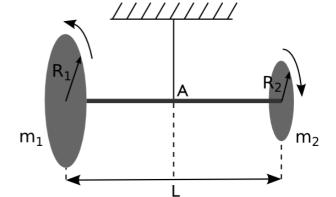

Aufgage 33: (6 Punkte)

Ein Kreisel hat die nebenan skizzierte kegelförmige Gestalt. Der Stab zum Anwerfen wird vernachlässigt.

- a) In welcher Höhe über der Spitze befindet sich sein Schwerpunkt?
- b) Wie groß ist sein Trägheitsmoment bezüglich seiner Figurenachse?

Zahlenwerte: R = 3 cm, H = 2 cm, $\omega = 40/s$, $\rho = 0.8$ kg/dm³



Aufgabe 34: (5 Punkte)

Um eine gemeinsame Achse rotieren zwei dünne, homogene Kreisscheiben mit der Winkelgeschwindigkeit ω_1 = ω_2 , aber in unterschiedliche Richtungen. Scheibe 1 dreht sich nach hinten und Scheibe 2 nach vorn. Die Verbindungsachse ist in der Mitte drehbar aufgehängt, starr und mit vernachlässigbarer Masse.

- a) Wie groß ist der Gesamtdrehimpuls und in welche Richtung zeigt er?
- b) Wie groß ist das Gesamtdrehmoment und in welche Richtung zeigt es?
- c) Mit welcher Winkelgeschwindigkeit Ω präzediert dieser Kreisel um die senkrechte Aufhängung? In welche Richtung?

Zahlenwerte: $\omega_1 = \omega_2 = 100 \text{ rad/s}$, $m_1 = 2 \text{ kg}$, $R_1 = 0.2 \text{ m}$, $m_2 = 4 \text{ kg}$, $R_2 = 0.1 \text{ m}$, L = 1 m

Aufgabe 35: (3 Punkte)

Diskutieren Sie die 7 Kristallsysteme und die 14 dazu gehörigen so genannten Bravaisgitter. Informationen dazu finden Sie in allen Festkörperphysik-Lehrbüchern.

Aufgabe 36: (4 Punkte)

An das Stahlseil eines Baukrans (Länge λ , Durchmesser d) wird eine Last der Masse m gehängt.

- a) Wie groß ist die Zugspannung σ im Seil und welche Längenänderung $\Delta\lambda$ erfährt es? Mit welcher Maximalbeschleunigung darf die Last angehoben werden, damit das Seil nicht reißt? Das Gewicht des Seils soll hier vernachlässigt werden.
- b) Wie lang kann ein senkrecht hängendes Stahlseil maximal sein, bevor es unter seinem eigenen Gewicht abreißt?

Zahlenwerte: $\lambda = 30 \text{ m}$, d = 8 mm, m = 500 kg, $E_{Stahl} = 2.10^{11} \text{ N/m}^2$, $\sigma_{F,St} = 5,2.10^8 \text{ N/m}^2$ (Zugfestigkeit), $\rho_{St} = 7,928 \text{ g/cm}^3$