SS 2014

2. Übungsblatt www.phi.kit.edu/studium-lehre vorl physik2 Ausgabe: 23.04., Abgabe 28.04., Besprechung 30.04.

T. Müller / M. Weides

Name(n):

Gruppe:

Aufgabe 1 Rechenübungen zum Nabla-Operator (3 Punkte)

Berechnen sie den Gradienten, grad f, des skalaren Feldes: a)

$$f(x, y, z) = \frac{30}{2 + x^2 + y^2 + z^2} = \frac{30}{2 + r^2}$$

Das Geschwindigkeitsfeld \vec{v} einer gleichmäßig rotierenden Flüssigkeit sei gegeben durch b) $\vec{v} = \vec{\omega} \times \vec{r}$ mit der Winkelgeschwindigkeit $\vec{\omega} = (0,0,\omega)$ und $\vec{r} = (x,y,z)$. Zeigen Sie, dass dieses Vektorfeld quellenfrei ist, d.h. seine Divergenz verschwindet, d.h.

 $div \vec{v} = 0$.

Berechnen Sie die Rotation des Geschwindigkeitsfeldes von \vec{v} (aus Teil b)), $rot \ \vec{v} = ?$ c)

Aufgabe 2 Ladungsverteilung I (4 Punkte)

Berechnen Sie die Gesamtladung Q und die mittlere lineare Ladungsdichte $\bar{\lambda} = \frac{Q}{I}$ eines dünnen Stabs der Länge L. Die Ladungsdichte des Stabs ist gegeben durch $\lambda = \lambda_0 \left(1 - \frac{x}{L}\right) \frac{x}{L}$, wobei x der Abstand von einem Ende des Stabs zu einem Punkt auf dem Stab ist. λ_0 ist eine Konstante.

Aufgabe 3 Ladungsverteilung II (4 Punkte)

Eine kreisförmige Scheibe in der x, y-Ebene mit Mittelpunkt bei (0, 0, 0) und Radius a hat auf einer Seite eine Oberflächenladung mit Ladungsdichte (i) $\sigma = \sigma_0 r/a$, und (ii) $\sigma = \sigma_0 \exp{(-\frac{r}{a})}$, wobei σ_0 eine Konstante ist.

- Berechnen Sie die Gesamtladung O für (i) und (ii). a)
- Welche Kraft wirkt auf Teilchen der Ladung q am Punkt Q (0,0,a) im Falle (i)?

Hilfe:
$$\int \frac{1}{\cos x} dx = \ln \left(\frac{1}{\cos x} + \tan x \right) + C$$

Aufgabe 4 Coulombkraft (2 Punkte)

Wie verhalten sich die Beträge der gegenseitigen Coulombkräfte F_1 und F_2 zweier Punktladungen, wenn sich ihre Ladungsmengen Q wie Q_1 : Q_2 =2:3 verhalten? Begründen Sie Ihre Antwort.

i)
$$F_1 = F_2$$
 ii) $2F_1 = 3F_2$ iii) $3F_1 = 2F_2$ iv) $4F_1 = 9F_2$ v) $9F_1 = 4F_2$