Physik I (Mechanik)

SoSe 2005

Klausur 12.7.2005 (16:00h bis 18:00h)

G.Weiß / G. Fischer

Name	
Vorname	
Matrikelnummer	
Tutorium (Gruppennummer, Name des Tutors oder Raumnummer)	

Aufgabe	1	2	3	4	5	Σ
Max. Punkte	4	7	8	8	5	32

Bitte jede Aufgabe auf einem eigenen Blatt bearbeiten, jedes Blatt mit Namen versehen und leserlich schreiben!

1.) Aufgabe (4 Punkte)

Ein Becherglas ist mit ausreichend viel Wasser gefüllt und rotiert mit der Winkelgeschwindigkeit ω um seine Symmetrieachse.

Welche Form nimmt die Wasseroberfläche an? Hinweis: Die Tangentialkomponente der Kräfte, die auf ein Massenelement d*m* an der Oberfläche wirken, verschwindet im Gleichgewicht. Skizzieren Sie die relevanten Kräfte!

2.) Aufgabe (7 Punkte)

Ein übermütiger Cowboy möchte sich eine Saloon-Tür mit einem gezielten Revolverschuss öffnen. Die rechteckige Schwingtür (Masse M, Breite b) wird ganz am Rand, d.h. im Abstand b vom Scharnier getroffen. Dabei bleibt die Kugel (Masse m, Geschwindigkeit v) in der Tür stecken.

- a) Berechnen Sie das Trägheitsmoment ⊚ der Tür bezüglich der Aufhängung und bestätigen Sie den angegebenen Wert.
- b) Mit welcher Winkelgeschwindigkeit ω schwingt die Tür gleich nach dem Einschlag auf? (Zahlenwert)
- c) Um welchen Winkel (Zahlenwert im Bogenmaß) öffnet sich die Tür maximal, wenn die Winkelrichtgröße der Scharnierfeder D* beträgt?

Zahlenwerte: M = 10 kg, b = 60 cm, $\Theta = 1.2 \text{ N/m}^2$, m = 10 g, v = 500 m/s, $D^* = 1.2 \text{ Nm}$

3.) Aufgabe (8 Punkte)

Ein kreisförmiger Bierdeckel mit dem Radius R wird im Abstand r ($0 \le r \le R$) vom Mittelpunkt senkrecht von einer Nadel durchbohrt. Die Nadel ist horizontal gelagert und dient als Achse für dieses Bierdeckel-Pendel.

- a) Welches Trägheitsmoment besitzt der Bierdeckel bezüglich einer Drehung um die Nadelachse und welches Drehmoment ist nötig, den Deckel um den Winkel φ aus der Ruhelage auszulenken? Machen Sie sich dazu eine Skizze!
- b) Stellen Sie die Schwingungsdifferentialgleichung auf und geben Sie eine Lösung für kleine Auslenkungen an.
- c) Welche Schwingungsdauern ergeben sich für r = R und r = 0? Bei welchem Radius r erhält man die minimale Schwingungsdauer T_{min} ?

4.) Aufgabe (8 Punkte)

- a) Leiten Sie die barometrische Höhenformel $p(h) = p_0 \cdot e^{-(g\rho_0 h/p_0)}$ ab. Benutzen Sie dazu die Beziehung $p \cdot V$ = konstant. Hinweis: Welche Druckänderung ergibt sich bei einer kleinen Höhenänderung?
- b) Wie hoch kommt ein Heliumballon unter der Annahme, dass seine Hülle starr ist, sein Volumen sich also nicht verändert? Reibungseffekte und das Gewicht der Hülle werden vernachlässigt. Zahlenwert angeben.

Zahlenwerte: Luftdruck beim Start: $p_0 = 1$ bar = 10^5 Pa, Dichte der Luft bei p_0 : $p_0 = 1.2$ kg/m³, Dichte von Helium bei p_0 : $p_{He} = 0.17$ kg/m³, V = 1000 m³, g = 10 m/s², setzen Sie $\ell n (0.17/1.2) = -2$.

5.) Aufgabe (5 Punkte)

Durch ein horizontal liegendes Rohr mit dem Querschnitt A_1 fließt Wasser (kann hier als ideale Flüssigkeit betrachtet werden) mit einem Volumenstrom \dot{V}_1 bei einem statischen Druck p_1 .

- Welche Geschwindigkeit hat die Wasserströmung im Bereich einer Rohrverengung auf einen Querschnitt A₂ und welcher statische Druck herrscht dort? (Zahlenwerte)
- b) Welcher statische Druck und welche Geschwindigkeit stellen sich ein, falls das engere Rohrstück um h höher liegt als das weitere Rohr? (Zahlenwerte)

Zahlenwerte: $A_1 = 100 \text{ cm}^2$, $p_1 = 2 \cdot 10^5 \text{ Pa}$, $p_W = 1 \text{ g/cm}^3$, $\dot{V}_1 = 1 \text{ \ell/s}$, $A_2 = A_1/2$, h = 10 m, $g = 10 \text{ m/s}^2$