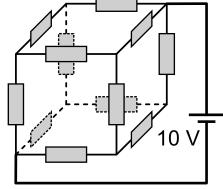
Übungen zur Klassischen Experimentalphysik II SS 2017 Übungsblatt 5 · Besprechung am 31. Mai 2017

http://www.phi.kit.edu/phys2.php

Aufgabe 15: Kupferdraht (4 Punkte)

Ein Kupferdraht mit der Querschnittsfläche A und einem spezifischem Widerstand ρ leitet einen Strom der Stärke I.


- (a) Berechnen Sie das elektrische Feld E und die Spannung U, die in einem Draht der Länge $l=3\,\mathrm{m}$ abfällt.
- (b) Berechnen Sie die Driftgeschwindigkeit v_D der Elektronen im Metall unter der Annahme, dass jedes Kupferatom ein Leitungselektron freisetzt.
- (c) Berechnen Sie die mittlere Streuzeit τ der Elektronen unter der Annahme, dass die Elektronen nach jedem Stoß (im Mittel) v=0 haben und durch das elektrische Feld E beschleunigt werden.
- (d) Berechnen Sie die Beweglichkeit μ , $(v_D = \mu \cdot E)$, der Elektronen im Kupfer. Metallartige ("entartete"), 2-dimensionale Elektronensysteme in speziellen Halbleiterschichtsystemen weisen bei tiefen Temperaturen (T = 1 K) Beweglichkeiten über $\mu = 10^7 \text{ cm}^2/(\text{Vs})$ in der Schichtebene auf. Welche Streuzeit und Driftgeschwindigkeit für die Elektronen ergeben sich dafür bei einem elektrischen Feld wie in a).

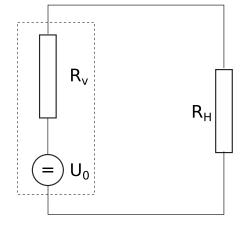
Zahlenwerte: A = 1 mm², spez. Widerstand $\rho = 1, 7 \cdot 10^{-8}\Omega \text{m}$, Stromstärke I = 1,0 A, spez. Dichte $\rho_{Cu} = 8,93$ g/cm³, Molmasse $M_{Cu} = 63,5$ g/Mol

Aufgabe 16: R^3 (3 Punkte)

Die Abbildung zeigt einen Würfel aus Draht. Jede der Kanten hat einen Widerstand von $12\,\Omega$. Zwischen zwei gegenüberliegenden Ecken des Würfels wird eine Spannung von $10\,\mathrm{V}$ angelegt.

- (a) Zeichnen Sie das Schaltbild der Anordnung in 2D. Hinweis: Einige Leitungen müssen sich überkreuzen. Dies wird durch einen kleinen Bogen symbolisiert, den der obere Draht über den unteren macht.
- (b) Wie groß ist der Gesamtstrom zwischen den beiden Anschlusspunkten?
- (c) Welche Ströme fließen jeweils durch die einzelnen Kanten des Würfels?

(d) Auf welchem Potential liegen die Ecken des Würfels (die untere Zuleitung liege auf $0\,\mathrm{V}$ und die obere auf $10\,\mathrm{V}$)?


<u>Hinweis:</u> Überlegen Sie sich anhand der Zeichnung zunächst, welche Größen aus Symmetriegründen in welchen Bereichen des Würfels gleich sein müssen.

Aufgabe 17: Energietransfer (3 Punkte)

Einer idealen Spannungsquelle ist ein Widerstand $R_{\rm v} = 10\,\Omega$ in Serie vorgeschaltet, dadurch erreicht sie ihre maximale Spannung U_0 nur im unbelasteten, d.h. stromlosen Zustand.

Der Widerstand R_H einer elektrischen Heizung soll so gewählt werden, dass die Leistung P der Heizung maximal wird (siehe Skizze).

Berechnen und skizzieren Sie $P(R_H)$ und bestimmen Sie das Maximum.

