Physik II (Elektrodynamik)

3. Übungsblatt

Abgabe: 11.05.09, 9:30h, Besprechung 13.05.09 A. Ustinov / G. Fischer

SS 2009

Name, Vorname: ______Matnr.: _____Grupppe: ____!!!

Aufgabe 9: (4 Punkte)

Ein Elektron bewegt sich mit der kinetischen Energie E_{Kin} längs der x-Achse durch eine Kathodenstrahlröhre. Zwischen den Ablenkplatten der Länge L wirkt das elektrische Feld E_y in y-Richtung und außerhalb ist $\vec{E}=0$.

- a) Welche Beschleunigungsspannung hat das Elektron durchlaufen (rechnen Sie nicht relativistisch)?
- b) Wie lautet die Bahnkurve y(x) der Elektronen im Bereich zwischen den Ablenkplatten?
- c) Welchen Abstand von der x-Achse hat das Elektron am Ende der Platten und welchen Winkel schließt dann die Bewegungsrichtung des Elektrons mit der x-Achse ein?
- d) In welcher Entfernung von der x-Achse trifft das Elektron auf einem im Abstand b vom Ende der Ablenkplatten entfernten Leuchtschirm auf?

Zahlenwerte: $E_{Kin} = 3.10^{-16} \text{ J}$, L = 4 cm, $E_{v} = 2.10^{4} \text{ N/C}$, b = 12 cm

Aufgabe 10: (2 Punkte)

- a) Welche Spannung muss ein Elektron im Vakuum durchlaufen, um auf 95 % der Lichtgeschwindigkeit c beschleunigt zu werden? Beachten sie die Massenzunahme durch relativistische Effekte des Elektrons (Formel nachschlagen, wenn nicht bekannt).
- b) In einem Teilchenbeschleuniger werden Protonen auf eine kinetische Energie von 10 GeV gebracht. Wie schnell ist das Teilchen (in Bruchteilen der Lichtgeschwindigkeit c)? Auf das wie vielfache hat die bewegte Masse m gegenüber ihrer Ruhemasse m₀ zugenommen?

Zahlenwerte: Ruhemasse des Elektrons $m_0 = 9,1\cdot 10^{-31}$ kg und spezifische Ladung des Protons $e/m_0 = 9.579\cdot 10^7$ C/kg

Aufgage 11: (4 Punkte)

In einem van de Graff Generator werden Ladungen auf einem Band der Breite b transportiert. Dessen Transportgeschwindigkeit ist v_{trans} . Die Ladungen erzeugen an der Oberfläche des dünnen Transportbandes ein elektrisches Feld E_{Ob} .

- a) Wie groß ist die Oberflächenladungsdichte auf dem Band?
- b) Mit welcher Stromstärke wird der Generator aufgeladen?
- c) Die Ladungen sammeln sich auf einer leitenden Kugeloberfläche (Radius R). Wie lange dauert es nach dem Einschalten, bis die Spannung U erreicht wird (keine Ladungsverluste)?

Zahlenwerte: b = 30 cm, v_{trans} = 15 m/s, E_{Ob} = 10³ V/cm, R = 1,5 m, U = 3·10⁶ V

Aufgage 12: (4 Punkte)

Ein HCI-Molekül befindet sich im Ursprung eines Koordinatensystems mit seiner Molekülachse in z-Richtung. Welche Richtung und welche Größe hat das elektrische Feld im Abstand a vom Ursprung

- a) auf der z-Achse oder
- b) auf der x-Achse?

Zahlenwert: elektrisches Dipolmoment eines HCl-Moleküls p = 3,4·10⁻³⁰ Asm, a = 1nm