Physik II (Elektrodynamik) 5. Übungsblatt

Abgabe: 25.05.09, 9:30h, Besprechung 27.05.09

SS 2009

A. Ustinov / G. Fischer

lame, Vorname:	Matnr.:	Gruppe:	!!!
----------------	---------	---------	-----

Aufgabe 18: (4 Punkte)

18.1: Eine dünne ausgedehnte dielektrische Platte mit der Dielektrizitätskonstanten ε wird in ein homogenes elektrisches Feld \vec{E}_a gebracht. Wie groß ist die elektrische Feldstärke \vec{E}_i in der Platte, wenn die Oberflächennormale parallel bzw. senkrecht zu \vec{E}_a steht.

18.2: Die Platte kann in einem Kondensator mit der Kapazität C₀ eingeschoben werden.

- a) Welche Energie ist in dem Kondensator gespeichert, wenn die Spannung U anliegt, und das Dielektrikum ihn vollständig ausfüllt?
- b) Wie teilt sich diese Energie auf in Feldenergie und Energie, die im Dielektrikum gespeichert ist? Überlegen Sie sich dazu, welche Energie zur Erzeugung eines Dipols nötig ist.

Aufgabe 19: (4 Punkte)

Ein Kupferdraht mit Querschnitt A und einem spezifischem Widerstand ρ leitet einen Strom der Stärke I.

- a) Berechnen Sie das elektrische Feld E und die Spannung U, die in einem Draht der Länge $\ell = 3$ m abfällt.
- b) Berechnen Sie die Driftgeschwindigkeit v_D der Elektronen im Metall unter der Annahme, dass jedes Kupferatom ein Leitungselektron freisetzt.
- c) Berechnen Sie die mittlere Streuzeit τ der Elektronen unter der Annahme, dass die Elektronen nach jedem Stoß (im Mittel) ν = 0 haben und durch das elektrische Feld E beschleunigt werden.
- d) Berechnen Sie die Beweglichkeit μ ($v_D = \mu \cdot E$) der Elektronen im Kupfer. Metallartige ("entartete"), 2-dimensionale Elektronensysteme in speziellen Halbleiterschichtsystemen weisen bei tiefen Temperaturen (T = 1 K) Beweglichkeiten über μ = 10^7 cm²/(Vs) in der Schichtebene auf. Welche Streuzeit und Driftgeschwindigkeit für die Elektronen ergeben sich dafür bei einem elektrischen Feld wie in a).

Zahlenwerte: A = 1 mm², spez. Widerstand ρ = 1,7·10⁻⁸ Ωm, Stromstärke I = 1,0 A, spez. Dichte ρ_{CII} = 8,93 g/cm³, Molmasse M_{CII} = 63,5 g/Mol

Aufgabe 20: (6 Punkte)

Ein Plattenkondensator der Kapazität C = 10 μ F wird über einen Widerstand R = 1 M Ω auf die Spannung U $_0$ aufgeladen.

- a) Berechnen sie den zeitlichen Verlauf des Ladestroms.
- b) Nach welcher Zeit ist der Strom auf die Hälfte abgesunken?
- c) Wie groß ist die im Kondensator gespeicherte elektrische Feldenergie? Zeigen sie, dass diese Energie beim Entladen des Kondensators im Widerstand R in Wärme umgewandelt wird.

Aufgabe 21: (6 Punkte)

6 identische Widerstände R_0 und die entsprechende Anzahl Drähte werden zu einer tetraedrischen Anordnung verlötet, so dass auf jeder Tetraederkante ein Widerstand angebracht ist. Zwischen zwei Ecken (1 und 2) wird eine Spannung U_0 angelegt, die beiden übrigen Ecken werden mit 3 und 4 bezeichnet.

- a) Stellen Sie für die Anordnung die Knoten- und Maschengleichungen auf.
- b) Wie groß ist der Gesamtwiderstand zwischen den Punkten 1 und 2?
- c) Wie groß ist die Spannung zwischen den Tetraederecken 2 und 3?
- d) Welcher Strom fließt zwischen 1 und 3, welcher zwischen 3 und 4?