Übungen zur Klassischen Experimentalphysik II SS 2017 Übungsblatt 10 · Besprechung am 5. Juli 2017

http://www.phi.kit.edu/phys2.php

Auf- und Ankreuzen

AStA^{KIT}

VS Wahlen vom 3. bis 7. Juli 2017 Studierendenparlament und Fachschaftsvorstände

Aufgabe 32: (2.5 Punkte)

Durch eine Spule fließt bei $\bar{U}=10\,\mathrm{V}$ Gleichspannung ein Strom von $\bar{I}=6,1\,\mathrm{A}$ und bei $\tilde{U}=10\,\mathrm{V}$ Wechselspannung von $50\,\mathrm{Hz}$ ein Strom von $\tilde{I}=1,99\,\mathrm{A}$

- (a) Welchen Wert hat der ohmsche Widerstand R?
- (b) Welchen Wert hat der Scheinwiderstand |Z|?
- (c) Welchen Wert hat die Induktivität L der Spule?

Aufgabe 33: (2.5 Punkte)

Ein Serienschwingkreis, bestehend aus einer Spule mit der Induktivität $L=10\,\mathrm{mH}$, einem ohmschen Wicklungswiderstand $R=0,1\,\mathrm{k}\Omega$ und einem Kondensator der Kapazität $C=0,47\,\mu\mathrm{F}$, wird durch eine angelegte Wechselspannung mit der Amplitude $\tilde{U}_0=3\,\mathrm{V}$ und der Frequenz, bei der der Betrag der Spannungsamplitude am Kondensator maximal wird, zu erzwungenen Schwingungen angeregt.

- (a) Skizzieren Sie den Versuchsafbau.
- (b) Mit welcher Kreisfrequenz schwingt der Schwingkreis?
- (c) Welche mittlere Leistung wird durch den Wicklungswiderstand verbraucht?

Aufgabe 34: (5 Punkte)

Ein Zweipol besteht aus einer Reihenschaltung eines Widerstandes R_1 einer Induktivität L und einer Kapazität C, welche wiederum mit einem Widerstandes R_2 parallelgeschaltet ist.

- (a) Skizzieren Sie den Versuchsafbau.
- (b) Es seien $R_1 = 100 \,\Omega$, $R_2 = 300 \,\Omega$, $L = 100 \,\mathrm{mH}$, $C = 2 \,\mu\mathrm{F}$ und die Frequenz der Schwingung $f = 100 \,\mathrm{Hz}$. Wie groß ist die Impedanz Z = R + jX dieses Zweipols?

- (c) Skizzieren Sie R und X als Funktion der Frequenz f.
- (d) Welchen Wert nimmt Z für f = 0 bzw. $f \to \infty$ an?
- (e) Bei welcher Frequenz ist die Phasenverschiebung zwischen Spannung und Strom null?

Aufgabe 35: ★(4 Bonuspunkte)

Neben der komplexen Impedanz Z führt man auch einen komplexen Leitwert Y := 1/Z ein.

- (a) Stellen Sie eine Formel für den komplexen Leitwert einer Serienschaltung aus einer Induktivität und einem ohmschen Widerstand auf.
- (b) Zeigen Sie: Die Punkte $Y(\omega)[0 \le \omega < \infty]$, also die Spitzen der zu Y gehörenden Zeiger als Funktion von ω , liegen auf einem Halbkreis in der komplexen Ebene. Geben Sie die Parameter dieses Kreises (Radius, Lage des Mittelpunktes an).
- (c) An eine durch einen komplexen Leitwert Y charakterisierte Schaltung wird eine sinusförmige Wechselspannung mit Frequenz ω und Amplitude U_0 angelegt; in komplexer Schreibweise ist also $U(t) = U_0 \cdot e^{i\omega t}$. Die komplexe Scheinleistung $S := \frac{1}{2}U^*(t)YU(t)$ ist zeitlich konstant. Hinweis: Der hochgestellte * steht für die komplex konjugierte Größe. Welche physikalische Bedeutung haben Realteil, Imaginärteil und Betrag von S?
- (d) Wir verallgemeinern: U(t) sei die Summe von n sinusförmiger Signale mit Frequenzen $\omega_k(k=1...n)$. Zeigen Sie: Die analog gebildete Größe S(t) ist jetzt zwar zeitabhängig, ihr zeitlicher Mittelwert ist aber gleich der sich für die einzelnen Frequenzkomponenten ergebenden (zeitunabhängigen) Scheinleistungen.