
10. ÜbungsblattAusgabe: 16.6.11, Besprechung 22.6.11

SS 2011
G. Weiß / G. Fischer

Aufgabe 40: (1,5 + 1,5 + 1 = 4) Punkte

Eine stromdurchflossene quadratische Drahtspule der Kantenlänge I = 2 cm befindet sich in einem homogenen Magnetfeld B = 0,1 T. Für α = 90° steht \vec{B} senkrecht auf der Fläche, die von der Spule erzeugt wird.

- a) Bestimmen Sie die Kraft \vec{F}_i , die auf jeweils ein Drahtstück in den vier Spulenabschnitten (i = 1 bis 4) wirkt.
- b) Welches Drehmoment wirkt auf die Spule als Funktion von α ?
- c) Wie lässt sich das Drehmoment über das magnetische Moment der Spule ausdrücken?

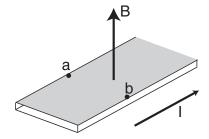
Aufgabe 41: (1,5 + 1,5 = 3 Punkte)

Die stromdurchflossene quadratische Drahtspule aus Aufgabe 40 hat nun N = 100 Windungen. Diese Anordnung soll nun als Drehspulinstrument zur Strommessung eingesetzt werden, indem die Drehachse mit einer Spiralfeder mit dem rücktreibenden Drehmoment M = $C \cdot \alpha$ ausgestattet wird (Winkelrichtgröße: C = 10^{-9} Nm/rad). Über einen Zeiger lässt sich an einer Skala die Winkelauslenkung der Spule auf $\Delta\alpha$ =0,5° genau ablesen. Die Kraft auf die einzelnen Drahtstücke und das Drehmoment auf eine Spule haben Sie bereits in Aufgabe 40 berechnet.

- a) Wie groß sind der kleinste und der größte messbare Strom? Diese Werte lassen sich über die möglichen Winkel (bzw. deren Genauigkeit) bestimmen.
- b) Wie groß ist der Winkelausschlag bei einem Strom von I = 1 μ A? Und wie genau lässt sich dieser Strom von I = 1 μ A messen?

Hinweis: Nehmen Sie an, dass der Winkel für I = 1 μ A nahe bei 90° ist und Sie cos α durch eine Taylorentwicklung um 90° linear nähern können. Die Genauigkeit des Stromes Δ I ergibt sich z.B. über: Δ I/ $\Delta\alpha$ = dI/d α | $_{\alpha$ = 90°.

<u>Aufgabe 42:</u> (1,5 + 1 + 0,5 + 1 = 4 Punkte)


Ein Stab aus n-Germanium (Elektronen als Ladungsträger) mit einem quadratischen Querschnitt von 1 cm² befindet sich in einem transversalen Magnetfeld B = 0,126 T. Bei einer Stromstärke I = 10 mA wird eine Hallspannung von $U_H = 1,2$ mV gemessen.

- a) Skizzieren Sie die Messanordnung und erklären Sie kurz, wie die Hallspannung entsteht.
- b) Wie groß ist die Hallkonstante $A_H = 1/(e \cdot n)$?
- c) Wie viele freie Ladungsträger befinden sich in einem m³ des Materials?
- d) Wie groß wäre die Hallspannung, wenn anstatt des Halbleiters Silber (in gleicher Geometrie) verwendet würde? (Silber: M = 108 g/mol, ρ = 10,5 g/cm³, pro Atom trägt ein e⁻ zum Strom bei)

Aufgabe 43: (2 Punkte)

Ein Metallstreifen wird von einem Strom *I* durchflossen und befindet sich in einem homogenen Magnetfeld *B*.

- a) Welcher der beiden Punkte a und b in der gezeigten Abbildung liegt auf höherem Potential?
- b) Ändern sich die Verhältnisse, wenn der Metallstreifen durch einen p-dotierten Halbleiter ersetzt wird, in dem die Ladungsträger positive Ladung haben?

