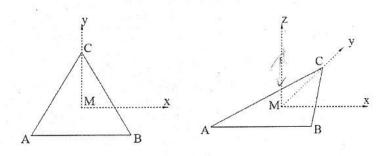
1. Aufgabe (6 Punkte)

Nennen Sie die 4 Maxwellgleichungen (im Vakuum) in integraler oder differentieller Form und geben Sie **kurz** in eigenen Worten an, was sie bedeuten.

2. Aufgabe (6 Punkte)

Drei Punktladungen Q_A, Q_B und Q_C sitzen an den Ecken eines gleichseitigen Dreiecks *ABC* in der xy-Ebene eines Koordinatensystems. Die Kantenlänge des Dreiecks ist *a*. Der Mittelpunkt M des Dreiecks liegt im Ursprung des Koordinatensystems (siehe auch Skizze). Die Koordinaten der Punkte sind:



A:
$$(-\frac{a}{2}/-\frac{a}{6}\sqrt{3}/0)$$
; B: $(\frac{a}{2}/-\frac{a}{6}\sqrt{3}/0)$; C: $(0/\frac{a}{3}\sqrt{3}/0)$.

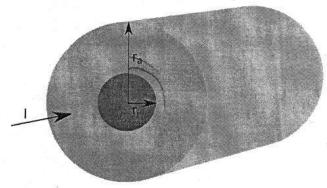
Die drei Ladungen sind identisch: $Q_A = Q_B = Q_C = Q$.

- a) Berechnen Sie das elektrische Potential Φ entlang der z-Achse, d.h. für x = 0 und y = 0.
- b) Berechnen Sie das elektrische Feld \vec{E} entlang der z-Achse, d.h. für x = 0 und y = 0.
- c) Bei welchem z findet man ein Maximum der z-Komponente E_z des elektrischen Feldes \vec{E} ?
- d) Warum findet man bei z = 0 kein Minimum der z-Komponente E_z des elektrischen Feldes \vec{E} , obwohl man $E_z(z=0) = 0$ findet?

3. Aufgabe (7 Punkte)

Gegeben ist ein unendlich ausgedehnter Leiter in Form eines Hohlzylinders mit dem Innenradius r_i und dem Außenradius r_a . Im Leiter fließt ein Strom \emph{I} , der homogen über den Leiterquerschnitt verteilt ist.

- a) Wie groß ist die magnetische Feldstärke \vec{H} im Bereich $0 < r < \infty$? Skizzieren Sie $|\vec{H}(r)|$.
- b) Unter dem Einfluss des Feldes wird sich, entgegen der obigen Annahme, keine homogene Stromdichte j einstellen. Welche Kräfte wirken auf die Ladungsträger in radialer Richtung? Begründen bzw. erläutern Sie Ihre Antwort kurz.



4. Aufgabe (3 Punkte)

Eine Leuchtstoffröhre kann als ohmscher Widerstand betrachtet werden und braucht zum Betrieb die Spannung U_{LR} und die Stromstärke I_{LR} . Welche Induktivität L muss eine in Reihe geschaltete Spule haben, damit die Leuchtstoffröhre an der Netzspannung (U_0, ω) angeschlossen werden kann? Geben Sie L in Abhängigkeit der gegebenen Größen $(U_{LR}, I_{LR}, U_0 \text{ und } \omega)$ an. Der ohmsche Widerstand der Spule sei vernachlässigbar.

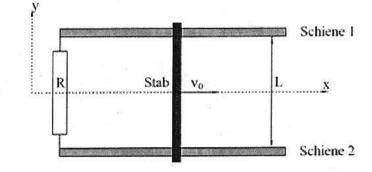
5. Aufgabe (5 Punkte)

Ein Plattenkondensator wird mit der Ladung Q_0 auf die Spannung U_0 aufgeladen. Dann werden die Platten auseinander gezogen. Entweder (i) mit abgetrennter Spannungsquelle oder (ii) mit angeschlossener Spannungsquelle.

- a) Wie verhält sich im Fall (i) die Spannung am Kondensator in Abhängigkeit des Plattenabstands d (Begründung)?
- b) Berechnen Sie die zum Trennen der Kondensatorplatten erforderliche Kraft **F** als Funktion des Plattenabstands d für Fall (i) und Fall (ii).
- c) Geben Sie in beiden Fällen die Energie W im Kondensator als Funktion von d an.

6. Aufgabe (7 Punkte)

Ein Metallstab gleitet reibungsfrei in x-Richtung auf zwei Metallschienen in einem homogenen Magnetfeld $\vec{B} = (0,0,B_z)$ mit B_z , das in positive z-Richtung senkrecht aus der Zeichenebene heraus zeigt (siehe Skizze). Die beiden Metallschienen sind durch einen ohmschen Widerstand R verbunden. Der Abstand der Schienen ist L und die Geschwindigkeit, mit der sich der Metallstab



bewegt, ist anfänglich v₀. Die Masse des Stabes ist m.

Vernachlässigen Sie die ohmschen Widerstände des Stabes und der Schienen.

Zahlenwerte: $B_z = 1 \text{ T}$, $R = 5 \Omega$, L = 2 m, $v_0 = v(t = 0) = 8 \text{ m/s}$, m = 1 kg

- a) Wie groß sind die Beiträge der im Metallstab induzierten Spannung U_{ind} und des Stromes I durch den Widerstand R zur Zeit t = 0 (Zahlenwerte ausrechnen, Einheiten prüfen)?
- b) Fließt der Strom im Widerstand (technische Stromrichtung) von Schiene 1 zu Schiene 2 oder umgekehrt (kurze Begründung)?
- c) Wie verändert sich die Geschwindigkeit des Stabes, wenn keine äußeren Kräfte am Stab angreifen (kurze Begründung, keine Rechnung)?
- d) Wie groß ist die Energie, die insgesamt während des gesamten Abbremsvorgangs am Widerstand R in Wärme umgewandelt wird (Zahlenwert ausrechnen)?
- e) Mit welcher Kraft muss der Stab gezogen werden, damit die Geschwindigkeit konstant v₀ bleibt (Zahlenwert ausrechnen, Einheiten prüfen)?

Autoalog A

- i) (Faradaysches Induktions gesete)
 elektrische Felder werden durch feitlich sich verändernde
 magnetische Felder erzugt
- u) l'Ampère sches Durch (luburgs gesutz)
 magnétische Felder werden nicht nur durch Gröme,
 sondern auch von züllich sich ändernden dektrischen
 Feldern erzeugt
- iii) elektrische Felder beginnen und enden an elektrischer ladung (bim die dielektrische Verschrebung)
- (unquisite topulished Horopole (unquished)

Aufgabe 2

a) Potential over Punktladung

$$\phi(r) = \frac{1}{4\pi \epsilon_s} \cdot \frac{Q}{\tau}$$

$$War : \tau = \left(\frac{a^2}{4} + \frac{3 \cdot a^2}{36} + z^2\right)^{4/2}$$

$$\tau = \sqrt{\frac{a^2}{3} + z^2}$$

$$\Rightarrow \phi(2) = \frac{3}{4 \text{ TEo}} \cdot \frac{Q}{\sqrt{\frac{a^2}{3} + 2^2}}$$
 (Summe of or 3 Punktladungen)

b)
$$E_z = -\frac{\partial \phi}{\partial z} = \frac{3}{4\pi\epsilon_s} \cdot \frac{Q}{(\frac{\alpha^2}{3} + z)^{3/2}} \cdot (-\frac{2}{2}z)$$

$$E_z = \frac{3}{4\pi\epsilon_s} \cdot \frac{z Q}{(\frac{\alpha^3}{3} + z^2)^{3/2}}$$

c)
$$\frac{\partial E_2}{\partial z} = \frac{3\alpha}{4\pi\epsilon_0} \left[\left(z^2 + \frac{a^2}{3} \right)^{-3}h + \frac{-3h^2 \cdot 2z^2}{\left(z^2 + \frac{a^2}{3} \right)^{-5}h^2} \right]$$

$$= \frac{3\alpha}{4\pi\epsilon_0} \left[\frac{\left(z^2 + \frac{a^2}{3} \right) - 3z^2}{\left(z^2 + \frac{a^2}{3} \right)^{-5/2}} \right]$$

$$\frac{\partial E_2}{\partial z} \stackrel{!}{=} \sigma \text{ we un } -2z^2 + \frac{a^2}{3} = \sigma \text{ (eahler = 0)}$$

$$\sim z^2 = \frac{a^2}{6} \quad \sim 121 = \frac{a}{15}$$

d) E_{\pm} (2) hat sinen Vorzeichenwertiset bei $\Xi=\sigma$; für $\Xi<\sigma$ ist E_{\pm} (2) negativ $\left(\frac{\partial E_{\pm}}{\partial \tau} \neq \sigma \quad \text{pür } \pm \sigma \quad \text{son human}\right)$

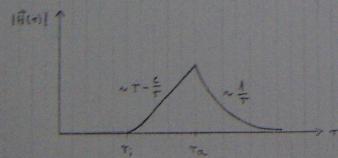
$$\frac{\pi < \tau < \tau_{0.2}}{\theta} = \frac{1}{\pi (\tau_{0.2}^2 - \tau_{1.2}^2)} = Vond$$

$$\frac{\theta}{\theta} = \frac{1}{\pi (\tau_{0.2}^2 - \tau_{1.2}^2)} = Vond$$

$$\frac{\theta}{\theta} = \frac{\pi}{\pi (\tau_{0.2}^2 - \tau_{1.2}^2)} = Vond$$

$$\frac{\theta}{\theta} = \frac{\pi}{\pi (\tau_{0.2}^2 - \tau_{1.2}^2)} = \frac{\pi}{\pi (\tau_{0.2}^2 - \tau_{1.2}^2)} = \frac{\pi}{\pi} =$$

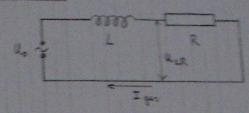
$$\frac{\tau_{\alpha} < \tau < \infty}{|\vec{H}|} = \frac{\vec{T}}{2\pi T}$$



(dort H- Feld geruger)

Fee = = durch Verschiebung von Lodung entsteht ein É- Feld das der weiteren Verschiebung entgegen wirkt

Allache 4



$$I_{ph} = I_{LR}$$

$$R = \frac{u_{LR}}{I_{LR}}$$

$$I_{LR} = I_{ph} = \frac{u_{h}}{2} = \frac{u_{h}}{|R^{2} + \omega^{2}|^{2}}$$

$$\omega_{h} \quad \omega^{2} \quad U^{2} = \frac{u_{h}^{2}}{I_{LR}^{2}} - R^{2}$$

$$\Delta_{h} \quad L = \frac{1}{\omega} \sqrt{\frac{u_{h}^{2} - u_{h}^{2}}{I_{R}^{2}}}$$

Aufgabe 5

- a) Fall (2) $Q = Q_0$ da leine Ladung abflisht $U = \frac{Q_0}{G} = \frac{Q_0}{\varepsilon_0 A} d \sim U \sim d$
- b) $F = \int_{0}^{Q} E(Q') dQ'$ where $E(Q) = \frac{U(Q)}{d} = \frac{Q}{Cd} = \frac{Q}{\epsilon \cdot A}$ $F = \int_{0}^{Q} \frac{Q'}{\epsilon \cdot A} dQ' \implies F = \frac{Q^{2}}{2\epsilon \cdot A}$
- $\lambda) Q = Q_0$ $\Rightarrow \mp = \frac{Q_0^2}{2E_0 A} \neq \{(A)$
- ii) $U = U_0 \rightarrow Q = C_1 U_0$ $\Rightarrow \overline{T} = \frac{C U_0^2}{2 d} = \frac{\epsilon_0 A}{2 d^2} U_0^2 \Rightarrow \overline{T} \sim \frac{1}{d^2}$
- c) $W = \frac{1}{2} C u^2 = \frac{1}{2} \frac{Q^2}{C}$ i) $Q = Q_0 \sim W = \frac{Q_0^2}{2C} = \frac{Q_0^2 \cdot d}{2E_0 \cdot A} \sim W \sim d$
- ii) $u = u_0 \sim w = \frac{1}{2} c u_0^2 = \frac{\varepsilon_0 A}{2d} u_0^2$ $\sim w \sim \frac{1}{d}$

other wit $W = \int \vec{F} d\vec{r}$ $W = \int \vec{F} d\vec{r}$

Autgabe 6

- 2) $|U_{iud}| = 1 \frac{d}{dt} \int \vec{B} d\vec{A} | = BL \cdot v_0$ $= AT \cdot 2m \cdot 8 \frac{w}{5}$ $|U_{iud}| = A6V$ $wit T = \frac{Vs}{m^2} \sim \frac{Tm^2}{s} = \frac{Vs}{m^2} = V$ $|II| = \frac{|U_{iud}|}{R} = \frac{A6V}{52} = \frac{A6V \cdot A}{52} = 312A$
- b) $\vec{F}_L = q \vec{U} \times \vec{B}$ Lorentz Kraft lankt et nach oben

 => Strom von Schieue 1 nach Schieue 2 im Stab

 und I (techn Strom) nach oben in R
- c) $\vec{F} = \int I d\vec{e} \times \vec{B} = I L B (-\vec{e}_x)$ "Wirbelstrombreuse"

 der Slab wird abgebreust
- d) $E = E \kappa \dot{u} = \frac{u v_0^2}{2} = \frac{1 \log \cdot 64 \frac{u^2}{52}}{2} = 32 \text{ J}$ and $E = \int_{0}^{\infty} P(t) dt$