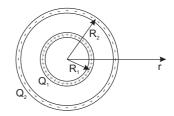
Prof. Dr. M. Wegener / Priv.-Doz. Dr. A. Naber Übungen zur Klassischen Experimentalphysik II (Elektrodynamik), SS 2019

ÜBUNGSAUFGABEN (IV)

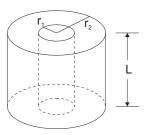
(Besprechung Mittwoch, 29.5.19)


Aufgabe 1: (5 Punkte)

Der im Vorlesungsversuch verwendete Plattenkondensator hat eine Kreisfläche mit Radius $r=12.5\,\mathrm{cm}$. Zwischen den Platten befinde sich nur Luft ($\epsilon_\mathrm{r}\simeq 1$). Bei einem Plattenabstand $d=1\,\mathrm{mm}$ werde der Kondensator mit der Spannung $U=1000\,\mathrm{V}$ aufgeladen.

- a) Berechnen Sie die Kapazität C des Kondensators, seine Ladung Q und die im Kondensator gespeicherte Energie W.
- b) Leiten Sie in allgemeiner Form die Kraft F her, mit der sich die beiden Platten elektrisch anziehen. Berechnen Sie anschließend F für die gegebenen Größen.

Aufgabe 2: (5 Punkte)


Gegeben sei ein Kugelkondensator bestehend aus den konzentrischen Hohlkugeln K_1 mit Radius R_1 und K_2 mit Radius R_2 , beide mit vernachlässigbarer Wandstärke. Bei gegebener Spannung U_0 zwischen K_1 und K_2 haben diese die Ladungen Q_1 und Q_2 , wobei $Q_1 > 0$ angenommen wird.

- a) Berechnen Sie das nur vom radialen Abstand r abhängige Potential $\Phi(r)$ für die Fälle $r < R_1$, $R_1 \le r \le R_2$ und $r > R_2$. Bilden Sie dazu die Summe der Potentiale $\Phi_1(r)$ und $\Phi_2(r)$ der beiden geladenen Hohlkugeln. (Bekannte Ergebnisse aus der Vorlesung oder den Übungen dürfen benutzt werden.)
- b) Bestimmen Sie die Kapazität C des Kugelkondensators für $Q_2 = -Q_1$.
- c) Zeigen Sie, dass gerade dann $Q_2 = -Q_1$ wird, wenn die äußere Hohlkugel bei konstanter Spannung U_0 auf das Potential $\Phi(r=R_2)=0$ gebracht wird (Erdung von K_2). Wie ändert sich das Ladungsverhältnis und die Kapazität, wenn anstatt der äußeren die innere Hohlkugel geerdet wird?

Aufgabe 3: (4 Punkte)

Ein Koaxialkabel der Länge l bestehe aus einem leitenden Vollzylinder mit Radius r_1 und einem hiervon isolierten, koaxial angeordneten Hohlzylinder vernachlässigbarer Wandstärke mit Radius $r_2 > r_1$. Zwischen Innen- und Außenleiter liege die Gleichspannung U an, der Außenleiter sei geerdet. Berechnen Sie die Kapazität C des Kabels pro Längeneinheit L für $l \gg r_2$. Wieso ist es nicht sinnvoll, statt des Außenleiters den Innenleiter zu erden?

Anleitung: Verwenden Sie die 1. Maxwellsche Gleichung für den Grenzfall $l \to \infty$ zur Ableitung des elektrischen Felds \vec{E} .

Zahlenwerte: $r_1 = 0.5 \,\mathrm{mm}, \, r_2 = 2.5 \,\mathrm{mm}, \, L = 1 \,\mathrm{m}.$

Aufgabe 4: (3 Punkte)

Ein Verbraucher soll von einer Gleichspannungsquelle mit einem Strom von $I = 1 \,\mathrm{A}$ über zwei jeweils $10 \,\mathrm{m}$ lange Kupferkabel mit $2 \,\mathrm{mm}$ Duchmesser versorgt werden.

- a) Welche Zeit benötigt ein freier Ladungsträger (Elektron), um von der Spannungsquelle zum Verbraucher zu gelangen?
- b) Welche Klemmspannung muss die Spannungsquelle bei einem Verbraucherwiderstand von $R_{\rm v}=0.5\,\Omega$ liefern?
- c) Welche Spannung muss über einem Transatlantikkabel mit 4000 km Länge und 2 cm Durchmesser anliegen? Ziehen Sie eine Schlussfolgerung im Hinblick auf eine Gleichspannungs- übertragung über große Distanzen.

Zahlenwerte: spezifische Widerstand $\rho_{\rm s}=1.8\cdot 10^{-8}\,\Omega{\rm m}$; Ladungsträgerdichte $n=5\cdot 10^{22}\,{\rm cm}^{-3}$.

Werbung

