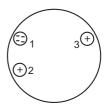

Prof. Dr. M. Wegener / Priv.-Doz. Dr. A. Naber Übungen zur Klassischen Experimentalphysik II (Elektrodynamik), SS 2015

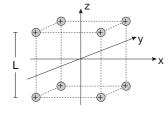
ÜBUNGSAUFGABEN (I)

(Besprechung am Mittwoch, 22.4.15)

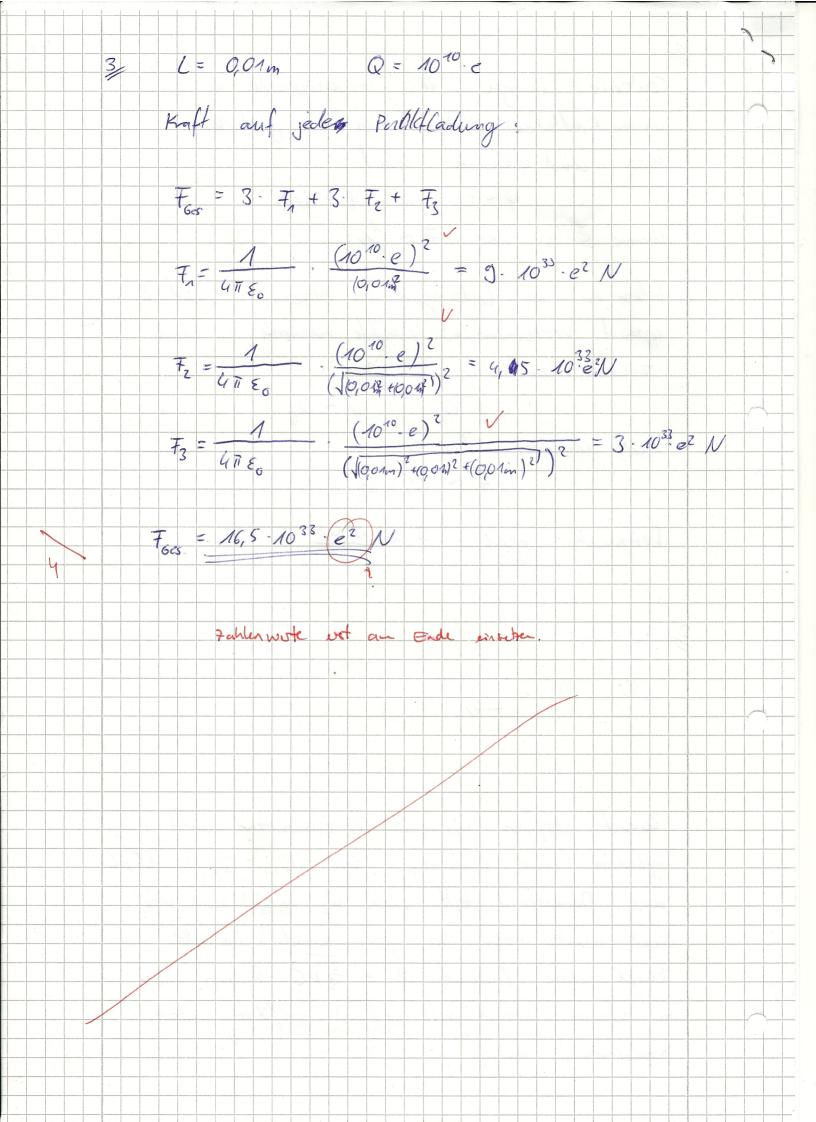
Aufgabe 1: (3 Punkte)


Zur Begründung des Kraftgesetzes zwischen zwei Ladungen verwendete Coulomb im Jahr 1784 eine Torsionswaage bestehend aus einem an einen Faden hängenden Stab, an dessen zwei Enden identische Metallkugeln elektrisch isoliert angebracht waren (vgl. Skizze). Die Winkelauslenkung φ des Stabes aus der Ruhelage ($\varphi=0$) ist dann proportional zum angreifenden Drehmoment. Coulomb übertrug eine Ladung

 Q_A auf die Kugel A des Stabes und positionierte eine Strecke r davon entfernt eine mit Q_B geladenen Kugel B an einem zweiten Stab. Entsprechend der wirkenden Kraft wurde dadurch die Torsionswaage um einen bestimmten Winkel $\varphi(Q_A,Q_B,r)$ ausgelenkt. Coulomb kannte aber nicht die absolute Menge der auf die Kugeln übetragenen Ladungen. Wie konnte er trotzdem auf das Gesetz $F \propto Q_A Q_B/r^2$ kommen? Beschreiben Sie ein mögliches experimentelles Vorgehen.


Aufgabe 2: (3 Punkte)

Drei anfangs ruhende, identische Metallkugeln können sich in einem runden Billard nahezu reibungsfrei bewegen – die Skizze zeigt ihre Anfangspositionen. Kugel 1 trage die Ladung $Q_1 = -4\,\mu\text{C}$, die beiden anderen Kugeln haben die Ladungen $Q_2 = Q_3 = +1\,\mu\text{C}$. Diskutieren und skizzieren Sie qualitativ die Lagen sowie die Ladungen der Kugeln kurz vor jedem der auftretenden Zusammenstöße und für die stationäre Endsituation.



Aufgabe 3: (4 Punkte)

Acht identische Punktladungen mit $Q=10^{10} \cdot e$ sind in den Ecken eines gedachten Würfels mit Kantenlänge $L=1\,\mathrm{cm}$ positioniert (siehe Skizze). Der Mittelpunkt des gedachten Würfels liege im Ursprung des kartesischen Koordinatensystems. Berechnen Sie die Gesamtkräfte, die jeweils auf eine der Ladungen ausgeübt wird, und bestimmen Sie deren Richtung.

Coulomb hangle das Torsonspendel in unterschiedlicken Abstrud von der gelade ven Masse und erkannte somit: Pr F and Pr A/V2 Paraus Sloss e F ~ 1/2 (V) Intern er die Cardingen der Massen A und B seperat voneinander estate, estampte er den Ensammenhang; Viv.c? And darans Ellos en F~ Q, - Qg Demnach gill In Qu. QB Tuest stoffen Quand Quesammen und gleiden die Cadungen zu Qui = Q = -1,5 MC ans Daran thin stoff nod Q3 dazut and gleich and wieder aus. Dies gelf sowerter bis alle Kugel eine Cadung @ = 3 MC Rabon und in einem Dreick mit moglichel großen Abstond voneisande legen

