
Prof. Dr. M. Wegener / Priv.-Doz. Dr. A. Naber Übungen zur Klassischen Experimentalphysik II (Elektrodynamik), SS 2015

# ÜBUNGSAUFGABEN (IV)

(Besprechung am Mittwoch, 13.5.15)

### Aufgabe 1: (5 Punkte)

Zwei isotrope Dielektrika  $K_1$  und  $K_2$  mit Dielektrizitätszahlen  $\varepsilon_1$  und  $\varepsilon_2 > \varepsilon_1$  treffen in der xy-Ebene bei z=0 aufeinander (vgl. Skizze). Eine positive Punktladung q befindet sich in  $K_1$  bei z=d und x=y=0 und induziert an der Grenzschicht eine negative Oberflächenladungsverteilung  $\sigma(x,y)$ . Es soll die auf q wirkende Anziehungskraft F mittels der  $Methode\ der\ Spiegeladungen\ berechnet\ werden.$ 



Man nehme dazu an, dass das von  $\sigma$  erzeugte Feld in  $K_1$  durch eine Spiegelladung q' bei z=-d und in  $K_2$  durch eine Spiegelladung q'' bei

z=d repräsentiert werden kann (beide bei x=y=0). Berechnen Sie q' und q'' durch die zu erfüllenden Randbedingungen an der Grenzschicht. Die Anziehungskraft F kann dann durch die Coulombkraft zwischen q und q' bestimmt werden.

Stetigkeitsbedingungen: An der Grenzschicht der Dielektrika müssen die Komponenten der elektrischen Felder  $\vec{E}$  entlang der Ebene (Tangentialkomponente  $E_t$ ) übereinstimmen. Das Gleiche gilt für die Komponenten des elektrischen Flusses  $\vec{D}$  senkrecht zur Ebene (Normalkomponente  $D_n$ ).

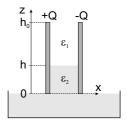
### Aufgabe 2: (3 Punkte)

Ein Verbraucher soll von einer Gleichspannungsquelle mit einem Strom von  $I=1\,\mathrm{A}$  über zwei jeweils 10 m lange Kupferkabel mit 2 mm Duchmesser versorgt werden.

- a) Welche Zeit benötigt ein freier Ladungsträger (Elektron), um von der Spannungsquelle zum Verbraucher zu gelangen?
- b) Welche Klemmspannung muss die Spannungsquelle bei einem Verbraucherwiderstand von  $R_{\rm v}=0.5\,\Omega$  liefern?
- c) Welche Spannung muss über einem Transatlantikkabel mit 4000 km Länge und 2 cm Durchmesser anliegen? Ziehen Sie eine Schlussfolgerung im Hinblick auf eine Gleichspannungs- übertragung über große Distanzen.

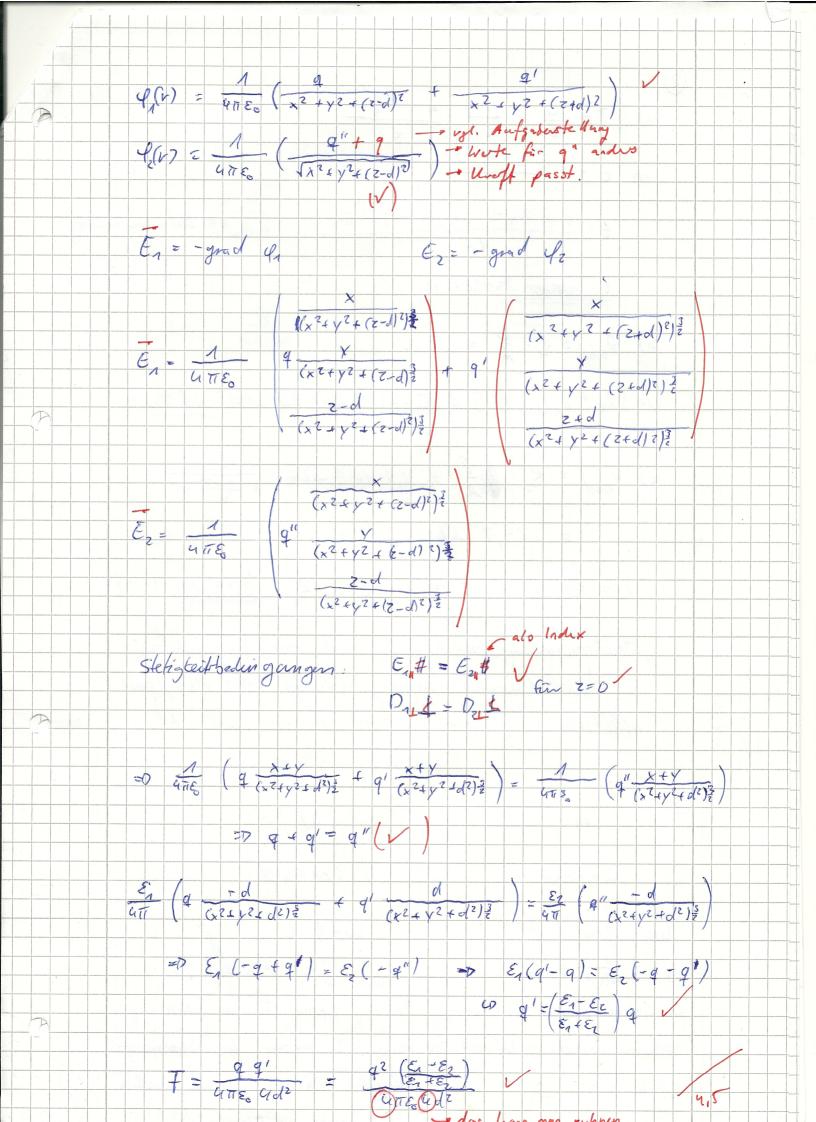
 $Zahlenwerte: \text{ spezifische Widerstand } \rho_{\text{s}} = 1.8 \cdot 10^{-8} \ \Omega \text{m}; \ \text{Ladungstr\"{a}gerdichte } n = 5 \cdot 10^{22} \ \text{cm}^{-3}.$ 

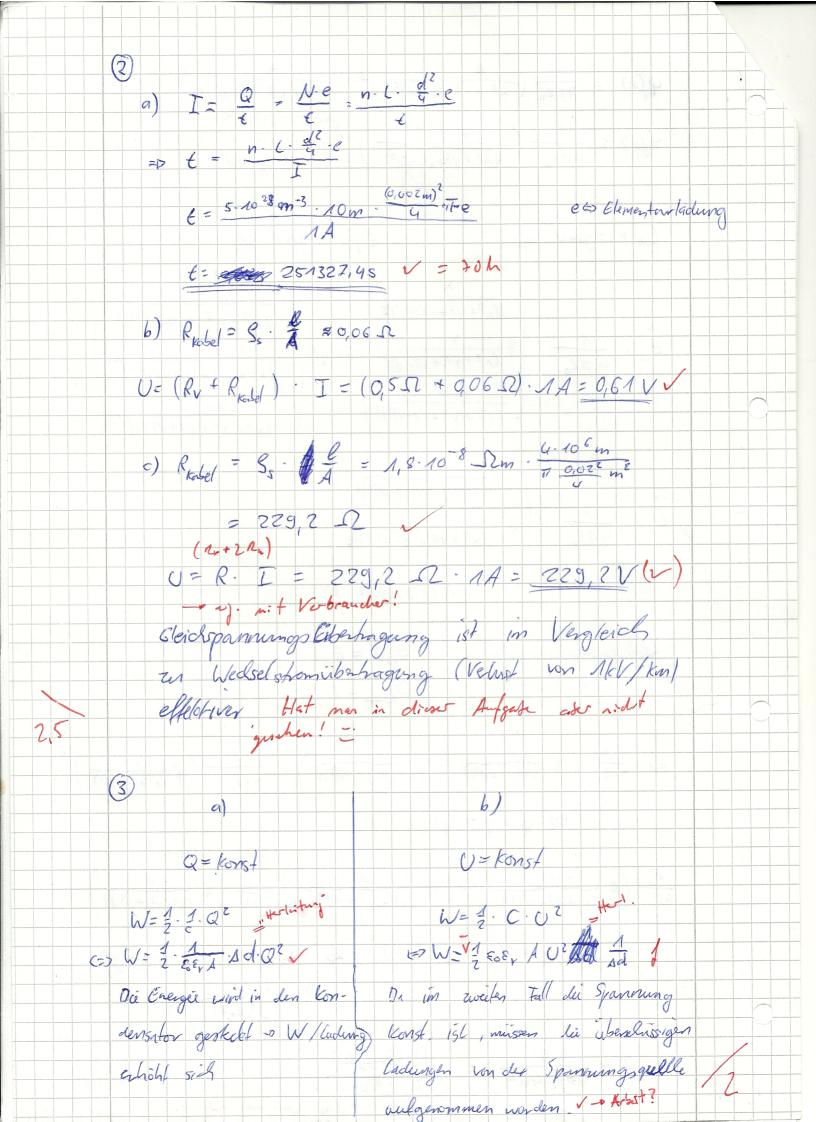
#### Aufgabe 3: (3 Punkte)

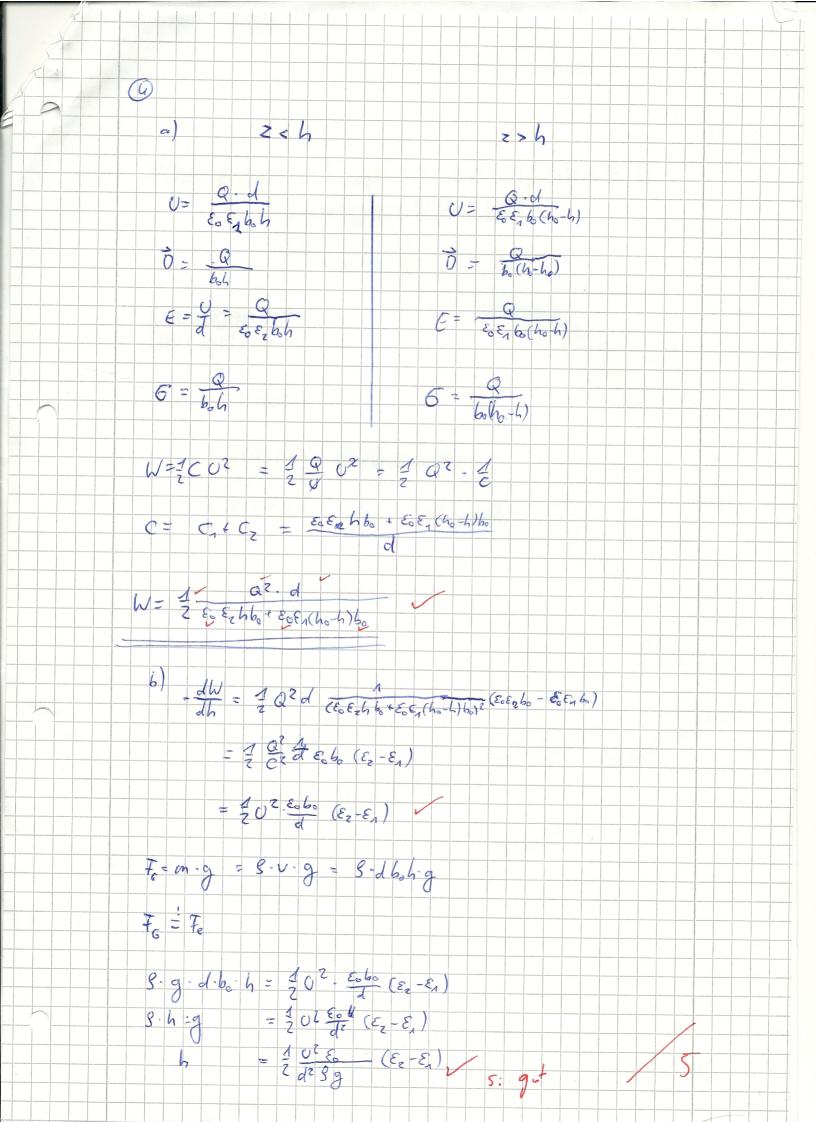

Ein Plattenkondensator der Kapazität  $C = \epsilon_0 \epsilon A/d$  wird mit einer Spannungsquelle bei der Spannung U aufgeladen. Der anfängliche Plattenabstand  $d = d_1$  wird dann um einen sehr kleinen Betrag  $\Delta d$  auf  $d_2 = d_1 + \Delta d$  vergrößert. Berechnen Sie die damit verbundene Änderung  $\Delta W$  der Feldenergie W des Kondensators, wenn

- a) die Änderung bei abgeklemmter Spannungsquelle, und
- b) die Änderung mit angeschlossener Spannungsquelle

geschieht. Erläutern Sie ausführlich die unterschiedlichen Ergebnisse.


## Aufgabe 4: (5 Punkte)


In einem Medium der Dielektrizitätszahl  $\epsilon_1$  wird ein rechteckiger Plattenkondensator mit Fläche  $A=b_0\,h_0$  (Breite  $b_0$ , Höhe  $h_0$ ), Plattenabstand d und Gesamtladung Q senkrecht in ein Bad mit einer nichtleitenden Flüssigkeit der Dielektrizitätszahl  $\epsilon_2 > \epsilon_1$  und Massendichte  $\rho_{\rm fl}$  gestellt (vgl. Skizze). Als Folge wird die Flüssigkeit mit der elektrischen Kraft  $F_{\rm e}$  in z-Richtung in den Kondensator hineingezogen.




- a) Bestimmen Sie die Spannung U, das elektrische Feld E, die elektrische Flussdichte D und die Oberflächenladungsdichte  $\sigma$  als Funktion des Ortes z im Kondensator für eine gegebene Höhe h des Flüssigkeitsspiegels. Berechnen Sie damit die Gesamtenergie  $W_{\rm e}(h)$  des Kondensators.
- b) Die Kraft  $F_{\rm e}$  werde nun ermittelt aus dem Gradienten der Feldenergie,  $F_{\rm e}=-\frac{{\rm d}W_{\rm e}}{{\rm d}h}$ . Bestimmen Sie so für eine gegebene Spannung U die Höhe  $h_{\rm g}$ , bei der  $F_{\rm e}$  im Gleichgewicht ist mit der Gewichtskraft  $F_{\rm g}$  der Flüssigkeit im Kondensator.

Hinweis: Beachten Sie die Stetigkeitsbedingungen für elektrisches Feld und Flußdichte.





