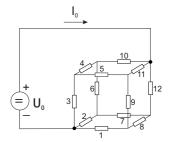
ÜBUNGSAUFGABEN (XIII)

(Besprechung am Mittwoch, 18.07.2012)

Bitte beachten Sie folgende Termine:

 Anmeldung zur Vorleistung:
 01.06.2012 bis 18.07.2012

 Anmeldung zur ersten Klausur:
 19.07.2012 bis 19.08.2012


 Erste Klausur:
 21.08.2012, 14:00 - 16:30 Uhr

 Zweite Klausur:
 20.09.2012, 08:30 - 11:00 Uhr

Achtung: Die genannten Anmeldetermine sind Ausschlussfristen. Eine nachträgliche Anmeldung ist nicht möglich. Nähere Einzelheiten finden Sie auf der Homepage der Vorlesung. Bitte schauen Sie immer erst dort nach, wenn Sie aktuelle Informationen suchen.

Aufgabe 1: (5 Bonuspunkte)

- a) Geben Sie die beiden Kirchhoffschen Regeln in Formeln und Worten an.
- b) Berechnen Sie Gesamtwiderstand der gezeigten Schaltung für den Fall, dass alle 12 Einzelwiderstände i den gleichen Widerstandswert R haben.

Aufgabe 2: (4 Bonuspunkte)

Zwei Kondensatoren unterschiedlicher Kapazität C_1 und C_2 werden zunächst separat voneinander auf eine Spannung U_0 aufgeladen und dann durch Schließen der Schalter S_1 und S_2 entsprechend der gezeichneten Polarität in der Skizze miteinander verbunden. Berechnen Sie die sich einstellenden konstanten Ladungen Q_1 und Q_2 auf den beiden Kondensatoren nach Schließen der Schalter. Wie groß ist der Verlust an elektrostatischer Energie?

Aufgabe 3: (5 Bonuspunkte)

Gegeben sei ein langer, gerader, zylindrischer Draht mit Radius R, durch den der Gesamtstrom I fließt. Die Stromdichte j im Draht ist homogen über der Querschnittsfläche A, so dass I=j A. Wie groß ist die Teilinduktivität L_i des Drahtes pro Länge l von dem Inneren des Drahtes, also für Radien $r \leq R$ ("Innere Induktivität")? Berechnen Sie dazu H(r) und die magnetische Feldenergie W für $r \leq R$ und bestimmen Sie L_i/l durch Vergleich mit dem Ausdruck $W = L_i$ $I^2/2$. Weshalb führt die Berechnung der Induktivität über den magnetischen Fluss Φ_i im Innern mittels $L_i = \Phi_i/I$ hier nicht zum korrekten Ergebnis?

Aufgabe 4: (3 Bonuspunkte)

Ein Plattenkondensator mit Ladung Q_0 ist mit einem homogenen Material mit Dielektrizitätskonstante ϵ gefüllt und verliert aufgrund des sehr großen, aber endlichen spezifischen Widerstands ρ kontinuierlich Ladung. Berechnen Sie das magnetische Feld $\vec{H}(t)$ im Innern des Kondensators sowie die Energieflußdichte $\vec{S}(t)$. Können Sie das Ergebnis mit der Kontinuitätsgleichung für die Energieflußdichte in Übereinstimmung bringen?