Übungen zur Klassischen Physik II (Elektrodynamik)

SS 2016

Prof. Dr. T. Müller

Dr. F. Hartmann 12tes und letztes Übungsblatt - Spulen, Wechselstrom mit

komplexen Zahlen und Transformatoren

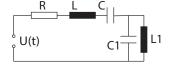
1. Induktivität einer Spule, Dynamisches Verhalten einer Spule plus Widerstand

Gegeben ist eine lange Zylinderspule mit N=100 Windungen, der Querschnittsfläche $A=12.6cm^2$ und der Länge l = 20 cm.

- (a) Leiten Sie die Induktivität L mit Hilfe des Induktionsgesetzes ab.
- (b) Die Spule liegt in Reihe mit einem Widerstand R und einer Spannungsquelle der Spannung U_0 . Berechnen Sie den Einschaltstrom und die Spannung über der Spule als Funktion der Zeit.

2. Induktivitäten parallel - Induktivitäten seriell

Gegeben seien zwei Induktivitäten L_1 und L_2 , die in grossem Abstand von einander parallel/seriell geschaltet sind. Was ist die Gesamtinduktivität der beiden Schaltungen?


3. Und meine Leuchtstoffröhre funktioniert doch!

Eine Leuchtstoffröhre benötigt eine Spannung von U=50V und eine Stromstärke I=0.12A (Effektivwerte) und kann als ohmscher Widerstand betrachtet werden. Welche Induktivität L muss eine, in Reihe geschaltete Spule haben, damit die Leuchtstoffröhre an die Netzspannung (230V,50Hz) angeschlossen werden kann? Der ohmsche Widerstand der Spule sei vernachlässigbar.

4. Darf es heute etwas komplex sein - Wechselstromkreise

Ein Stromkreis aus Kapazitäten, ohmschen Widerständen und Induktivitäten sei wie in der Abbildung gegeben.

(a) Berechnen Sie den Gesamtwiderstand der Schaltung, wenn von Aussen eine Wechselspannung $U(t) = U_0 \sin \omega t$ angelegt wird.

- (b) Wie groß ist der Maximalstrom, der im Kreis fließen kann, wenn man die Frequenz ω variiert, die Amplitude U_0 aber konstant hält?
- (c) Was ist bei Variation von ω bei konstantem U_0 der minimale Strom? Bei welchen Frequenzen kann dieser Minimalstrom beobachtet werden?

5. Transformator I

Bei einem Transformator (TRAFO) gilt: 2 Spulen, welche denselben Fluss Φ erfahren.

$$U_{ind} = -L \frac{dI_1}{dt} = -N_1 \frac{d\Phi}{dt} = -U_1 \text{ und } U_2 = -N_2 \cdot \frac{d\Phi}{dt}$$

 $U_{ind} = -L \frac{dI_1}{dt} = -N_1 \frac{d\Phi}{dt} = -U_1$ und $U_2 = -N_2 \cdot \frac{d\Phi}{dt}$ Schlussendlich: $\frac{U_2}{U_1} = -\frac{N_2}{N_1}$ Welche Aussagen sind richtig?

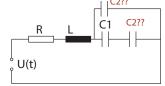
- (a) Die Spannungen verhalten sich genauso wie die Windungszahlen (Verhältnisse)
- (b) Das System funktioniert mit Gleichstrom
- (c) Um hohe Spannungen zu erzeugen muss die Sekundärspule deutlich mehr Windungen haben, als die Primärspule
- (d) Um hohe Ströme zu erzeugen muss die Sekundärspule deutlich mehr Windungen haben, als die Primärspule
- (e) Durch geschickte Wahl vieler Spulen kann man höhere Ströme und gleichzeitig höhere Spannungen erzeugen
- (f) Der Wirkungsgrad eines realen Trafo ist nicht 100%; es wird Leistung/Energie in Wärme umgewandelt

6. Transformator II

Ein idealer Trafo (Wirkungsgrad 100%) an Netzspannung V = 230V mit Windungszahlen $N_1 = 500$ und $N_2 = 13$. Welche Aussagen sind richtig?

- (a) Die Sekundärspannung ist 1V
- (b) Die Sekundärspannung ist 6V
- (c) Am am Sekundärkreis angeschlossenem Motor mit Widerstand $R = 60\Omega$ fliessen 10 mA Strom
- (d) Am am Sekundärkreis angeschlossenem Motor mit Widerstand $R=60\Omega$ fliessen 100 mA Strom
- (e) Am am Sekundärkreis angeschlossenem Motor mit Widerstand $R=60\Omega$ fliessen 1 A Strom
- (f) Im Primärkreis fließen 1 mA Strom
- (g) Im Primärkreis fließen 2.6 mA Strom

7. Schwingkreis


Vorwort: Schwingungen an sich wurden im ersten Semester (mechanisch) und in der Vorlesung behandelt; die Maschenregel in einem Kreis mit L,C,R ergibt folgende Gleichung welche der einer gedämpften Schwingung entspricht und Bespielsweise für R=0 eine Eigenfrequenz von $\omega=\frac{1}{\sqrt{C}}$ ergibt und $E_{Kond}(t)+E_{Spule}(t)=\frac{1}{2}LI_0^2=\frac{1}{2}CU_O^2$ gilt.

$$L\dot{I} + RI + \frac{Q}{C} = 0; \ L\ddot{I} + R\dot{I} + \frac{I}{C} = 0$$
 (1)

Die Energie schwingt zwischen Spule und Kondensator hin- und her. Eine gute Zusammenfassung findet sich auch im Demtröder. Die Herleitung ist daher nicht Teil der Aufgabe.

Aufgabe: Ein Schwingkreis bestehe aus der Serienschaltung einer Spule (Induktivität L), einem Kondensator (Kapazität C1) und einem ohmschen Widerstand R. Er wird von einer Wechselspannungsquelle mit der Spannung $U(t) = U_0 sin(\omega t)$ gespeist. Dieser Schwingkreis soll durch einen Zusatzkondensator der Kapazitat C2 so abgestimmt werden, dass seine Resonanzfrequenz f_r (Erinnerung $\omega_r = \frac{1}{\sqrt{LC}}$ kleine Dämpfung) mit der Generatorfrequenz f übereinstimmt. C2 parallel oder in Serie?

- (a) Berechnen Sie die Kapazität C2 des zusätzlichen Kondensators.
- (b) Im abgestimmten Schwingkreis wird im Widerstand R eine Wärmeleistung P umgesetzt. Wie groß ist R?
- (c) Bestimmen Sie den Scheinwiderstand und den Phasenwinkel für den Schwingkreis aus R, C1 und L bei der Generatorfrequenz f.

(d) Bestimmen Sie für den Schwingkreis in c) die Scheinleistung, Wirkleistung und Blindleistung.

Zahlenwerte: $U_0 = 15 \text{ V}$; f =1 kHz; C1 =90 nF; L =300 mH; P =2.5 W.

8. Wechselspannung

Eine Wechselspannung ist gegegen durch: $U(t) = U_0 \sin(\omega t + \varphi)$ Welche Aussagen sind richtig?

- (a) Der Mittelwert der Spannung ist NULL
- (b) Der Quotient aus Gesamtspannung und Gesamtstrom heißt Scheinwiderstand oder Impedanz $Z = \frac{U_{ges}}{I_{ges}}$
- (c) Effektivwert $U_{eff} = \frac{U_0}{\sqrt{3}}$
- (d) Effektivwert $U_{eff} = \frac{U_0}{\sqrt{2}}$
- (e) Bei einem Widerstand schwingt/wechselt U(t) und I(t) in Phase
- (f) Bei einer Kapazität eilt die Spannung U(t) dem Strom I(t) vorraus
- (g) Bei einer Induktivität eilt die Spannung U(t) dem Strom I(t) vorraus
- (h) Die mittlere Leistung ist immer $\langle P \rangle = U_0 \cdot I_0$
- (i) Impedanz ist der Widerstand gegenüber einer Wechselspannung
- (i) Die Impedanz eines Widerstands ist ωR
- (k) Die Impedanz eines Kondensators ist ωC
- (1) Die Impedanz einer Spule ist ωL
- (m) Spule blockiert hohe Frequenzen, läßt Gleichstrom durch
- (n) Kondensator blockiert hohe Frequenzen, läßt Gleichstrom durch

Virtuelles Rechnen - Aufteilung: ||1a||1b||2||3||4||5||6||7a, b||7c, d||8||

Bitte melden Sie Sich zur Vorleistung an und dann zeitnah zur Klausur. Anmeldung zur Vorleistung endet am 12.07.2016!!!!!

Klausur 1 (Semesterklausur): Samstag 23.07. 13:00 - 15:00 Uhr Gerthsen-HS + eventuell ein weiterer Hörsaal Anmeldung: 18.07.2016 12.00 21.07.2016 23.59

Übungsleiter: Frank Hartmann, IEKP, CN, KIT

Tel.: +41 75411 4362; Mobil - immer Tel.: +49 721 608 23537 - ab und zu Email: Frank.Hartmann@kit.edu

www-ekp.physik.uni-karlsruhe.de/~hartmann/EDYN.htm

Zum Spass: Karussell im Magnetfeld - Induktion und Bezugssysteme

Eine kreisförmige Kunststoffscheibe rotiert mit der Winkelgeschwindigkeit $\omega=10^3 s^{-1}$ in einem homogenen Magnetfeld der Stärke $B=0.5Vs/m^2$ um eine Achse durch den Mittelpunkt der Scheibe. Die Vektoren der Winkelgeschwindigkeit und des Magnetfeldes sind parallel.

- (a) Wie gross ist das elektrische Feld E(r), das ein Beobachter im System der rotierenden Scheibe messen kann?
- (b) Welche Spannung besteht zwischen zwei Punkten auf der Scheibe, die sich bei Radien $r_1 = 2cm$ und $r_2 = 4cm$ befinden?