/GZZddhqGhIVx44YWhHbfD1CNJne+PduEQ8EcMvb29yOfzkZXCW2+9FVl1MLLFV77yFdxyyy246667MHfu3PD7gYEBAOA2qTEeffRRvPXWW1izZg0KhQIKhQLuuece/PVf/zUKhUJY19wOtcXg4CCWLVsmfXfQQQfh1VdfBcDPw1Tha1/7Gr7xjW/g7LPPxooVK3D++efjq1/9Kq6++moA3A77A5Q6HxgYwPj4OHbu3Gm0mSowAfyIobGxEWvWrMHGjRul7zdu3Iijjz56P5VqesP3fVxyySW4+eabceedd2LBggXS7xcsWICBgQGpTcbHx3HPPfdwm2SIE088EU8++SQ2b94c/lu7di0++9nPYvPmzVi4cCG3wxTgmGOOiRyD9Pzzz2NkZAQAPw9Thb179yKXk6fwfD4fHgPD7TD1oNT5mjVr0NDQINls27YNTz311NS3y5RuOWFkguAYmL//+7/3n3nmGf+yyy7z29ra/FdeeWV/F21a4otf/KLf1dXl33333f62bdvCf3v37g1trrnmGr+rq8u/+eab/SeffNI/55xz+LiFKYC4C9j3uR2mAps2bfILhYJ/1VVX+S+88IJ/ww03+K2trf71118f2nA71B4XXnihPzw8HB4Dc/PNN/u9vb3+17/+9dCG2yF77Nmzx3/88cf9xx9/3Afg/9Vf/ZX/+OOPh8ewUer84osv9ufOnev/6le/8h977DH/Yx/7GB8Dw6Djb//2b/2RkRG/sbHRX716dXgkCSN7AND+++lPfxralEol/zvf+Y4/MDDgNzU1+ccff7z/5JNP7r9CzxCoBJDbYWrwr//6r/7y5cv9pqYmf+nSpf7f/d3fSb/ndqg9du/e7V966aX+/Pnz/ebmZn/hwoX+t7/9bX9sbCy04XbIHnfddZd2Prjwwgt936fV+Ycffuhfcsklfnd3t9/S0uKfccYZ/quvvjrlvni+7/tTqzkyGAwGg8FgMPYnOAeQwWAwGAwGY4aBCSCDwWAwGAzGDAMTQAaDwWAwGIwZBiaADAaDwWAwGDMMTAAZDAaDwWAwZhiYADIYDAaDwWDMMDABZDAYDAaDwZhhYALIYDAYDAaDMcPABJDBYDDqGOvXr8dll122v4vBYDCmGZgAMhgMRg1w9913w/M8478TTjiBdJ2bb74Zf/ZnfxZ+Hh0dxY9+9KMalZrBYMwUFPZ3ARgMBmM64uijj8a2bdsi399yyy24+OKL8aUvfYl0ne7u7qyLxmAwGKwAMhgMRi3Q2NiIgYEB6d/OnTvxta99Dd/61rfwqU99CgDwzDPP4LTTTkN7ezv6+/tx/vnnY8eOHeF1xBDw+vXrsWXLFnz1q18NlUQGg8FIAiaADAaDMQV47733cNZZZ2HdunVhSHfbtm1Yt24dVq1ahUceeQS33XYb3nzzTXz605/WXuPmm2/G3LlzceWVV2Lbtm1ahZHBYDAo4BAwg8Fg1BilUgnnnnsu8vk8rr/++lC5u/baa7F69Wp8//vfD23/4R/+AfPmzcPzzz+PAw44QLpOd3c38vk8Ojo6MDAwMKU+MBiM6QUmgAwGg1FjfOtb38JvfvMbbNq0CZ2dneH3jz76KO666y60t7dH/ub3v/99hAAyGAxGVmACyGAwGDXEz372M/zwhz/EL3/5SyxZskT6XalUwplnnokf/OAHkb8bHBycqiIyGIwZCCaADAaDUSNs3rwZF110Ea655hqcfPLJkd+vXr0aN910E0ZHR1Eo0IbjxsZGFIvFrIvKYDBmGHgTCIPBYNQAO3bswFlnnYX169fjvPPOw/bt26V/b7/9Nr785S/j3XffxTnnnINNmzbhpZdewu23346LLrrISPJGR0dx77334vXXX5d2CzMYDEYcsALIYDAYNcAvf/lLbNmyBVu2bNGGc0dGRvDKK6/g17/+Na644gqcfPLJGBsbw8jICE455RTkcvr1+ZVXXokvfOELWLRoEcbGxuD7fq1dYTAY0xCez6MHg8FgMBgMxowCh4AZDAaDwWAwZhiYADIYDAaDwWDMMDABZDAYDAaDwZhhYALIYDAYDAaDMcPABJDBYDAYDAZjhoEJIIPBYDAYDMYMAxNABoPBYDAYjBkGJoAMBoPBYDAYMwxMABkMBoPBYDBmGJgAMhgMBoPBYMwwMAFkMBgMBoPBmGFgAshgMBgMBoMxw8AEkMFgMBgMBmOGgQkgg8FgMBgMxgwDE0AGg8FgMBiMGQYmgAwGg8FgMBgzDEwAGQwGg8FgMGYY/n9rLo3feNjEbgAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def driven_harmonic_oscillator(t, X, gamma, omega0, omegad_omega0, F_m):\n", " x, dx = X\n", " omegad = omegad_omega0 * omega0 # omegad als Bruchteil von omega0\n", " ddx = -2 * gamma * dx - omega0**2 * x + F_m * np.sin(omegad * t)\n", " return [dx, ddx]\n", "\n", "\n", "driven_harmonic_oscillator.driven = True\n", "\n", "# Anfangsbedingungen: [Auslenkung, Geschwindigkeit]\n", "x0 = [0, 5] # Hier beginnen wir mit einer endlichen Geschwindigkeit\n", "# x0 = [1, 0] # Hier beginnen wir mit einer endlichen Auslenkung\n", "\n", "t = np.linspace(0, 100, 1000)\n", "\n", "interactive(\n", " solve_and_plot(driven_harmonic_oscillator, x0, t),\n", " gamma=(0, 2 * np.pi, 0.01), # Dämpfungskoeffizient\n", " omega0=(0, 2 * np.pi, 0.01), # Resonanzfrequenz\n", " omegad_omega0=(0, 2, 0.001), # Anregungsfrequenz als Bruchteil der Resonanzfrequenz\n", " F_m=(0.5, 1.5, 0.01), # Amplitude der Anregung\n", ")" ] }, { "cell_type": "markdown", "id": "785430fc", "metadata": {}, "source": [ "Spielen Sie auch hier bitte wieder mit den Werten der Parameter etwas rum. Beobachten Sie das Einschwingverhalten des Systems, dass es also erst nach einer endlichen Zeit eine zeitharmonische Oszillation ausführt. Können Sie sich erklären, warum dem so ist? Beobachten Sie, dass auch bei einer zeitharmonischen Anregung und einer endlichen Dämpfung die Amplitude der Oszillation nicht bis ins Unermessliche steigt, sondern endlich bleibt. Sie wird sehr groß, je geringer die Dämpfung ist, bleibt aber immer endlich. \n", "\n", "Beobachten Sie weiterhin, wie die Amplitude sich verändert, wenn Sie die Anregungsfrequenz relativ zur Eigenfrequenz des harmonischen Oszillators ändern. Achten Sie auch auf die Phase relativ zur Anregung. Unterhalb bzw. oberhalb der Resonanzfrequenz befindet sich der harmonische Oszillator einmal in- und einmal außer-Phase. Alle diese Details werden Ihnen durch die Gleichungen in der Vorlesung beschrieben, aber hier würden Sie noch einmal sehen kann, welche Auswirkung dies auf die Bewegung als solches hat." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" }, "vscode": { "interpreter": { "hash": "cc412c9f3fa4474d685b397f63f04324611d10c22d923c0d092e91ec5ad6d5ee" } } }, "nbformat": 4, "nbformat_minor": 5 }