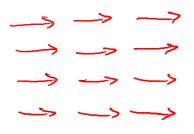
Ferromagnetismus



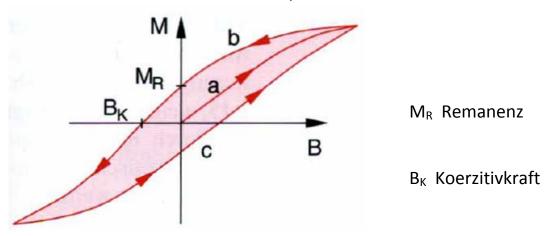
$$\chi(\tau) = \frac{C}{(\tau - T_c)^8}$$

$$T > T_c ; 8 \approx 1 - 1.5$$

Curie-Temperatur Tc, Curie-Konstante C und Schmelztemperatur T_{Schm} für einige ferromagnete

Substanz	$T_{\rm C}/{ m K}$	C/K	T _{Schm} /K
Co	1395	2,24	1767
Fe	1033	2,22	1807
Ni	627	0,59	1727
EuO	70	4,7	1145

Hystereseschleife



Hysteresekurve der Magnetisierung M in Abhängigkeit vom äußeren Feld B

die magnetische Energie im Volumen V $W_{\text{magn}} = \frac{1}{2} \cdot B \cdot H \cdot V$

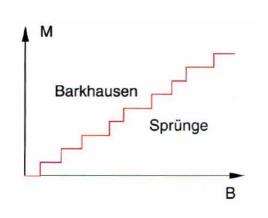
zur Magnetisierung notwendigen zusätzlichen magnetischen Energie pro Volumeneinheit

$$\int M(B) \cdot dB = \chi \cdot \mu \cdot \mu_0 \cdot \int H \cdot dH$$
$$= \frac{1}{2} \cdot \chi \cdot \mu \cdot \mu_0 \cdot H^2$$
$$= \frac{1}{2} (\mu - 1) \cdot H \cdot B$$

Vergrößerter Ausschnitt der Magnetisierungskurve

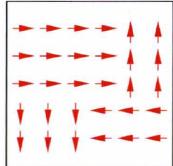
Barkhausen-Sprünge:

Ausrichtung der atomaren Dipolmomente geschieht sprungweise

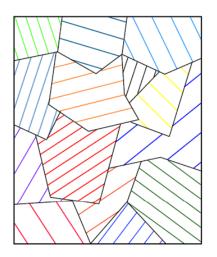


Weißsche Bezirke

ohne äußeres Magnetfeld



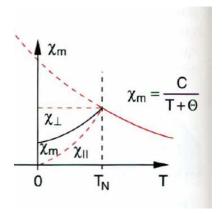
mit äußerem Magnetfeld



Ferromagnete

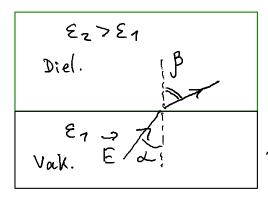
Antiferromagnete

antiferromagnetischen Neel-Temperatur T_N



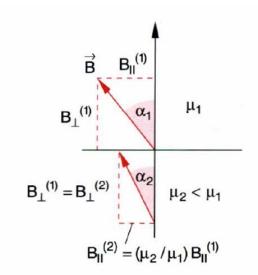
Ferrimagnete

Wir haben im Vorl.6 das Verhalten der elektrischen Feldgrößen E und D an der Grenzfläche zweier Medien mit unterschiedlicher Dielektrizitätskonstante behandelt.



$$\begin{array}{c|c} & & & \\ E_{\perp} = \underbrace{\varepsilon_{1}}_{E_{2}} & \underbrace{\varepsilon_{2}}_{Vak} \\ & & \\ E_{11} = E_{11} \\ & & \\$$

Ähnlich verhält es sich bei den magnetischen Feldgrößen



$$H_{\parallel}^{(1)} = H_{\parallel}^{(2)} \ \Rightarrow \frac{B_{\parallel}^{(1)}}{\mu_1} = \frac{B_{\parallel}^{(2)}}{\mu_2} \; .$$

$$B_{\perp}^{(1)} = B_{\perp}^{(2)} \implies \mu_1 H_{\perp}^{(1)} = \mu_2 H_{\perp}^{(2)}$$
.

Brechungsgesetz für die Richtungsänderung von **H** und **B** bei schräger Orientierung

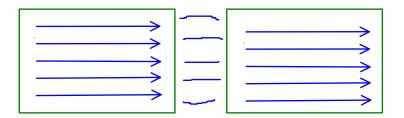
$$\tan \alpha_1 = B_{\parallel}^{(1)} / B_{\perp}^{(1)}$$
 und $\tan \alpha_2 = B_{\parallel}^{(2)} / B_{\perp}^{(2)}$

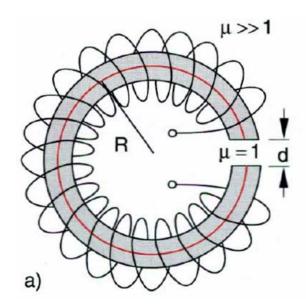
$$\frac{\tan\alpha_1}{\tan\alpha_2} = \frac{\mu_1}{\mu_2} \ .$$

Elektromagnete

Die Vergrößerung der magnetischen Induktion ${\bf B}$ durch Stoffe mit großer relativer Permeabilität ${\boldsymbol \mu}$ wird technisch ausgenutzt in Elektromagneten.

$$B_{\text{Fe}} = B_{\text{Luft}} \implies \mu \cdot H_{\text{Fe}} = H_{\text{Luft}}$$
.





$$H_{\text{Luft}} \approx \frac{N \cdot I \cdot \mu}{\mu \cdot d + 2\pi R}$$
 für $\mu \gg 1$

$$B_{\text{Luft}} = \frac{\mu \cdot \mu_0 \cdot N \cdot I}{\mu \cdot d + 2\pi R} .$$

Zeitlich veränderliche Felder

Für statische elektrische und magnetische Felder, die durch ruhende Ladungen bzw. stationäre Ströme erzeugt werden, gilt

$$\mathbf{rot} \, \mathbf{E} = \mathbf{0} \qquad \qquad \mathbf{rot} \, \mathbf{B} = \mu_0 \cdot \mathbf{j} \\
\operatorname{div} \mathbf{E} = \varrho / \varepsilon_0 \qquad \qquad \operatorname{div} \mathbf{B} = 0$$

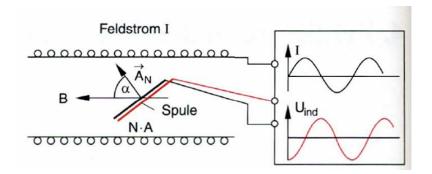
und

$$E = -\operatorname{grad} \phi \qquad B = \operatorname{rot} A$$
$$j = \sigma \cdot E$$

Faradaysches Induktionsgesetz

$$U_{\text{ind}} = -\frac{\mathrm{d}}{\mathrm{d}t} \int \boldsymbol{B} \cdot \, \mathrm{d}\boldsymbol{A} = -\frac{\mathrm{d}\boldsymbol{\Phi}_{\mathrm{m}}}{\mathrm{d}t}$$

Beispiel:



Strom

$$I(t) = I_0 \cdot \sin \omega t$$

Induktionsspannung

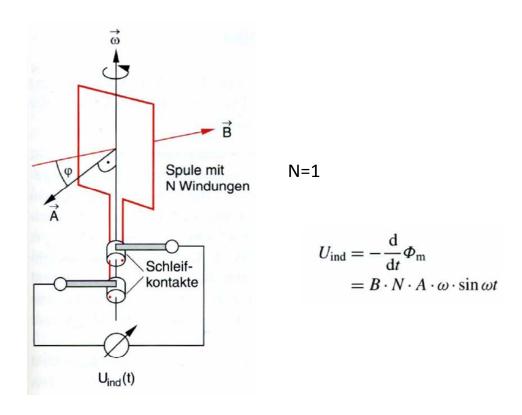
$$U_{\rm ind}(t) = U_0 \cdot \sin(\omega t + 90^\circ)$$

mit

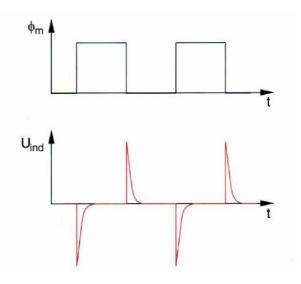
$$U_0 = -\omega \cdot B \cdot N \cdot A \cdot \cos \alpha ,$$

$$U_{
m ind}(t) = U_0 \cdot \sin(\omega t + 90^\circ)$$
 mit
$$U_0 = -\omega \cdot B \cdot N \cdot A \cdot \cos lpha \; ,$$

Erzeugung einer Induktionswechselspannung Durch Drehen einer Leiterschleife



Bei rechteckförmiger Modulation des Magnetfeldes

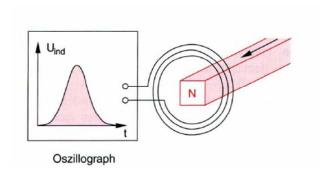


$$U_{\mathrm{ind}} = -\int \dot{\mathbf{B}} \cdot \mathrm{d}\mathbf{A} = \int \mathbf{E} \cdot \mathrm{d}\mathbf{s} = \int \mathbf{rot} \, \mathbf{E} \cdot \mathrm{d}\mathbf{A} \,.$$

Ein magnetisches Feld, welches sich zeitlich ändert, erzeugt ein elektrisches Wirbelfeld:

$$\mathbf{rot}\,\mathbf{E} = -\frac{\mathrm{d}\mathbf{B}}{\mathrm{d}t}$$

ţ

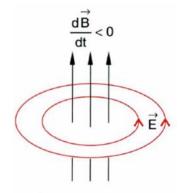


Lenzsche Regel

! folgt aus dem negativen Vorzeichen im Induktionsgesetz

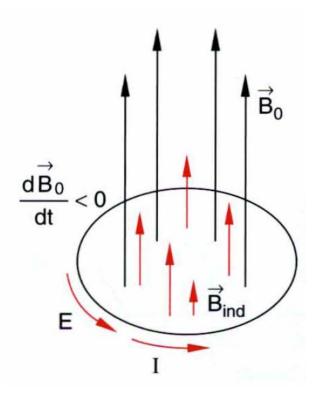
$$\mathbf{rot}\,E = -\frac{\mathrm{d}\mathbf{B}}{\mathrm{d}t}$$

Die Änderung der Induktionsspannung **U**_{ind} ist der Änderung des magnetischen Flusses entgegengerichtet



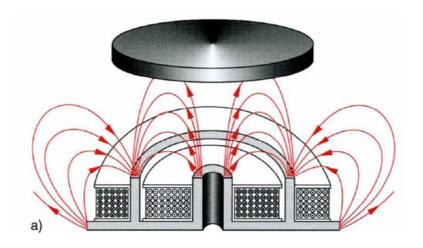
Die Änderung von d**B**/dt ist durch das induzierte Magnetfeld verringert.

Die durch Induktion entstehenden Ströme, Felder und Kräfte behindern stets den die Induktion einleitenden Vorgang (Lenzsche Regel).



Magnetische Levitation

Schwebeversuch



eine massive
Aluminiumplatte über
einem zeitlich
veränderlichen
Magnetfeld, das
durch einen
Wechselstromelektro
magneten
erzeugt wird,
schwebend in einer
Höhe von einigen
cm gehalten