Experimentalphysik - Zusammenfassung

Diese Zusammenfassung erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Solltet ihr Fehler finden oder Ergänzungen haben, teilt sie mir bitte mit: richard.gebauer@student.kit.edu Für Überschneidungen mit Theoretische Physik bitte diese Zusammenfassung anschauen!

1 Klassische Mechanik

1.1 Messungen und Datenauswertung: Statistischer Fehler

Mittelwert
$$\langle X \rangle = \overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Standardabweichung $\sigma_X = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (\langle X \rangle - X_i)^2}$
Fehler des Mittelwerts $\delta_{\langle X \rangle} = \frac{\sigma_X}{\sqrt{N}}$

Zentraler Grenzwertsatz Für große Zahl von Messungen entspricht die Häufigkeitsverteilung der Messwerte einer Gaußverteilung

$$P(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Fehlerfortpflanzung Messgröße $G = G(x_1, x_2, ..., x_n)$ von mehreren Variablen abhängig

$$\delta_G = \sqrt{\sum_{i=1}^n \left(\frac{\partial G}{\partial x_i}\right)^2 \delta_{x_i}^2}$$

1.2 Kräfte

Kraft	Gleichung	Bemerkung
Gravitation	$\vec{F}_G = m \cdot \vec{g}$	auf Planetenoberfläche $(g = const.)$
${\bf Normal kraft}$	$ec{F}_N$	übt Boden auf Objekt aus
Seilspannkraft	$ec{F}_S$	mit der Seil o.ä. gespannt wird
Federkraft	$\vec{F}_F = -k \cdot \vec{x}$	Rückstellkraft einer ausgelenkten Feder
Reibungskraft	$F_R = f = \mu \cdot F_N$	entgegen der (potentiellen) Bew.richtung
${\bf Zentripetalkraft}$	$\vec{F}_Z = -m \cdot \omega^2 \cdot \vec{r}$	hält Objekt auf Kreisbahn
Corioliskraft	$\vec{F}_C = 2 \cdot m \cdot \vec{v} \times \omega$	Scheinkraft in rotierendem Bezugssystem

1.3 Energiediagramme

Da der EES gilt, muss die Summe aller Energien konstant sein: $E_{tot} = \sum E = const.$ Ein Energiediagramm enthält demnach alle in einem System vorkommenden Energieformen, in Abhängigkeit einer vom System abhängigen Größe (z.B. Auslenkung/Höhe/Zeit)

1.4 Systeme von Massepunkten

Schwerpunkt
$$\vec{r}_{cm} = \frac{1}{M} \int \vec{r}(m) \cdot dm = \frac{1}{M} \int \vec{r} \cdot \rho(\vec{r}) \cdot dV$$

Geschwindigkeit $\vec{v}_{cm} = \frac{d}{dt} \vec{r}_{cm} = \frac{\sum m_i \cdot \vec{v}_i}{M}$

Ohne äußere (resultierende) Kräfte, d.h. $\sum \vec{F} = 0$, gilt der IES: $\vec{p}_{cm} = const.$

1.5 Elastische und inelastische Stöße

elastisch Kinetische Energie bleibt erhalten. Es gilt IES und EES.

inelastisch Kinetische Energie wird teilweise in innere Energie umgewandelt. Es gilt nur IES.

1.6 Rotation

Lineare Bewegung	Rotation
Ortsvektor \vec{r}	Kreiswinkel θ
Geschwindigkeit \vec{v}	Winkelgeschw. $\vec{\omega} \perp A_{Kreis}$ mit $ \vec{\omega} = \omega = \frac{d\theta}{dt}$
Beschleunigung \vec{a}	Winkelbeschl. $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$
Masse m	Trägheitsmoment $J = \int r^2 dm$
Beschl. Kraft \vec{F}	Drehmoment $\vec{M} = \vec{r} \times \vec{F} = J \cdot \vec{\alpha}$
Impuls \vec{p}	Drehimpuls $\vec{L} = J \cdot \vec{\omega} = \vec{r} \times \vec{p}$
Kinetische Energie E_{kin}	Rotationsenergie $E_{rot} = \frac{1}{2}J\vec{\omega}^2$

Satz von Steiner Hat man das Trägheitsmoment J_{CM} bezüglich einer Drehachse 1, die durch den Massenschwerpunkt (CM) geht, benötigt aber das Drehmoment J_2 bzgl. einer 2. (zur 1. parallelen) Drehachse 2, wobei d der Abstand der Drehachsen ist, ergibt sich dieses durch:

$$J_2 = J_{CM} + m \cdot d^2$$

Auflistung einiger Trägheitsmomente

Objekt	Trägheitsmoment
Massepunkt m im Abstand r	$J = m \cdot r^2$
Hantel (2 Gewichte à m , Abstand Gew. Drehachse je r)	$J=2\cdot m\cdot r^2$
Hantel der Länge r mit Drehachse in 1 Gewicht	$J=4\cdot m\cdot r^2$
Zylinder	$J = \frac{1}{2} \cdot M \cdot R^2$
Hohlzylinder	$J = \frac{1}{2} \cdot M(R_1^2 + R_2^2)$
(Dünner) Stab der Länge L	$J = \frac{1}{12} \cdot M \cdot L^2$
Vollkugel	$J = \frac{2}{5} \cdot M \cdot R^2$
Kugelschale	$J = \frac{2}{3} \cdot M \cdot r^2$

1.7 Gravitationsgesetz

$$\vec{F}_{21} = -G \cdot \frac{m_1 \cdot m_2}{r^2} \cdot \vec{e}_{21}$$
 Potentielle Energie $E_{pot}(r) = -G \cdot \frac{m_1 \cdot m_2}{r}$

1.8 Galileitransformation

Voraussetzung: Ruhendes System S und Inertialsystem S' (d.h. $v_{S'}=const$) und keine relativistische Betrachtung notwendig ($v_{S'}<< c$). Zum Zeitpunkt t=0 liegen die Koordinatenursprünge beider Bezugssysteme aufeinander und die Systeme sind gleich orientiert. Dann gelten folgende lineare Transformationen von $S \to S'$:

$$\vec{r}'(t) = \vec{r}(t) - \vec{v}_{S'} \cdot t$$
$$\vec{v}' = \vec{v} - \vec{v}_{S'}$$

1.9 Lorentz-Transformation

Vorauss.: Gleich wie bei Galileitransformation, nur jetzt relativistisch korrekt (v.a. für $v \approx c$), Bezugssystem S' bewegt sich relativ zum ruhenden System S in x-Richtung mit Geschw. v. Transformation eines Quadrupels (t, x, y, z) im System S zu (t', x', y', z') in System S':

$$t'=(t-\frac{v}{c^2}x)\gamma \ \ ; \ \ x'=(x-vt)\gamma \ \ ; \ \ y'=y \ \ ; \ \ z'=z \quad \text{mit Lorentzfaktor} \ \, \gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$$

Addition von Geschwindigkeiten (Beide Geschwindigkeiten in Richtung der x-Achse)

Ein Objekt bewegt sich im bewegten System S' mit der Geschwindigkeit u' und S' bewegt sich bezüglich eines ruhenden Systems S mit der Geschwindigkeit v. Dann bewegt sich das Objekt bezüglich S mit der Geschwindigkeit u:

$$u = \frac{u' + v}{1 + \frac{u'v}{c^2}}$$

1.10 Relativistische Effekte

Zeitdilatation Uhr im bewegten System erscheint im ruhenden System langsamer

$$T = \gamma \cdot T' \iff T' = \frac{1}{\gamma} \cdot T$$

Längenkontraktion Ein bewegter Stab der Länge L' erscheint im Ruhesystem eines Betrachters verkürzt

$$L = \frac{1}{\gamma} \cdot L' \iff L' = \gamma \cdot L$$

1.11 Relativistische Dynamik

rel. Masse

$$m = \gamma \cdot m_0$$
 mit Ruhemasse m_0

Energie

Gesamtenergie
$$E=mc^2=E_0+E_{kin}$$

Ruheenergie $E_0=m_0\cdot c^2$; $E_{kin}=E-E_0=(\gamma-1)\cdot m_0\cdot c^2$

1.12 Elastische Verformung

Hooke'sches Gesetz beschreibt die Längenänderung eines Materials bei Krafteinwirkung

$$\frac{\Delta L}{L} = \frac{F}{A} \cdot \frac{1}{E} \quad \text{mit Elastizit"atsmodul E in } \frac{N}{m^2}$$

Reißfestigkeit Charakt. Größe, die angibt, bei welcher minimalen Kraft ein Material reißt

$$\sigma_r = E_r = \frac{F}{A} \text{ in } \frac{N}{m^2}$$

Volumenänderung bei Zug oder Schub

$$\frac{\Delta V}{V} \approx (1 - 2\mu) \cdot \frac{\Delta L}{L}$$
 mit Poissonzahl $\mu(\text{typ. }0, 3)$

Scherung

$$\frac{F}{A} = G \cdot \frac{\Delta L}{L} = G \cdot tan\alpha$$
 mit Schermodul G und Scherwinkel α

Torsion Verdrehung eines Körpers

 $M = D \cdot \theta \quad \text{mit Richtmoment } D \text{ und Verdrehwinkel } \theta$

1.13 Hydrostatik

Im Folgenden werden Flüssigkeiten als inkompressibel idealisiert.

Druck

$$P = \frac{F}{A}$$

Pascal-Gesetz gibt den (statischen) Druck in einer bestimmten Tiefe h einer Flüssigkeit an

$$P(h) = P_0 + \rho \cdot g \cdot h$$
 mit Oberflächen-/Außendruck P_0

Auftrieb entspricht Gewichtskraft der verdrängten Flüssigkeit (archimedisches Prinzip)

$$F_A = g \cdot \rho \cdot V$$

1.14 Hydrodynamik

Idealisierung: Flüssigkeit inkompressibel, keine Viskosität, keine Turbulenzen (Strömungen sind also laminar), konstante Dichte

Fluss bleibt nach der Kontinuitätsgleichung erhalten.

$$\Phi = A \cdot v = const.$$

Bernoulli-Gleichung macht eine Aussage über eine Erhaltungsgröße der Strömungslehre, aber nicht über deren absoluten Wert (dieser ist vom System abhängig)

$$P + \rho \cdot g \cdot h + \frac{1}{2} \cdot \rho v^2 = const.$$

Druck P, Dichte ρ , Höhe über/unter Bezugsebene h, Strömungsgeschwindigkeit v

1.15 Thermische Eigenschaften von Festkörpern

Längenänderung durch Erwärmung

$$\frac{\Delta L}{L} = \alpha \cdot \Delta T \quad \text{mit linearem Ausdehnungskoeff. } \alpha$$

Wärmeleitung

$$\frac{dQ}{dt} = -\lambda \cdot A \cdot \frac{dT}{dx} \quad \text{mit therm. Leitfähigkeit } \lambda$$
transp. Wärmemenge $\frac{dQ}{dt}$, Temp.gefälle $\frac{dT}{dx}$

1.16 Mechanische Schwingungen

Harmonische Schwingung

Rückstellkraft
$$F = -D \cdot s \implies s(t) = s_0 \cdot \cos(\omega t + \phi_0)$$
 mit $\omega = \sqrt{\frac{D}{m}}$
Systemenergie $E = \frac{1}{2} \cdot D \cdot \hat{s}^2$ mit Amplitude \hat{s} (= s_0 für $\phi_0 = 0$)

Mathematisches Pendel mit Näherung für kleine Winkel: $\sin \theta = \theta - \frac{1}{3!}\theta^3 + O(\theta^5) \approx \theta$

Rückstellkraft
$$F \approx -m \cdot g \cdot \theta \implies \theta(t) = \theta_0 \cdot \cos(\omega t + \phi_0)$$
 mit $\omega = \sqrt{\frac{g}{l}}$

Gedämpfte Schwingung

$$\begin{aligned} \text{DGL: } m \frac{d^2 X}{dt^2} + \lambda \frac{dX}{dt} + kX &= 0 \\ X(t) &= X_0 \cdot e^{-\frac{t}{\tau}} \cdot \cos(\omega t) \quad \text{mit } \omega = \sqrt{\frac{k}{m} - \frac{\lambda^2}{4m^2}} \\ \text{Lebensdauer } \tau &= \frac{2m}{\lambda} \text{ mit Reibungskoeff. } \lambda \\ \text{Qualitätsfaktor } Q &= \omega \cdot \tau \\ \text{Energie } E &= E_0 \cdot e^{-\frac{t}{\tau}} \end{aligned}$$

1.17 Wellen

Wellengleichung in 3-Dimensionen

$$\frac{1}{c^2}\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} = 0 \quad \Leftrightarrow \quad (\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \triangle)u(\vec{r}, t) = 0 \quad \Leftrightarrow \quad \Box u = 0$$

$$\text{Laplace-Operator } \triangle = \sum_{i=1}^{3} \left(\frac{\partial^2}{\partial x_i^2} \right) \quad \text{und d'Alembert-Operator } \square = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \triangle$$

Ausflug: Greensche Funktion (sicher nicht Klausur-relevant)

DGL:
$$\Box u(\vec{r},t) = f(\vec{r},t)$$
 hat Greensche Fkt.: $G(\vec{r},t) = \frac{\delta(t-\frac{|\vec{r}|}{c})}{4\pi |\vec{r}|}$

Spezialfall: Saite mit linearer Massendichte μ

$$u(x,t)=u_0\cdot sin(kx+\delta)\cdot cos(\omega t+\phi)$$
 mit Wellenzahl $k=\frac{2\pi}{\lambda}$ und $\omega=k\sqrt{\frac{F}{\mu}}$ Phasen-/Ausbreitungsgeschwindigkeit $c=\sqrt{\frac{F}{\mu}}$

Stehende Wellen (in 1 Dimension)

$$u(x,t) = f(x) \cdot g(t)$$
 mit Amplitude $f(x)$ und Zeitabhängigkeit $g(t)$

Es existieren sog. Schwingungsmoden. Bei harmonischen Wellen auf einem Wellenträger der Länge L bspw. gilt: $\lambda_n = \frac{2L}{n}$; $n \in \mathbb{N}$

Energie und Intensität

Gesamtenergie pro Längenelement
$$\frac{dE}{dx} = \frac{dE_{kin}}{dx} + \frac{dE_{pot}}{dx} = \frac{1}{2} \left(\mu \left(\frac{\partial u}{\partial t} \right)^2 + F \left(\frac{\partial u}{\partial x} \right)^2 \right)$$
mittlere Leistung $\langle P \rangle = \langle \frac{dE}{dx} \rangle \cdot \frac{dx}{dt}$

Lautstärke

Hörschwelle
$$I_{min}(f=1kHz)=10^{-12}\frac{W}{m^2}$$
 $\hat{}=0Phon$ $\hat{}=0dB$
Lautstärkepegel $L=10\cdot log_{10}\left(\frac{I}{I_{min}}\right)$ $[Phon]$

1.18 Interferenz von Wellen

Superpositionsprinzip Wenn u_1 und u_2 Wellenfunktionen sind, dann ist auch $u = u_1 + u_2$ eine Wellenfunktion.

Zwei Wellen gleicher Wellenlänge und Amplitude, die sich begegnen/überlagern, interferieren abhängig von ihrer Phasendifferenz $\Delta \phi = \phi_2 - \phi_1$ unterschiedlich:

konstruktive Interferenz $\Delta \phi = 2k \cdot \pi$; $k \in \mathbb{Z}$ Amplituden der beiden Wellen addieren sich

destruktive Interferenz $\Delta \phi = (2k+1) \cdot \pi$; $k \in \mathbb{Z}$ Amplituden der beiden Wellen löschen sich aus

2 Elektrodynamik

2.1 Grundlagen

Physikalische Größen

Größe	Zeichen	Einheit
Ladung	$Q = \pm N \cdot e$	C = As = Coulomb
Ladungsdichte	$ ho = rac{dQ}{dV}$	$\frac{A \cdot s}{m^3}$
Flächenladungsdichte	$\sigma = rac{dQ}{dA}$	$rac{A\cdot s}{m^2}$
Linienladungsdichte	$\lambda = \frac{dQ}{dl}$	$\frac{A \cdot s}{m}$
Strom	$I = \frac{dQ}{dt}$	A = Ampere
Stromdichte	$j = \frac{I}{A} = \rho \cdot v$	$\frac{A}{m^2}$
El. Feldstärke	$ec{E}(ec{r})=rac{ec{F}(ec{r})}{q}$	$\frac{N}{C} = \frac{V}{m} = \frac{kg \cdot m}{s^3 \cdot A}$
El. Fluss	$\Phi_e = \int_A ec{ec{E}} \cdot dec{A}$	$\frac{N}{C \cdot m^2} = \frac{kg}{A \cdot m \cdot s^2}$
El. Energie	$E = \int_{t_0}^{t_1} U \cdot I \cdot dt$	$Ws = J = \frac{kg \cdot m^2}{s^2}$
El. Arbeit	$W_{AB} = \int_A^B q \cdot \vec{E} \cdot d\vec{s}$	$Ws = J = \frac{kg \cdot m^2}{s^2}$
El. Spannung	$U_{AB} = V(\vec{r}_1) - V(\vec{r}_2) = \frac{W_{AB}}{q} = \int_A^B \vec{E} d\vec{s}$	$V = \frac{Nm}{C} = \frac{kg \cdot m^2}{s^3 \cdot A} = Volt$
El. Leistung	$P = \frac{dW}{dt} = U \cdot I$	$W = VA = \frac{kg \cdot m^2}{s^3} = Watt$
Kapazität	$C = \frac{Q}{U}$	$F = \frac{C}{V} = \frac{A^2 \cdot s^4}{kg \cdot m^2} = Farad$
Widerstand	$R = \frac{U}{I} = \frac{d}{\sigma_e \cdot A}$	$\Omega = \frac{kg \cdot m^2}{s^2 \cdot A} = Ohm$
Spez. Widerstand	$ ho = R \cdot \frac{A}{L}$	$\Omega m = \frac{kg \cdot m^3}{s^2 \cdot A}$
Magn. Feldstärke	$ec{H}$	$\frac{A}{m}$
Magn. Flussdichte	$ec{B} = \mu_0 \cdot ec{H}$	$T = \frac{Vs}{m^2} = \frac{kg}{A \cdot s^2} = Tesla$
Magn. Fluss	$\Phi_m = \int_A \vec{B} \cdot d\vec{A}$	$Wb = Tm^2 = Vs = \frac{kg \cdot m^2}{A \cdot s^2} = Weber$
Induktivität	$L = \frac{\Phi_m}{I}$	$H = \frac{Tm^2}{A} = \frac{Vs}{A} = \frac{kg \cdot m^2}{s^2} = Henry$

Ladungserhaltung $\sum Q_i = const.$

Konservative Kraftfelder $\oint \vec{F} d\vec{s} = 0, \ \nabla \times \vec{F} = 0, \ \vec{F} = -\nabla V$

Verhalten bei Reihen- und Parallelschaltung

	Reihenschaltung	Parallelschaltung
Spannung	$U_x = \sum U_i$	$U_x = U_1 = \dots = U_n$
		$I_x = \sum I_i$
Ladung auf Kondensator	$Q_x = Q_1 = \dots = Q_n$	$Q_x = \sum Q_i$
Widerstand	$R_x = \sum R_i$	$\frac{1}{R_x} = \sum \frac{1}{R_i}$
Kapazität	$\frac{1}{C_x} = \sum \frac{1}{C_i}$	$C_x = \sum_{i} C_i$

2.2 Maxwell-Gleichungen (im Vakuum)

1.) Gaußsches Gesetz Ladung ist Quelle des elektrischen Feldes

$$\begin{split} \nabla \cdot \vec{E} &= \frac{\rho}{\epsilon_0} \\ (\Phi_e =) \quad \oint_{\partial V} \vec{E} \cdot d\vec{A} &= \frac{Q_{inV}}{\epsilon_0} \end{split}$$

2.) Gaußsches Gesetz für Magnetfelder magnetische Felder sind quellenfrei, es gibt keine Monopole

$$\nabla \cdot \vec{B} = 0$$

$$(\Phi_m =) \oint_{\partial V} \vec{B} \cdot d\vec{A} = 0$$

3.) Induktionsgesetz Änderung der magnetischen Flussdichte führt zu elektrischem Wirbelfeld. Minus wegen Lenzscher Regel

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$(U_{ind} =) \quad \oint_{\partial A} \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_{A} \vec{B} \cdot d\vec{A} \ \ (= -\frac{d}{dt} \Phi_{m})$$

4.) Erweitertes Durchflutungsgesetz Elektrische Ströme führen zu magnetischem Wirbelfeld (Erweiterung des Ampereschen Gesetzes, berücksichtigt aber den Maxwellschen Verschiebungsstrom: 2. Term)

$$\nabla \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

$$\oint_{\partial A} \vec{B} \cdot d\vec{s} = \mu_0 I_{durchA} + \frac{1}{c^2} \frac{d}{dt} \int_A \vec{E} \cdot d\vec{A}$$

2.3 Maxwell-Gleichungen in Materie

Mit elektrischer Flussdichte $\vec{D} = \epsilon_0 \cdot \epsilon_r \cdot \vec{E}_{Diel.} = \epsilon_0 \cdot \vec{E}_{vak}$ und magnetischer Flussdichte $\vec{B} = \mu_0 \cdot \mu_r \cdot \vec{H} = \mu_0 \cdot (\vec{H}_0 + \vec{M})$

$$\begin{aligned} &1.) & \nabla \cdot \vec{D} = \rho & & \oint_{\partial V} \vec{D} \cdot d\vec{A} = Q_{inV} \\ &2.) & \nabla \cdot \vec{B} = 0 & & \oint_{\partial V} \vec{B} \cdot d\vec{A} = 0 \\ &3.) & \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} & & \oint_{\partial A} \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_{A} \vec{B} \cdot d\vec{A} \\ &4.) & \nabla \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t} & & \oint_{\partial A} \vec{H} \cdot d\vec{s} = I_{durchA} + \frac{d}{dt} \int_{A} \vec{D} \cdot d\vec{A} \end{aligned}$$

2.4 Elektrostatik

Coulombgesetz für zwei punktförmige Ladungen

$$\vec{F}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q \cdot q}{r^2} \cdot \vec{e}_r$$

Coulomb-Potential für punktförmige Ladungsquellen

$$V(r) = \frac{Q}{4\pi\epsilon_0 r}$$

Dielektrizitätszahl ϵ_r charakteristische Eigenschaft eines Dielektrikums (Vakuum: $\epsilon_r = 1$) Es gilt: $\epsilon_r = 1 + \chi$ mit dielektrischer Suszeptibilität χ

Plattenkondensator

Kapazität
$$C=\epsilon_0\epsilon_r\frac{A}{d}$$
 Energie $E=\frac{1}{2}CU^2=\frac{1}{2C}Q^2=\frac{1}{2}\epsilon_0\epsilon_rV\cdot E^2$ El. Feld $E=\frac{Q}{\epsilon_0\epsilon_rA}=\frac{U}{d}$

Poisson-Gleichung des elektrischen Feldes

$$\Delta V = -\frac{\rho}{\epsilon_0} \text{ mit Laplace-Operator } \Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Elektrisches Dipolmoment charakterisiert räumliche Ladungstrennung mit zwei ungleichnamigen Ladungen q und dem Abstand \vec{l} von der negativen zur positiven Ladung

$$\vec{p} = q \cdot \vec{l}$$

Gesamtdipolmoment (Polarisation) $P = \chi \cdot E_D \cdot \epsilon_0 = N \cdot q \cdot d$

2.5 Elektrodynamik

Kontinuitätsgleichung $\nabla \vec{j} = -\frac{d\rho}{dt}$

Ströme mikroskopisch betrachtet

 v_D : Driftgeschwindigkeit

 $\langle v \rangle$: Mittlere Geschwindigkeit zwischen 2 Stößen

 Λ : Mittlere freie Weglänge für e^-

 τ : Mittlere Zeit zwischen 2 Stößen

Kirchhoffsche Gesetze

Knotenregel:
$$\sum I_i = 0$$
 an jedem Knoten

Maschen
regel: $\sum U_i = 0$ für alle Maschen ohne Spannungsquelle

Wheatstonesche Brückenschaltung siehe Übungsaufgabe

Auf- und Entladevorgang eines Kondensators mit Zeitkonstante $\tau = R_o C$

	Aufladen	Entladen
	$U(t) = U_0(1 - e^{-t/\tau})$	
Strom	$I(t) = I_0 e^{-t/\tau}$	$I(t) = \frac{U_0}{R_0} e^{-t/\tau}$

Ionenwanderung mit Beweglichkeit $b\left[\frac{m^2}{Vs}\right]$

$$v^+ = b^+ \cdot E$$
 und $v^- = b^- \cdot E$

 $j^{\pm} = (\pm) q \cdot v^{\pm} \cdot n$ mit Ionenanzahl pro $m^3 \colon n$

2.6 Statischer Magnetismus

Lorentz-Kraft

$$\vec{F}_L = q \cdot \vec{v} \times \vec{B}$$

Kraft auf Leiter im B-Feld (in der Schule F=IBS)

$$\vec{F} = I \cdot \int_P d\vec{l} \times \vec{B}$$

Hall-Effekt Hall-Spannung $U_H = \frac{IB}{ned}$

Magnetfeld einer bewegten Ladung $\vec{B} = \frac{1}{c^2} \cdot \vec{v} \times \vec{E}$

Magnetfeld einer stromdurchflossenen Spule

$$B = \mu_0 \cdot \frac{N}{l} \cdot I$$

Gesetz von Biot-Savart (Magnetfeld von Strömen)

$$\vec{B}(\vec{r}) = \int \frac{\mu_0}{4\pi} I \frac{d\vec{l} \times \vec{r}}{r^3}$$

Magnetisches Moment auf geschlossener Bahn mit eingeschlossener Fläche A

$$\vec{m}_m = I \cdot \vec{A} = \frac{q}{2m} \vec{L}$$

Atomar:
$$\vec{m}_m = -\mu_B \cdot \frac{\vec{L}}{\hbar}$$
 mit Bahndrehimpuls \vec{L} [\hbar]

Relative Permeabilität $\mu_r = 1 + \chi_m$ mit Magnetischer Suszeptibilität χ_m

$$\vec{B} = \vec{B}_0 + \mu_0 \vec{M} = \mu_0 (1 + \chi_m) \vec{H} = \mu_0 \mu_r \vec{H}$$

Gaußscher Satz des E-Feldes $\int_V \nabla \vec{E} dV = \oint_A \vec{E} d\vec{A}$

Stokescher Satz des B-Feldes $\int_A (\nabla \times \vec{B}) d\vec{A} = \oint_P \vec{B} d\vec{l}$

2.7 Zeitabhängige elektrische und magnetische Felder

Lenzsche Regel Induktionsspannung erzeugt Strom, dessen magnetische Wirkung der Flussänderung entgegenwirkt.

Induktivität einer Spule $L = \mu_0 \cdot \frac{N^2}{l} \cdot A$

Tranformator $U_2 = -\frac{N_2}{N_1} \cdot U_1$

Wechselspannung Allgemein und Spezialfall für sinusförmige Spannung

$$U(t) = \sum_{k} U_k \sin(k\omega t + \phi_k)$$
 (= $U_0 \sin(\omega t + \phi_0)$ falls reine Sinusschwingung)

Mittelwert:
$$\langle U \rangle = \frac{1}{T} \int_0^T U(t) dt$$
 (= 0 für reine Sinusschwingung)

Effektivwert:
$$U_{eff} = \sqrt{\frac{1}{T} \int_0^T U^2(t) dt}$$
 (= $\frac{1}{\sqrt{2}} U_0$ für reine Sinusschwingung)

Impedanz (Wechselstromwiderstand, Wechselstrom mit Kreisfrequenz ω)

- einer Spule: $R_L = \omega \cdot L$
- eines Kondensators: $R_C = \frac{1}{\omega C}$
- Gesamtwiderstand bei Impedanz R_I mit ohmschem Widerstand R: $R_x = \sqrt{R^2 + R_I^2}$
- Gesamtwiderstand in einem Serienschwingkreis (R, L und C): $R_x = \sqrt{R^2 + \left(\omega L \frac{1}{\omega C}\right)^2}$

 $\mathbf{Maxwellscher\ Verschiebungsstrom} \quad I_V = \frac{d}{dt} (\epsilon_0 \cdot \vec{A} \cdot \vec{E}) = \epsilon_0 \cdot \vec{A} \cdot \frac{\partial \vec{E}}{\partial t} = \vec{A} \cdot \vec{j}_V$

Energie der elektromagnetischen Felder

Elektrisches Feld
$$E_{el}=\frac{1}{2}\epsilon_0 E^2\cdot V$$
 (Energiedichte $w=\frac{1}{2}\epsilon_0 E^2$)

$$\textbf{Magnetisches Feld} \quad E_m = \frac{1}{2} \frac{1}{\mu_0} B^2 \cdot V = \frac{1}{2} \mu_0 H^2 \cdot V \qquad \text{(Energiedichte } w = \frac{1}{2} \mu_0 H^2 = \frac{1}{2} \frac{1}{\mu_0} B^2 \text{)}$$

2.8 Eigenschaften Elektromagnetischer Wellen

Energiedichte
$$w = \frac{|\vec{E}||\vec{B}|}{\mu_0 c}$$

$$\textbf{Intensit\"{a}t} \quad I = w \cdot c = \frac{|\vec{E}||\vec{B}|}{\mu_0}$$

Energiefluss Poynting-Vektor:
$$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$$

Impuls
$$|\vec{P}| = \frac{w}{c} = \frac{I}{c^2}$$

Strahlungsdruck
$$P_S = \frac{I}{c} = \frac{E_0 \cdot B_0}{2\mu_0 c}$$

3 Ergänzungen

3.1 Wichtige / Nützliche Größen

 $Gravitationskonstante \quad G=6,67\cdot 10^{-11}N\frac{m^2}{kg^2}$ Masse der Erde $m_E=6\cdot 10^{24}kg$ Erdradius $R_E=6,371\cdot 10^6m$ Ortsfaktor $g=9,81\frac{N}{kg}$ Lichtgeschwindigkeit $c=\frac{1}{\sqrt{\epsilon_0\mu_0}}=3\cdot 10^8\frac{m}{s}$ Elementarladung $e=1,6\cdot 10^{-19}C$ Elektrische Feldkonstante $\epsilon_0=8,85\cdot 10^{-12}\frac{As}{Vm}$ Permeabilitätskonstante $\mu_0=4\pi\cdot 10^{-7}\frac{Vs}{Am}$ Plancksches Wirkungsquantum $h=2\pi\hbar=6,63\cdot 10^{-34}Js$