
Prof. Dr. M. Wegener / Priv.-Doz. Dr. A. Naber Übungen zur Klassischen Experimentalphysik II (Elektrodynamik), SS 2023

ÜBUNGSAUFGABEN (V)

(Abgabe Montag, 22.5.2023; Besprechung Mittwoch, 24.5.2023)

Aufgabe 1: (4 Punkte)

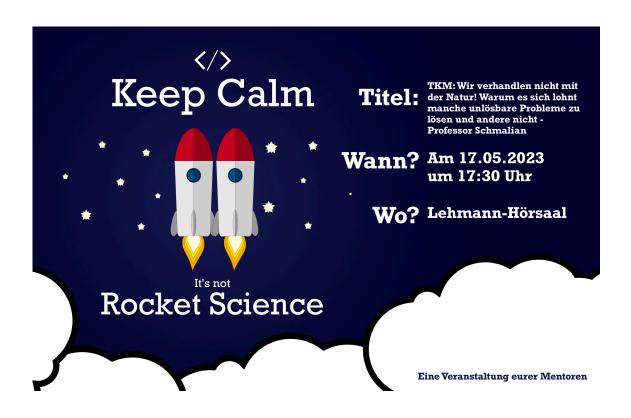
Ein Koaxialkabel der Länge l bestehe aus einem leitenden Vollzylinder mit Radius r_1 und einem hiervon isolierten, koaxial angeordneten Hohlzylinder vernachlässigbarer Wandstärke mit Radius $r_2 > r_1$. Zwischen Innen- und Außenleiter liege die Gleichspannung U an, der Außenleiter sei geerdet. Berechnen Sie die Kapazität C des Kabels pro Längeneinheit L für $l \gg r_2$. Wieso ist es nicht sinnvoll, statt des Außenleiters den Innenleiter zu erden?

Anleitung: Verwenden Sie die 1. Maxwellsche Gleichung für den Grenzfall $l \to \infty$ zur Ableitung des elektrischen Felds \vec{E} . Zahlenwerte: $r_1 = 0.5\,\mathrm{mm},\, r_2 = 2.5\,\mathrm{mm},\, L = 1\,\mathrm{m}.$

Aufgabe 2: (4 Punkte)

Der im Vorlesungsversuch verwendete Kondensator mit kreisförmigen Platten hat den Radius $r=12.5\,\mathrm{cm}$. Zwischen den Platten befinde sich nur Luft ($\epsilon_\mathrm{r}\simeq 1$). Bei einem Plattenabstand $d=1\,\mathrm{mm}$ werde der Kondensator mit der Spannung $U=1000\,\mathrm{V}$ aufgeladen.

- a) Berechnen Sie die Kapazität C des Kondensators, seine Ladung Q und die im Kondensator gespeicherte Energie W.
- b) Leiten Sie in allgemeiner Form die Kraft F her, mit der sich die beiden Platten elektrisch anziehen. Berechnen Sie anschließend F für die gegebenen Größen.


Aufgabe 3: (3 Punkte)

Ein Plattenkondensator der Kapazität $C = \epsilon_0 \epsilon A/d$ wird mit einer Spannungsquelle bei der Spannung U aufgeladen. Der anfängliche Plattenabstand $d = d_1$ wird dann um eine kleine Strecke Δd auf $d_2 = d_1 + \Delta d$ vergrößert.

- a) Vor der Abstandsänderung wurde der Kondensator von der Spannungsquelle abgeklemmt. Berechnen Sie unter dieser Bedingung die Änderung ΔW seiner Feldenergie W.
- b) Die Abstandsänderung geschehe mit angeschlossener Spannungsquelle. Berechnen Sie auch hierfür ΔW .
- c) Für kleine Δd sind die Ergebnisse von (a) und (b) vom Betrage her nahezu gleich, haben aber unterschiedliche Vorzeichen. Erläutern Sie das.

Aufgabe 4: (4 Punkte)

Eine Spannungsquelle der Spannung U_0 lade einen Kondensator der Kapazität C_0 auf. Welche Energie W_0 enthält der Kondensator? Bei angeklemmter Spannungsquelle werde nun ein Dielektrikum mit $\epsilon_r = 10$ eingeführt. Wie groß sind elektrische Feldstärke E, Ladung Q und Energie W nun? Wie groß werden E, Q und W, wenn die Spannungsquelle vor dem Hineinschieben des Dielektrikums abgeklemmt wurde?

