Übungen zur Klassischen Experimentalphysik II: Elektrodynamik (SS 2020)

Übungsblatt 4 ⋅ Besprechung am 20.05.2020 ⋅ (A.Ustinov/G.Fischer)

Aufgabe 11: Plattenkondensator (2 Punkte)

Ein Plattenkondensator wird mit Hilfe einer Spannungsquelle aufgeladen. Der anfängliche Plattenabstand d_1 wird nach dem Aufladen auf einen Abstand d_2 vergrößert. Berechnen Sie die damit verbundene Änderung der elektrischen Feldenergie. Betrachten Sie die Abstandsvergrößerung

- (a) bei angeschlossener Spannungsquelle oder
- (b) bei abgeklemmter Spannungsquelle.

Erläutern Sie Ihre Ergebnisse.

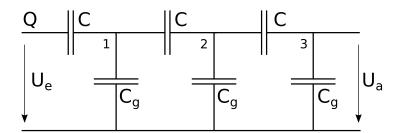
Aufgabe 12: Koaxalkabel (2 Punkte)

Ein Koaxialkabel der Länge L besteht aus einem leitenden Vollzylinder mit Radius r_1 und einem hiervon isolierten, koaxial angeordneten Hohlzylinder mit Radius $r_2 > r_1$. Berechnen Sie die Kapazität pro Längeneinheit C/L. Berechnen Sie hierfür das elektrische Feld im Zwischenraum mittels dem Gaußschen Satz und bestimmen Sie hieraus das zugehörige Potential bzw. die Spannung zwischen den Leitern (es ist $r_1 < r < r_2$ und $L \gg r_2$).

Aufgabe 13: Van-de-Graff-Generator (3 Punkte)

In einem van-de-Graaff-Generator werden Ladungen auf einem umlaufenden Gummi-Band der Breite b und der Geschwindigkeit v_{trans} transportiert. Die Ladungen erzeugen an der Oberfläche des dünnen Transportbandes ein elektrisches Feld $E_{\rm O}$.

- (a) Wie groß ist die Oberflächenladungsdichte auf dem Gummi-Band?
- (b) Mit welcher Stromstärke wird der Generator aufgeladen?
- (c) Die Ladungen sammeln sich auf einer leitenden Kugeloberfläche (Radius R). Wie lange dauert es nach dem Einschalten, bis die Spannung U erreicht wird (keine Ladungsverluste)?
- (d) Die Durchschlagsfestigkeit von trockener Luft beträgt etwa 10⁶ V/m. Sezt man Luft einer höheren elektrischen Feldstärke aus, werden Luftmoleküle ionisiert, die Luft leitet und das elektrische Feld bricht zusammen (Funkenentladung). Welche maximale Ladungsmenge könnte auf der Metallkugel des van-de-Graaff-Generators aufgebracht werden, ohne dass die Luft an der Oberfläche ionisiert wird?


Zahlenwerte: $b = 30 \,\mathrm{cm}$, $v_{\text{trans}} = 15 \,\mathrm{m/s}$, $E_{\mathrm{O}} = 10^3 \,\mathrm{V/cm}$, $R = 1, 5 \,\mathrm{m}$, $U = 3 \cdot 10^5 \,\mathrm{V}$

Aufgabe 14: Plattenkondensator und Dielektrikum (5 Punkte)

Ein rechteckiger Plattenkondensator mit der Höhe $h = 20 \,\mathrm{cm}$ und der Breite $b = 10 \,\mathrm{cm}$ hat einen Plattenabstand $d = 0, 5 \,\mathrm{cm}$. Der Kondensator wird zunächst an Luft betrieben ($\epsilon_r = 1$).

- (a) Welche Energie ist im Kondensator gespeichert, wenn eine Spannung $U = 100 \,\mathrm{V}$ anliegt?
- (b) Der Kondensator wird nun bis zu einer Höhe $H_1 = 4 \,\mathrm{cm}$ vollständig mit einem Dielektrikum (Glas, $\epsilon_r = 7$) gefüllt. Welche Energie steckt jetzt im Kondensator ($U = 100 \,\mathrm{V}$)?
- (c) Der "leere" Kondensator (Q = U = 0) wird nun bis zu einer Tiefe t < h in eine dielektische Flüssigkeit (z.B. Nitrobenzol, $\epsilon_r > 1$) eingetaucht. Sobald eine Spannung an den Kondensator angelegt wird ändert sich der Flüssigkeitspegel im Inneren des Kondensators. In welche Richtung und warum ändert sich der Flüssigkeitspegel?
- (d) Berechnen Sie den "Füllstand" $H_N = t + \Delta H$ im Kondensator als Funktion von h, b, U, ϵ_r sowie der Dichte ρ der Flüssigkeit. Gehen Sie von der Energieänderung im Kondensator aus. Welchen Füllstand erreicht man im Kondensator durch Anlegen einer Spannung von $U = 10 \,\mathrm{kV} \ (\epsilon_r = 36, \, t = 2 \,\mathrm{cm}, \, \rho = 1, 20 \,\mathrm{g/cm^3})$?
- (e) Nach dem Einstellen des Gleichgewichts wird der Kondensator von der Spannungsquelle getrennt. Was passiert?

Aufgabe 15: * Kapazitätsnetzwerk (Zusatzaufgabe ohne Wertung)

An einem Ende eines Kapazitätsnetzwerk (siehe Skizze) wird eine Ladung Q = 1 C deponiert. Die Kapazitäten sind C = 10 F und $C_g = 1$ F. Berechnen Sie die Spannung U_e und U_a . Wie ändern sich die Spannungen, wenn C_g auf 10 F erhöht wird?