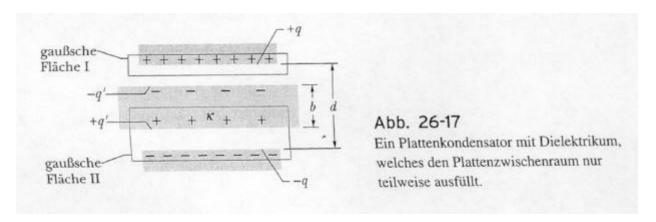
12.05.2005

1. Plattenkondensator mit Dielektrikum (1+1+2+2+1+1)



Die Abbildung zeigt einen Plattenkondensator der Plattenfläche $A=115\,\mathrm{cm}^2$ mit einem Plattenabstand $d=1,24\,\mathrm{cm}$. An den Platten liege die Potentialdifferenz $V_0=85,5\,\mathrm{V}$ einer Batterie. Nun werde die Batterie entfernt und eine dielektrische Platte der Dicke $b=0,78\,\mathrm{cm}$ mit der Dielektrizitätszahl k=2,61 werde wie dargestellt in den Plattenzwischenraum gebracht.

- a) Wie groß ist die Kapazität des Kondensators ohne Dielektrikum?
- b) Wie groß ist die freie Ladung auf den Kondensatorplatten?
- c) Wie groß ist das elektrische Feld E_0 in den Zwischenräumen zwischen Kondensatorplatten und Dielektrikum?
- d) Wie groß ist das elektrische Feld E_1 im Inneren des Dielektrikums?
- e) Wie groß ist die Potentialdifferenz *V* zwischen den Kondensatorplatten, nachdem das Dielektrikum eingeschoben wurde?
- f) Wie groß ist die Kapazität des Kondensators mit Dielektrikum?

Lösung:

a)
$$C_0 = \frac{\mathbf{e}_0 A}{d} = \frac{\left(8,85 \cdot 10^{-12} \ F/m\right) \left(1.15 \cdot 10^{-2} \ m^2\right)}{1.24 \cdot 10^{-2} m} = 8,21 \ pF$$
.

b)
$$q = C_0 V_0 = 702 pC$$
.

c) Ansatz: Gaußscher Satz für gaußsche Flächen I: Diese verläuft im Raum zwischen Platte und Dieelektrikum und schließt deshalb ausschließlich freie Ladungen der oberen Kondensatorfläche ein:

$$\int \boldsymbol{e}_0 k \vec{E}_0 d\vec{A} = q, E_0 = \frac{q}{\boldsymbol{e}_0 k A} = \frac{7,02 \cdot 10^{-10} \, C}{8,85 \left(\cdot 10^{-12} \, Fm^{-1} \right) \left(1 \right) \left(1,15 \cdot 10^{-4} \, m^2 \right)} = 6900 V m^{-1}.$$
 Da die Fläche nicht innerhalb des Dieelektrikums liegt ist k=1.

Übungen zur Physik II (Elektrodynamik)

SS 05

5. Übungsblatt, Lösungen

12.05.2005

d) Ebenso für Fläche II:
$$\int \boldsymbol{e}_0 k \vec{E}_I d\vec{A} = -\boldsymbol{e}_0 k E_I A = -q$$
, $E_I = \frac{q}{\boldsymbol{e}_0 k A} = \frac{E_0}{k} = 2,65 k V m^{-1}$. Das erste

Minuszeichen ergibt sich aus dem Skalarprodukt, da Feldvektor und Flächennormale in diesem Fall entgegengesetzt sind.

e) V ergibt sich aus Integration entlang einer geraden Linie, die die Platten verbindet. Der Integrationsweg verläuft über eine Länge b innerhalb des Dieelektrikums, die Gesamtstrecke zwischen den Kondensatorplatten und den Oberflächen des Dieelektrikums ist d-b:

$$\int_{0}^{+} E ds = E_0 (d - b) + E_I b = 52,3V$$

f)
$$C = \frac{q}{V} = \frac{7,02 \cdot 10^{-10} C}{52,3V} = 13,4 pF$$

2. Gradient, Divergenz und Rotation (2+2+2):

Berechnen sie:

- a) die Komponenten von $grad(\vec{a} \cdot \vec{r})$ in Kugelkoordinaten,
- b) $div \vec{e}_r$, $grad \ div \vec{e}_r$, $rot \vec{e}_r$, $div \vec{e}_i$, $rot \vec{e}_J$ in Kugelkoordinaten,
- c) die Komponenten von $rot(\vec{a} \times \vec{r})$ in Zylinderkoordinaten $(\vec{a} = const.)$.

Lösung

a)
$$\nabla = \vec{e}_r \partial_r + \vec{e}_J \frac{1}{r} \partial_J + \vec{e}_j \frac{1}{r \sin J} \partial_J$$
. Mit \vec{a} als Polarachse folgt $\vec{a} \cdot \vec{r} = \vec{a} \cdot r \cdot \cos J$, $grad(\vec{a} \cdot \vec{r}) = \vec{a}(\cos J \vec{e}_r - \sin J \vec{e}_J)$.

$$\begin{aligned} \operatorname{div} \vec{e}_r &= \frac{1}{r^2} \partial_r \left(r^2 \cdot 1 \right) = \frac{2}{r}, \ \operatorname{grad} \operatorname{div} \vec{e}_r = -\frac{2}{r^2} \vec{e}_r, \ \operatorname{rot} \vec{e}_r = 0, \ \operatorname{div} \vec{e}_j = 0, \\ \operatorname{rot} \vec{e}_J &= \vec{e}_J \ \frac{1}{r} \partial_r \left(r \cdot 1 \right) = \frac{1}{r} \vec{e}_J \end{aligned}$$

c)
$$\vec{a}$$
: Z-Achse $\rightarrow \vec{a} = a\vec{e}_z$, $\vec{r} = r\vec{e}_r + z\vec{e}_z$,

$$rot_z(\vec{a} \times \vec{r}) = \frac{1}{r} \partial_r (ar^2) = 2a \Rightarrow rot(\vec{a} \times \vec{r}) = 2a\vec{e}_z$$
.

12.05.2005

Darstellung von Vektoroperationen in verschiedenen Koordinatensystemen

Bedeuten e_1, e_2, e_3 orthogonale Einheitsvektoren in den unten spezifizierten Koordinatensystemen und A_1, A_2, A_3 die entsprechenden Komponenten eines Vektors A_1 , dann gilt:

$$\nabla \psi = \mathbf{e}_{1} \frac{\partial \psi}{\partial x_{1}} + \mathbf{e}_{2} \frac{\partial \psi}{\partial x_{2}} + \mathbf{e}_{3} \frac{\partial \psi}{\partial x_{3}}$$

$$\nabla \psi = \mathbf{e}_{1} \frac{\partial \psi}{\partial x_{1}} + \mathbf{e}_{2} \frac{\partial \psi}{\partial x_{2}} + \mathbf{e}_{3} \frac{\partial \psi}{\partial x_{3}}$$

$$\nabla \cdot \mathbf{A} = \frac{\partial A_{1}}{\partial x_{1}} + \frac{\partial A_{2}}{\partial x_{2}} + \frac{\partial A_{3}}{\partial x_{3}}$$

$$\nabla \times \mathbf{A} = \mathbf{e}_{1} \left(\frac{\partial A_{3}}{\partial x_{2}} - \frac{\partial A_{3}}{\partial x_{3}}\right) + \mathbf{e}_{2} \left(\frac{\partial A_{1}}{\partial x_{3}} - \frac{\partial A_{3}}{\partial x_{1}}\right) + \mathbf{e}_{3} \left(\frac{\partial A_{2}}{\partial x_{1}} - \frac{\partial A_{3}}{\partial x_{2}}\right)$$

$$\nabla^{2}\psi = \frac{\partial^{2}\psi}{\partial x_{1}^{2}} + \frac{\partial^{2}\psi}{\partial x_{2}^{2}} + \frac{\partial^{2}\psi}{\partial x_{3}^{2}}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{\partial\psi}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{1}) + \frac{1}{\rho} \frac{\partial A_{2}}{\partial \phi} + \mathbf{e}_{3} \frac{\partial}{\partial z}$$

$$\nabla^{2}\psi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial\psi}{\partial \rho}\right) + \frac{1}{\rho^{2}} \frac{\partial^{2}\psi}{\partial \phi^{2}} + \frac{\partial^{2}\psi}{\partial z^{2}}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{1}{\rho} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{1}{\rho} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{1}{\rho} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{1}{\rho} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{1}{\rho} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{1}{\rho} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{1}{\rho} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{1}{\rho} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{3} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{1}{\rho} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{\partial\psi}{\partial z}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{3} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{\partial\psi}{\partial \phi}$$

$$\nabla\psi = \mathbf{e}_{1} \frac{\partial\psi}{\partial \rho} + \mathbf{e}_{2} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3} \frac{\partial\psi}{\partial \phi} + \mathbf{e}_{3}$$

Übungen zur Physik II (Elektrodynamik)

SS 05

5. Übungsblatt, Lösungen

12.05.2005

3. Strommeßgerät (3):

Zu einem Strommesser, dessen Innenwiderstand $R_i = 1\Omega$ beträgt, werden nacheinander Widerstände (Shunts) von 0.2Ω , 0.01266Ω und 0.00402Ω parallelgeschaltet. Auf den wievielfachen Wert erhöht sich dadurch der Messbereich?

Lösung:

$$(I - I_1)$$
: $I_1 = R_i$: R . Die Meßbereichserweiterung entspricht dem Verhältnis $\frac{I}{I_1} = \frac{R_i}{R} + 1$ und damit 6, 80, 250.

4. Reale Widerstände (3):

Zwei Widerstände von $200\Omega(1\pm10\%)$ bzw. $500\Omega(1\pm10\%)$ sind parallelgeschaltet. Wie groß sind der Gesamtwiderstand und die dazugehörige Toleranz?

Lösung:

$$R_{\rm ges}=\frac{R_{\rm l}R_{\rm 2}}{R_{\rm l}+R_{\rm 2}}=142,\!86\Omega$$
. Mit dem Größt- bzw. Kleinstwert ergibt sich

 R_{gr} = 157,14 Ω , R_{kl} = 128,57 Ω , so dass mit einer Toleranz von $\pm 14,3\Omega$ gerechnet werden muss.