

Optik – WS 18/19

3. Wellenoptik

Stetigkeitsbedingungen an Grenzflächen

Grenzfläche ist ohne freie Ladungen:

 $\operatorname{div} \vec{D} = 0$

Gaußscher Integralsatz:

$$\int \operatorname{div} \vec{D} \, \mathrm{d}V = \oint \vec{D} \cdot \, \mathrm{d}\vec{A} = 0$$

Integration über Zylinderfläche mit $F = \delta A_1 = \delta A_2$ und Höhe δh mit $\delta h \to 0$

$$\oint \vec{D} \cdot d\vec{f} = F \cdot (\vec{D}_1 \cdot \vec{n}_1 + \vec{D}_2 \cdot \vec{n}_2)$$
$$= F \cdot (D_{1,n} - D_{2,n}) \stackrel{!}{=} 0$$
$$\Rightarrow D_{1,n} = D_{2,n} \checkmark$$

Die Fläche *S* umfasse die Grenzfläche *T*. Mit dem Induktionsgesetz und dem Stokesschen Satz folgt:

$$\int_{S} \operatorname{rot} \vec{E} \, \mathrm{d} \vec{S} = \oint \vec{E} \, \mathrm{d} \vec{r} \stackrel{!}{=} - \int_{S} \dot{\vec{B}} \, \mathrm{d} \vec{S}$$

Mit der Annahme, dass \vec{B} in *S* endlich ist, erhält man mit $\delta h \rightarrow 0$

$$(\vec{E}_1 \cdot \vec{t}_1 + \vec{E}_2 \cdot \vec{t}_2) \, l = (E_{1,t} - E_{2,t}) \, l = 0$$

 $\Rightarrow \qquad E_{1,t} = E_{2,t} \quad \checkmark$

3 04.12.2018

Reflexion und Brechung von Licht

 $n = n_i$ $n = n_t$ $\vec{E}_i \qquad \vec{k}_i$ $\vec{B}_i \qquad \vec{E}_r$ $\vec{k}_r \qquad \vec{E}_r$ $\vec{k}_r \qquad \vec{E}_r$

Senkrechter Einfall auf einen Halbraum

- Die Felder haben nur Tangentialkomponenten.
- > Die Vektoren \vec{k}, \vec{E} und \vec{B} bilden Rechtssystem.

Mit Stetigkeitsbedingungen folgt

$$E_t = E_i + E_r$$

und mit
$$\mu = 1$$

 $\mu_0 B_t = \mu_0 B_i - \mu_0 B_r | B = \frac{n}{c_0} E$
 $\Rightarrow E_t = \frac{n_i}{n_t} (E_i - E_r)$
Damit
 $E_i + E_r = \frac{n_i}{n_t} (E_i - E_r)$
 $E_r \left(\frac{n_i}{n_t} + 1\right) = E_i \left(\frac{n_i}{n_t} - 1\right)$
 $\Rightarrow \underbrace{\underbrace{(E_r)}_{E_i} = \frac{n_i - n_t}{n_i + n_t}}_{E_i} \Rightarrow \underbrace{\frac{E_t}{E_i} = \frac{2n_i}{n_i + n_t}}_{E_i}$

Fresnelsche Formeln für senkrechten Lichteinfall

Feld-Reflexionskoeffizient			
$r := \frac{E_r}{E_i} =$	$= \frac{n_i - n_t}{n_i + n_t}$		

Feld-Transmissionskoeffizient			
t :=	$\frac{E_t}{E_i} =$	$\frac{2n_i}{n_i + n_t}$	

Der Koeffizient r kann sowohl positiv als auch negativ sein!

Phasensprung bei Reflexion	$n_t > n_i$	$n_t < n_i$	
E	π	0	
В	0	π	
	Reflexion an optisch dichten Medien	Reflexion an optisch dünnen Medien	

Anmerkung: Es gilt t - r = 1.

5 04.12.2018

Für die Intensität gilt ($\mu = 1$)

$$I = \langle |\vec{S}| \rangle = \frac{1}{\mu_0} \langle |\vec{E} \times \vec{B}| \rangle \qquad | \qquad B = \frac{n}{c_0} E ; \quad c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$
$$= n \sqrt{\frac{\varepsilon_0}{\mu_0}} \langle |\vec{E}|^2 \rangle \qquad \qquad Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} \quad (\text{vgl. Kap. 1})$$

und damit

$$R := \frac{I_r}{I_i} = \frac{n_i E_r^2}{n_i E_i^2} = r^2$$

Intensitäts-Reflexionskoeffizient

$$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)^2$$

 $T := \frac{I_t}{I_i} = \frac{n_t E_t^2}{n_i E_i^2} = t^2 \frac{n_t}{n_i}$

Intensitäts-Transmissionskoeffizient $\frac{4n_in_t}{n_t)^2}$

$$T = \frac{1}{(n_i + n_i)}$$

Aufgrund der Energieerhaltung ist R + T = 1.

Beispiel: Luft-Glas-Grenzfläche $n_i = 1; n_t = 1.5 \rightarrow R = 4\%$ und T = 96%

Schräger Einfall auf einen Halbraum

Die *xy*-Ebene sei Einfallsebene einer ebenen Welle mit Wellenvektor \vec{k}_i .

An der Grenzfläche gilt für die Tangentialkomponente (hier im Koordinatenursprung):

 $E_{\rm yi} e^{-i\omega_i t} + E_{\rm yr} e^{-i\omega_r t} = E_{\rm yt} e^{-i\omega_t t}$

Dieses ist für alle Zeiten t nur erfüllt für

 $\omega_i = \omega_r = \omega_t$

Die an der Lichtbrechung beteiligten Wellen haben dieselbe Frequenz ω .

Beim Übergang zwischen zwei Medien verschiedener Brechzahl ändert sich nur die Wellenzahl k bzw. die Wellenlänge λ .

$$k = \frac{\omega}{c_0} n$$
 bzw. $\lambda = \frac{c_0}{n}$

7 04.12.2018

An allen Punkten der Grenzfläche, x = 0, müssen die Phasen der Wellen übereinstimmen, d.h.

 $\vec{k}_i \, \vec{r} = \vec{k}_r \, \vec{r} = \vec{k}_t \, \vec{r}$

Damit sind die Tangentialkomponenten der Wellenvektoren gleich

$$k_{\mathrm{iy}} = k_{\mathrm{ry}} = k_{\mathrm{ty}}$$

Wir folgern mit

$$\begin{aligned} |\vec{k}_r| &= |\vec{k}_i| &\Rightarrow \\ k_{\rm iy} &= |\vec{k}_i| \sin \vartheta_i \\ k_{\rm ty} &= |\vec{k}_t| \sin \vartheta_t \end{aligned} \Rightarrow$$

x = 0

 $n = n_t$

 $n = n_i$

Brechungsgesetz von Snellius

Das Licht wird im optisch dichteren Medium zum Lot hin gebrochen.

 n_i

 $\vartheta_r = \vartheta_i$

 $\sin \vartheta$

 $\sin \vartheta_t$

Spezialfall: Totalreflexion

Bei Reflexion an optisch dünneren Medien $(n_i > n_t)$ wird das Licht vom Lot weggebrochen, so dass der Winkel ϑ_t der transmittierten Welle 90° erreichen kann.

$$\sin \vartheta_t \, = \, 1 \quad \Rightarrow \quad \sin \vartheta_G \, = \, \frac{n_t}{n_i}$$

mit dem Grenzwinkel $\vartheta_i = \vartheta_G$ der Totalreflexion.

Für $\vartheta_i \geq \vartheta_G$ wird das Licht vollständig reflektiert.

Beispiel: Glas/Luft-Grenzfläche

 $n_i = 1.5; n_t = 1 \rightarrow \vartheta_G = 41.8^{\circ}$

9 04.12.2018

Beispiel

https://www.fotocommunity.de/photo/zaun-mit-totalreflexion-bernd-nies/41041376

Totalreflexion: Anwendungen

Umlenkprisma

Retroreflektor (Katzenauge)

11 04.12.2018

Amplituden und Intensitäten beim schrägen Einfall

Welche Werte haben die Koeffizienten r, t, R und T als Funktion der Brechzahlen n_i und n_t sowie der Winkels ϑ_i und ϑ_t ?

Komplikation: Die Werte hängen von der Richtung des elektrischen Feldes \vec{E} bezüglich der Einfallsebene ab.

Ableitung von r_p für die p – Polarisation

Stetigkeitsbedingung bezogen auf die Parallelkomponenten der *E*-Feldvektoren:

 $E_t \cos \vartheta_t = (E_i + E_r) \cos \vartheta_i$

B-Feldvektoren sind tangential:

$$n_t E_t = n_i \left(E_i - E_r \right)$$

Damit

$$(E_i + E_r) \cos \vartheta_i = \frac{n_i}{n_t} (E_i - E_r) \cos \vartheta_t$$
$$r_p := \frac{E_r}{E_i} = \frac{n_i \cos \vartheta_t - n_t \cos \vartheta_i}{n_i \cos \vartheta_t + n_t \cos \vartheta_i}$$

Achtung: das Vorzeichen ist abhängig von der Definition der Feldvektoren (siehe Abbildung)!

13 04.12.2018

Fresnelsche Formeln für schrägen Lichteinfall

Der Winkel ϑ_t ergibt sich aus dem Brechungsgesetz.

Beispiel: Luft/Glas-Grenzfläche ($n_i = 1; n_t = 1.5$)

Intensitätskoeffizienten der Reflexion und Transmission für schrägen Lichteinfall

$R_{s,p}$	=	$r_{s,p}^2$	
T	_	<i>+</i> ²	$n_t \cos \vartheta_t$
$1_{s,p}$	_	$\iota_{s,p}$	$n_i \cos \vartheta_i$

Querschnittsflächen

einfallender Strahl: $F \cdot \cos \vartheta_i$ gebrochener Strahl: $F \cdot \cos \vartheta_t$

Beispiel: Luft/Glas-Grenzfläche ($n_i = 1; n_t = 1.5$)

04.12.2018

Brewster-Winkel

Bei p –Polarisation verschwindet die Reflexion ($r_p = 0$) für einen bestimmten Einfallswinkel $\vartheta_i = \vartheta_B$, dem Brewster-Winkel. Zusammen mit dem Brechungsgesetz erhält man

 $r_{p} = 0 \qquad \Rightarrow \qquad n_{t} \cos \vartheta_{B} = n_{i} \cos \vartheta_{t}$ $n_{t} \sin \vartheta_{t} = n_{i} \sin \vartheta_{B} \qquad \Rightarrow \qquad n_{t} \cos(90^{\circ} - \vartheta_{t}) = n_{i} \cos(90^{\circ} - \vartheta_{B})$ $\vartheta_{t} = 90^{\circ} - \vartheta_{B} \qquad \Rightarrow \qquad \tan \vartheta_{B} = \frac{n_{t}}{n_{i}}$

Veranschaulichung: Für den Brewster-Winkel gilt $\vec{k}_r \perp \vec{k}_t$!

Die Reflexion wird erzeugt durch die Polarisation des Materials, also von den durch das elektrische Feld induzierten Dipolen \vec{p}_{ind} .

Aber ein Hertzscher Dipol strahlt nicht ab entlang seiner Schwingungsachse!

Anwendung: Brewster-Fenster

Fenster für Gaslaser

https://lp.uni-goettingen.de/get/originalimage/1760

Polarisator (mehrere Fenster in Reihe)

https://commons.wikimedia.org/wiki/ File:Brewster-polarizer.svg

Lichtbrechung in dispersiven Medien

Bislang wurde die Lichtbrechung bei fester Frequenz und konstanten Brechungsindizes betrachtet. Jedoch ist in allen Medien der Brechungsindex eine Funktion der Frequenz.

Normale Dispersion:

Blaues Licht wird in der Regel stärker gebrochen als rotes.

Beispiel: Wasser

Regenbogen und Nebenregenbogen

Kurt Flückinger https://zueriost.ch/unter-dem-regenbogen-zum-sieg/890605

400 nm: *n* = 1.343 700 nm: *n* = 1.330

https://www.spektrum.de/lexikon/ geographie/regenbogen/6501

 $n = n_1$

d

 $n = n_t$

19 04.12.2018

Dielektrische Schichtsysteme

Kann man die Reflexion von Licht an einer Oberfläche durch eine dünne Zwischenschicht abschwächen oder verstärken?

$\lambda/4$ – Antireflexbeschichtung

Idee: Reflexion wird vermindert, wenn die reflektierten Partialwellen ① und ② destruktiv miteinander interferieren aufgrund des zusätzlichen "Hin- und Zurück"-Wegs (→ Phasenunterschied von 180°).

Also für senkrechten Einfall $(n_i < n_1 < n_t)$: Weg

$$\pi + m \cdot 2\pi = 2 \cdot |\vec{k_1}| d = 2 \cdot \frac{2\pi}{\lambda} d \qquad ; \ m = 0, 1, 2, .$$

$$\Rightarrow \qquad d = \frac{\lambda}{4} + m\frac{\lambda}{2}$$

mit Wellenlänge im Material

 $\lambda = \frac{\lambda_0}{n_1}$

 $n = n_i$

(1)

 $(\lambda/4 - \text{Schicht})$

Wie groß muss n_1 gewählt werden, damit Reflexion mimimal wird?

 \rightarrow die Amplituden von (1) und (2) müssen gleich sein:

$$\left|\frac{n_i - n_1}{n_i + n_1}\right|^2 \stackrel{!}{=} \left|\frac{n_1 - n_t}{n_1 + n_t}\right|^2$$

 $(n_i - n_1)(n_1 + n_t) = (n_1 - n_t)(n_i + n_1)$ $n_t + n_i n_t - n_1^2 - n_t = n_t n_1 + n_1^2 - n_i n_t - n_t n_t$

 \Rightarrow $n_1 = \sqrt{n_i n_t}$ $\hat{=}$ geometrisches Mittel

Beispiel: Antireflexbeschichtung Glas/Luft

$$n_i = 1, n_t = 1.5 \implies n_1 = 1.225$$

21 04.12.2018

Schräger Lichteinfall

Für Einfallswinkel $\vartheta_i > 0$ wird bei gleicher Dicke *d* der optische Weg größer und man erhält entsprechend (m = 0; $n_1 > n_i$):

$$d = \frac{\lambda}{4} \cdot \sqrt{1 - \frac{n_i^2}{n_1^2} \sin^2 \vartheta_i}$$

d.h. die Reflexion ist winkelabhängig und wegen Dispersion, also $n = n(\omega)$, auch frequenzabhängig.

Abhilfe: Verwende komplexes Schichtsystem bestehend aus einer Vielzahl dünner Schichten verschiedener Dicken und Brechungsindizes!

$$i \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad t$$

$$n = n_i \qquad n_1 \qquad n_2 \qquad n_3 \qquad n_4 \qquad n = n_t$$

$$\xrightarrow{E_i} \qquad d_1 \qquad d_2 \qquad d_3 \qquad d_4 \qquad \xrightarrow{E_t}$$

$$I \qquad III \qquad III \qquad IV \qquad V$$

Zur Berechnung wird ein effizientes mathematisches Verfahren eingeführt.

Transfermatrixmethode

Stetigkeitsbedingungen für Tangentialkomponenten von \vec{E} und \vec{H}

Mediumimpedanz Z $H = \sqrt{\frac{\varepsilon\varepsilon_{0}}{\mu_{0}}} E = n \cdot \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} E = Z^{-1}E \text{ mit} \qquad Z^{-1} = n\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$ Grenzfläche I : $E_{I} = E_{t,I} + E'_{r,II}$ $H_{I} = H_{t,I} - H'_{r,II} \Rightarrow H_{I} = Z_{1}^{-1} (E_{t,I} - E'_{r,II})$ Grenzfläche II : $E_{II} = E_{i,II} + E_{r,II}$ $H_{II} = H_{i,II} - H_{r,II} \Rightarrow H_{II} = Z_{1}^{-1} (E_{i,II} - E_{r,II})$ Phasenverzögerungen: $E_{i,II} = E_{t,I} e^{-ik_{1}d_{1}}$ mit $k_{1} = n_{1}k_{0} = n_{1}\frac{\omega}{c_{0}}$

Transfermatrix

Berechne E_{I} und H_{I} aus E_{II} und H_{II} :

$$E_{\rm I} = E_{t,\rm I} + E_{r,\rm II} e^{-ik_{\rm I}d_{\rm I}}$$

$$Z_{\rm I}H_{\rm I} = E_{t,\rm I} - E_{r,\rm II} e^{-ik_{\rm I}d_{\rm I}}$$

$$E_{\rm II} = E_{t,\rm I} e^{-ik_{\rm I}d_{\rm I}} + E_{r,\rm II}$$

$$Z_{\rm I}H_{\rm II} = E_{t,\rm I} e^{-ik_{\rm I}d_{\rm I}} - E_{r,\rm II}$$

$$E_{\rm II} - Z_{\rm I}H_{\rm II} = 2E_{t,\rm I} e^{-ik_{\rm I}d_{\rm I}}$$

$$E_{\rm II} + Z_{\rm I}H_{\rm II} = 2E_{t,\rm I} e^{-ik_{\rm I}d_{\rm I}}$$

$$E_{\rm II} - Z_{\rm I}H_{\rm II} = 2E_{t,\rm I} e^{-ik_{\rm I}d_{\rm I}}$$

$$E_{\rm II} - Z_{\rm I}H_{\rm II} = 2E_{r,\rm II} e^{-ik_{\rm I}d_{\rm I}}$$

$$E_{\rm II} - Z_{\rm I}H_{\rm II} = 2E_{r,\rm II} e^{-ik_{\rm I}d_{\rm I}}$$

Dam

$$\begin{pmatrix} E_{\rm I} \\ H_{\rm I} \end{pmatrix} = \widetilde{M}_{\rm I} \cdot \begin{pmatrix} E_{\rm II} \\ H_{\rm II} \end{pmatrix} \qquad \text{mit} \qquad \widetilde{M}_{\rm I}$$

$$\widetilde{M}_{I} = \begin{pmatrix} \cos(k_{1}d_{1}) & iZ_{1}\sin(k_{1}d_{1}) \\ iZ_{1}^{-1}\sin(k_{1}d_{1}) & \cos(k_{1}d_{1}) \end{pmatrix}$$

Charakteristische Matrix (Transfermatrix)

Analog können N Schichten berechnet werden!

$$\begin{pmatrix} E_{\mathrm{I}} \\ H_{\mathrm{I}} \end{pmatrix} = \underbrace{\widetilde{M}_{\mathrm{I}} \cdot \widetilde{M}_{\mathrm{II}} \dots \widetilde{M}_{\mathrm{N}}}_{\widetilde{M}} \cdot \begin{pmatrix} E_{\mathrm{N}+1} \\ H_{\mathrm{N}+1} \end{pmatrix}$$
$$\underbrace{\widetilde{M}}_{\widetilde{M}} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$

04.12.2018 25

Feldkoeffizienten

Nun können r und t leicht bestimmt werden:

$$\begin{pmatrix} E_{i,I} + E_{r,I} \\ Z_i^{-1} (E_{i,I} - E_{r,I}) \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} E_{t,N+1} \\ Z_t^{-1} E_{t,N+1} \end{pmatrix} \qquad \div E_{i,I}$$

$$\Rightarrow \qquad 1 + r = m_{11} t + m_{12} Z_t^{-1} t$$

$$\Rightarrow \qquad Z_i^{-1} (1 - r) = m_{21} t + m_{22} Z_t^{-1} t$$

Feld-Reflexionskoeffizient

$$r = \frac{E_r}{E_i} = \frac{Z_i^{-1} m_{11} + Z_i^{-1} Z_t^{-1} m_{12} - m_{21} - Z_t^{-1} m_{22}}{Z_i^{-1} m_{11} + Z_i^{-1} Z_t^{-1} m_{12} + m_{21} + Z_t^{-1} m_{22}}$$

Feld-Transmissionskoeffizient

$$t = \frac{E_t}{E_i} = \frac{2 Z_i^{-1}}{Z_i^{-1} m_{11} + Z_i^{-1} Z_t^{-1} m_{12} + m_{21} + Z_t^{-1} m_{22}}$$

Beispiel

Luft (a)

un (a)

Glas (g)

 $n_L n_H n_L n_H \dots n_L n_H n_L n_H$

2 *N* alternierende $\lambda/4$ -Schichten

Oder abgekürzt: $g (HL)^N a$

27 04.12.2018

n_L : kleine Brechzahl

 n_H : große Brechzahl

Technisch relevant

H:	Zirkoniumdioxod	n=2.1		
	Titandioxid	n=2.4		
	Zinksulfid	n=2.32		
i .				

L: Magnesiumfluorid n=1.38 Ceriumfluorid n=1.63

Anwendungen

- Spiegel f
 ür Laser
- > Filter

Vielstrahl-Interferenz

Planparallele Platte (in Luft)

Senkrechte Inzidenz:

$$t' = \frac{2 \cdot 1}{1+n}$$
; $t = \frac{2n}{n+1}$
 $r' = \frac{1-n}{1+n}$; $r = \frac{n-1}{n+1}$

Phasenverschiebung in Platte (hin und zurück):

$$\delta = k \cdot 2d = 2nk_0d$$

Berechne transmittiertes Feld

$$E_t = E_i t' e^{i\frac{\delta}{2}} t \left(1 + r^2 e^{i\delta} + (r^2 e^{i\delta})^2 + \ldots\right)$$
$$= E_i e^{i\frac{\delta}{2}} tt' \sum_{m=0}^{\infty} \left(r^2 e^{i\delta}\right)^m$$
$$\left(\sum_{m=0}^{\infty} q^m = \frac{1}{1-q} \text{ geometrische Reihe}\right)$$

$$\Rightarrow \qquad E_t \,=\, E_i \, \mathrm{e}^{i \frac{\delta}{2}} \, t t' \, \frac{1}{1 - r^2 \mathrm{e}^{i \delta}}$$

Berechne Transmission: $\frac{I_t}{I_i} = \left|\frac{E_t}{E_i}\right|^2$; $\frac{E_t}{E_i} = e^{i\frac{\delta}{2}}tt'\frac{1}{1-r^2e^{i\delta}}$

1)
$$tt' + r^2 = 1 \implies |tt'|^2 = (1 - r^2)^2$$

2) $|1 - r^2 e^{i\delta}|^2 = (1 - r^2 e^{i\delta})(1 - r^2 e^{-i\delta})$
 $= 1 - r^2 (e^{i\delta} + e^{-i\delta}) + r^4$
 $= 1 + r^4 - 2r^2 \left(1 - 2\sin^2\frac{\delta}{2}\right)$
 $= (1 - r^2)^2 + 4r^2\sin^2\frac{\delta}{2}$

Airy-Formeln:

$$\frac{I_t}{I_i} = \frac{1}{1 + F \cdot \sin^2 \frac{\delta}{2}} \qquad \frac{I_r}{I_i} = \frac{F \cdot \sin^2 \frac{\delta}{2}}{1 + F \cdot \sin^2 \frac{\delta}{2}}$$

Finesse-Faktor
$$F = \frac{4R}{(1 - R)^2} \quad ; R = |r|^2$$

29 04.12.2018

mit

Interferenzmaxima für $\delta = m \cdot 2\pi$, also

$$nk_0d = m \cdot \pi$$
; $m = 0, 1, 2, \dots$

Beispiele

Seifenblase, d \simeq 1 $\mu m,$ n=1.33 \rightarrow R=0.02 und F=0.083

- ohne Interferenz (gestrichelt)
- mit Interferenz (blau)

Polymerfolie, d $\simeq 10$ µm, n=1.5 \rightarrow R=0.04 und F=0.174

- ohne Interferenz (gestrichelt)
- mit Interferenz (rot)

(konstruktive Interferenz der Partialwellen)

Fabry-Pérot-Interferometer

Kann man die Reflexion erhöhen ohne Vergrößerung der Brechzahl n?

Ja! Bringe dünnen, schwach durchlässigen Spiegel auf die Oberflächen auf. Die Airy-Formeln können ungeändert übernommen werden, da der Finesse-Faktor nur von *R* abhängig ist.

Anwendungen

- > Hochauflösende Spektroskopie
- Filter, Laserresonator

31 04.12.2018

$$\delta\nu = \nu_{\mathrm{m+1}} - \nu_{\mathrm{m}} = \frac{c_0}{2nd}$$

Halbwertsbreite

$$\Delta \nu = \frac{c_0}{2nd} \frac{1-R}{\pi\sqrt{R}}$$

Parameter:

$$d = 1.0 \ \mu m$$

 $n = 1.5$
 $R = 0.04 \rightarrow F = 0.17$
 $R = 0.50 \rightarrow F = 8.00$
 $R = 0.90 \rightarrow F = 360$
 $R = 0.99 \rightarrow F = 39600$

$$F^* = \frac{\delta\nu}{\Delta\nu} = \frac{\pi\sqrt{F}}{2}$$

Begrenzt durch Planparallelität: typ. 30; max. ~1000

Wellenleiter

Notwendige Bedingungen

- Brechzahl des Leiters ist größer Randschichten, $n_H > n_L$.
- Einfallswinkel sind größer als der Grenzwinkel der Totalreflexion, $\vartheta > \vartheta_G$.
- Einkopplung geschieht meist an einer Endfläche.

Fragen

- Ist für alle Winkel $\vartheta > \vartheta_G$ die Lichtleitung möglich (unendlich viele Lösungen)?
- Spielen Interferenzeffekte eine Rolle (vgl. Fabry-Pérot)?
- Wie klein darf die Dicke der n_H -Schicht minimal gewählt werden?
- Wie ist das Intensitätsprofil in der Querschnittsfläche (hier x-Richtung)?
- Dringt das Licht bei der Totalreflexion in die n_L-Schicht ein?

33 04.12.2018

Einschub: Oberflächenwellen

Brechungsgesetz für Totalreflexion (zu Luft, $n_t = 1$):

$$\frac{\sin \vartheta_i}{\sin \vartheta_t} = \frac{1}{n_i} \qquad \Rightarrow \qquad \sin \vartheta_t = n_i \sin \vartheta_i \ge 1$$
$$\Rightarrow \qquad \cos \vartheta_t = i \sqrt{n_i^2 \sin^2 \vartheta_i - 1}$$

reelle Zahl
$$> 0$$

Komponenten des Wellenvektors \vec{k}_t :

$$k_{ty} = k_0 \sin \vartheta_t = k_0 n_i \sin \vartheta_i$$

$$k_{tx} = k_0 \cos \vartheta_t = k_0 i \sqrt{n_i^2 \sin^2 \vartheta_i - 1}$$

Setze ein in Phase von \vec{E}_t :

$$\vec{k}_t \cdot \vec{r} = k_{tx} x + k_{ty} y = i \sqrt{n_i^2 \sin^2 \vartheta_i - 1} \cdot k_0 x + n_i \sin \vartheta_i \cdot k_0 y$$

Die elektrische Feldstärke \vec{E}_t ist dann eine evaneszente Welle

$$\vec{E}_t = \vec{E}_{t0} \cdot e^{i(\vec{k}_t \vec{r} - \omega t)} = \vec{E}_{t0} \cdot e^{-i\omega t} \cdot \underbrace{e^{ik_{ty} y}}_{\text{Propagation in y-Richtung}} \cdot \underbrace{e^{-\frac{x}{d}}}_{\text{Abklingen in x-Richtung}}$$

mit Propagation entlang der Grenzfläche mit

 $k_{ty} = \frac{2\pi}{\lambda_t}$; $\lambda_t = \frac{\lambda_0}{n_i \sin \vartheta_i}$

sowie exponentiellem Abfall in x-Richtung mit

$$d = \frac{\lambda_0}{2\pi\sqrt{n_i^2 \sin^2 \vartheta_i - 1}}$$

35 04.12.2018

Typisch:

- $n_H = 1.4616; n_L = 1.4571$
- Core $\emptyset = 5 \,\mu m$
- Mantel Ø = 125 μm

Planarer symmetrischer Wellenleiter

37 04.12.2018

Wir betrachten hier nur die TE-Polarisation:

Wellengleichung

$$\Delta E_y - \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2} = 0 \qquad \Big| \qquad c = \frac{c_0}{n(x)} ; \quad \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Ansatz

Folgerungen

- Der Betrag des Wellenvektors ist $k = n\omega/c_0$. Für dessen Komponente senkrecht zur Schicht gilt somit $k_x^2 = k^2 k_z^2 = \gamma^2$. •
- Wir erwarten für eine geführte Welle

 - innerhalb der n_H -Schicht eine Propagation mit reellem γ , also $\gamma^2 = \gamma_H^2 > 0$. außerhalb der n_H -Schicht evaneszente Felder (imaginäres γ), also $\gamma^2 = \gamma_L^2 < 0$.

1. Teillösung: $\gamma^2 = \gamma_H^2 > 0$ für $n = n_H$, also $-d \le x \le d$

$$\frac{\partial^2 E_y}{\partial x^2} + \gamma_H^2 \tilde{E}_y = 0 \qquad \text{Ansatz:} \quad \tilde{E}_y(x) = A \sin(\gamma_H x) + B \cos(\gamma_H x)$$

2. und 3. Teillösung: $\gamma^2 = -\gamma_L^2 < 0$ für $n = n_L$, für $x \le -d$ und $d \le x$

$$\frac{\partial^2 E_y}{\partial x^2} - \gamma_L^2 \tilde{E}_y = 0 \qquad \text{Ansatz:} \quad \tilde{E}_y(x) = C e^{-\gamma_L x} + D e^{+\gamma_L x}$$

Forderungen:

- a) Die Felder der 2. und 3. Teillösung verschwinden für $x \to -\infty$ bzw. $x \to +\infty$.
- b) Die Teillösungen gehen bei $x = \pm d$ stetig ineinander über.
- c) Die Ableitungen der Teillösungen gehen bei $x = \pm d$ stetig ineinander über.
- d) Das Intensitätsprofil $I_y(x) \sim |\tilde{E}_y|^2$ ist wegen der Symmetrie der Schichtenanordung achsensymmetrisch.

39 04.12.2018

Wegen (d) gibt es symmetrische Lösungen, $\tilde{E}_y(x) = \tilde{E}_y(-x)$, und antisymmetrische Lösungen, $\tilde{E}_y(x) = -\tilde{E}_y(-x)$. Wir betrachten hier <u>nur die symmetrischen Lösungen</u>, also

A = 0

Dann gilt mit (a) für die Teillösungen 2 und 3

 $\tilde{E}_{u}(x) = C e^{-\gamma_{L} |x|}$

und folglich aufgrund (b) und (c)

$$B \cos(\gamma_H d) = C e^{-\gamma_L d}$$

$$-\gamma_H B \sin(\gamma_H d) = -\gamma_L C e^{-\gamma_L d}$$

$$\Rightarrow \qquad \gamma_H \tan(\gamma_H d) = \gamma_L$$

Mit den Definitionen von γ_H^2 und γ_L^2 gilt zudem

$$n_{H}^{2} \frac{\omega^{2}}{c_{0}^{2}} - k_{z}^{2} = +\gamma_{H}^{2} \\ n_{L}^{2} \frac{\omega^{2}}{c_{0}^{2}} - k_{z}^{2} = -\gamma_{L}^{2}$$
 \Rightarrow $\gamma_{L} = \sqrt{\frac{\omega^{2}}{c_{0}^{2}} (n_{H}^{2} - n_{L}^{2}) - \gamma_{H}^{2}}$

Durch Eliminierung von γ_L erhalten wir eine Bestimmungsgleichung für γ_H :

$$\tan(\gamma_H d) = \sqrt{\frac{\frac{\omega^2}{c_0^2} (n_H^2 - n_L^2) d^2}{(\gamma_H d)^2}} - 1$$

Lösung für γ_H entweder graphisch oder numerisch möglich.

Modenprofile - Beispiel

Werte

 $n_H = 1.50; n_L = 1.49; d = 5 \ \mu\text{m}; \lambda_0 = 500 \ \text{nm}$

Modenprofile - Beispiel

Werte

$$n_H = 1.50; n_L = 1.49; d = 0.5 \ \mu\text{m}; \lambda_0 = 500 \ \text{nm}$$

43 04.12.2018

Glasfasern : Dämpfung und "Cut-off" - Wellenlänge

effective Cut-off LP₁₁ n_{clad}

V-number

G.P. Agrawal, Fiber-Optic Communication Systems, J. Wiley & Sons, 2002.

Normalisierte Frequenz (oder V-Zahl) und Numerische Apertur (NA)

 $V = \frac{2\pi r}{\lambda} NA$; $NA = \sin \varphi = \sqrt{n_H^2 - n_L^2}$

mit Kernradius r und Einkoppelwinkel φ .

Newport, Photonics Technical Note #21, Fiber Optics

Optisch anisotrope Materialien (vgl. Kap. 2)

- Rückstellkraft beim Lorentz-Oszillator hängt von der Schwingungsrichtung ab.
- > Schwingungsrichtung der Oszillatoren ist in der Regel nicht mehr parallel zu \vec{E} .
- Suszeptibilität und Brechzahl n sind von Polarisation und Ausbreitungsrichtung k der Welle abhängig, so dass

$D_{y} \bigoplus_{x} D_{x}$

Wir verallgemeinern daher

mit Suszeptibilitätstensor

	Xxx	χ_{xy}	Xxz
=	χ_{yx}	χ_{yy}	$\chi_{ m yz}$
	χ_{zx}	$\chi_{ m zy}$	χ_{zz}

 $\tilde{\chi}$

45 04.12.2018

Doppelbrechung

Es ist

 $\vec{D} \,=\, \varepsilon_0 \vec{E} + \vec{P} \,=\, \varepsilon_0 \tilde{\varepsilon} \vec{E}$

In anisotropen Materialien ist wegen $n = \sqrt{\varepsilon}$ auch der Brechungsindex von der Richtung im Medium abhängt und somit ebenfalls ein Tensor:

$$\tilde{n} = \begin{pmatrix} n_{\mathrm{xx}} & n_{\mathrm{xy}} & n_{\mathrm{xz}} \\ n_{\mathrm{yx}} & n_{\mathrm{yy}} & n_{\mathrm{yz}} \\ n_{\mathrm{zx}} & n_{\mathrm{zy}} & n_{\mathrm{zz}} \end{pmatrix}$$

Die Koeffizienten des Tensors hängen ab vom gewählten Koordinatensystem. Wird dieses entlang der Symmetrieachsen des Mediums ausgerichtet, findet man in vielen Fällen (reeller, symmetrischer Tensor)

 $\tilde{n} = \begin{pmatrix} n_1 & 0 & 0 \\ 0 & n_2 & 0 \\ 0 & 0 & n_3 \end{pmatrix}$

mit Brechungsindizes n_1 , n_2 und n_3 entlang der "optischen Hauptachsen".

Ein Material mit $n_1 = n_2 \neq n_3$ heißt "optisch einachsig".

Der allgemeine Fall $n_1 \neq n_2 \neq n_3$ heißt "optisch zweiachsig".

Wie verhalten sich der Wellenvektor \vec{k} und der Poynting-Vektor \vec{S} ?

Mit

 $\operatorname{div} \vec{D} = 0 \qquad ; \quad \vec{D} = \vec{D}_0 e^{i(\vec{k}\vec{r} - \omega t)}$

folgt sofort

$$ec{k}\cdotec{D}\,=\,0 \quad \Rightarrow \quad ec{D}\,\perp\,ec{k} \quad \Rightarrow \quad ec{E}\,
ot \perp\,ec{k} \quad !$$

Entsprechend

 $\operatorname{div} \vec{B} \,=\, 0 \qquad ; \quad \vec{B} \,=\, \vec{B}_0 \, \mathrm{e}^{i (\vec{k} \vec{r} - \omega t)}$

 $\vec{k} \cdot \vec{B} = 0 \implies \vec{k} \perp \vec{B} ; \vec{k} \perp \vec{H}$ (wegen $\vec{B} = \mu_0 \vec{H}$)

Weiter gilt

 $\vec{S} = \vec{E} \times \vec{H} \quad \Rightarrow \qquad \vec{k} \not\parallel \vec{S} \qquad \Rightarrow \qquad \vec{S} \perp \vec{E}$

d.h. der Wellenvektor \vec{k} kann nicht mehr als Strahlrichtung interpretiert werden.

In anisotropen Kristallen sind im Allgemeinen Ausbreitungsrichtung der Lichtwelle und Energieflussrichtung voneinander verschieden.

47 04.12.2018

Wie wird die Phasengeschwindigkeit $\vec{c} \parallel \vec{k}$ (und damit *n*) für eine gegebene Richtung von \vec{D} bestimmt?

Die Energiedichte ist im Hauptachsensystem gegeben durch

$$w = \langle \vec{E} \cdot \vec{D} \rangle = \frac{1}{\varepsilon_0} \left(\frac{D_x^2}{n_1^2} + \frac{D_y^2}{n_2^2} + \frac{D_x^2}{n_3^2} \right)$$

d.h. die Fläche konstanter Energiedichte ist ein Ellipsoid mit den Halbachsen n_1 , n_2 und n_3 .

Das Indexellipsoid ist definiert als

 $\frac{n_x^2}{n_1^2} + \frac{n_y^2}{n_2^2} + \frac{n_z^2}{n_3^2} = 1$

D R R R (Demtröder)

Der Vektor $\vec{n}_s = \{n_{xs}, n_{ys}, n_{zs}\}$ ist sein Schnittpunkt mit \vec{D} . Der Betrag von \vec{n}_s legt die Phasengeschwindigkeit fest, $c = c_0/n_s$.

Für eine gegebene Richtung von \vec{k} hängt n von der Polarisationsrichtung ab. Ergeben alle Polarisationen für ein \vec{k} denselben Index $n = n_o$, heißt diese Richtung "optische Achse".

Beispiel

Kalkspat (CaCO₃) ist ein optisch einachsiger Kristall mit einer ausgezeichneten kristallographischen Achse, die \vec{c} - Achse.

 $ec{E} \perp ec{c}$: $n_{\perp} = n_o$ ordentliche Polarisation $ec{E} \parallel ec{c}$: $n_{\parallel} = n_a$ außerordentliche Pol.

Für Na-D-Linie ($\lambda = 589 \text{ nm}$):

 $n_{\perp} = 1.658$ 'langsame Achse' $n_{\parallel} = 1.489$ 'schnelle Achse'

49 04.12.2018

Polarisation durch Doppelbrechung

Wir betrachten die Brechung des Lichts an einem doppelbrechenden Kristall für den Spezialfall, dass die Hauptachse \vec{c} in der Einfallsebene liegt und um ϑ gegenüber der Eintrittsfläche geneigt ist.

Einfach: Der Strahl verhält sich wie bei isotropen Medien, da immer $\vec{E}_i \perp \vec{c} \rightarrow$ ordentlicher Strahl.

Komplizierter: \vec{E}_i hat Komponenten sowohl parallel als auch senkrecht zu \vec{c} .

Folgerungen aus Diskussion:

1) Die Normalkomponente von \vec{D} ist stetig. Da diese bei senkrechter Inzidenz Null ist, ist sie auch im Medium Null.

Die Richtung von \vec{D} ändert sich nicht beim Übergang ins Medium.

2) Vor und im Medium gilt $\vec{k} \perp \vec{D}$.

Die Richtung von \vec{k} ändert sich nicht beim Übergang ins Medium.

3) Im Allgemeinen sind \vec{E} und \vec{S} nicht senkrecht zu \vec{k} .

Die Richtungen von \vec{E} und \vec{S} ändern sich beim Übergang ins Medium.

51 04.12.2018

Schematisch: außerordentlicher Strahl

(z.B. Maxima für $\vec{k}\vec{r} - \omega t_0 = \text{const zur Zeit } t = t_0$)

c) Beliebige Polarisation von \vec{E}_i

Ein beliebig polarisierter Strahl wird in zwei orthogonale Komponeneten zerlegt, von denen eine immer senkrecht zur Hauptachse \vec{c} gewählt werden kann. Dieser Teilstrahl verhält sich bei der Brechung wie in einem isotropen Material (ordentlicher Strahl). Die andere Komponente hat Beiträge sowohl senkrecht als auch parallel zu \vec{c} und bildet den außerordentlichen Strahl.

53 04.12.2018

Isofrequenzkurve

Bestimme Brechwinkel für \vec{k} und \vec{S} (ordentlicher und außerordentlicher Strahl).

Prinzip: Bei der Brechung bleibt die Tangentialkomponente k_y von \vec{k} und die Frequenz ω (bzw. $k_0 = \omega/c_0$) erhalten. Zeichne k_0 für alle Winkel (Isofrequenzkurve) und bestimme Schnittpunkt mit k_y .

Ordentlicher Strahl

Wegen $\vec{k} \cdot \vec{D} = 0$ erhält man

$$k_0^2 = \frac{k_{\parallel}^2}{n_{\perp}^2} + \frac{k_{\perp}^2}{n_{\parallel}^2}$$

worin k_{\parallel} und k_{\perp} die gesuchten Komponenten parallel und senkrecht zur Achse \vec{c} darstellen.

Außerordentlicher Strahl

Man kann zeigen, dass das elektrische Feld in Richtung der Tangente an der Isofrequenzkurve im Schnittpunkt zeigt. Damit ist die Richtung des Poynting-Vektors \vec{S} senkrecht zur Tangente.

Doppelbrechende Polarisatoren

Glan-Thompson-Polarisator

Material: negativ optisch einachsiger Kristall

Nicolsches Prisma

Material : CaCO₃

Prinzip: Das Prisma wird schräg geschnitten und mit einem Kleber (oder bei sehr dünnem Luftspalt) wieder zusammengefügt. Dessen Brechungsindex wird so gewählt, dass für den ordentlichen Strahl Totalreflexion auftritt, der außerordentliche Strahl aber (teilweise) hindurchtreten kann.

Im Ergebnis ist der transmittierte Strahl vollständig polarisiert. Ein Vorteil des GT-Polarisators ist, dass er keinen Strahlversatz erzeugt.

55 04.12.2018

Verzögerungsplättchen

Die \vec{c} - Achse liegt in der Ebene des Plättchens.

Für die Polarisationen

$$\vec{E} = \begin{pmatrix} E \\ 0 \\ 0 \end{pmatrix}$$
 und $\vec{E} = \begin{pmatrix} 0 \\ E \\ 0 \end{pmatrix}$

ändert sich offenbar nichts im Vergleich zu isotropen Materialien.

Interessant ist dagegen

$$\vec{E} = \frac{E_0}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} \mathrm{e}^{i(k_0 z - \omega t)}$$

vor Eintritt in das Plättchen.

z.B. aus Glimmer (Schichtsilikat)

Wir definieren

- z = 0: Frontseite des Plättchens
- z = d: Hinterseite des Plättchens

(Reflexionen werden im Folgenden vernachlässigt.)

Dann wird

$$\vec{E}(z=d) = \frac{E_0}{\sqrt{2}} \begin{pmatrix} e^{i n_{\parallel} k_0 d} \\ e^{i n_{\perp} k_0 d} \\ 0 \end{pmatrix} e^{-i\omega t} = \frac{E_0}{\sqrt{2}} e^{i n_{\parallel} k_0 d} \begin{pmatrix} 1 \\ e^{i (n_{\perp} - n_{\parallel}) k_0 d} \\ 0 \end{pmatrix} e^{-i\omega t}$$

also

$$\vec{E}(z=d) = \frac{E_0}{\sqrt{2}} e^{i n_{\parallel} k_0 d} \begin{pmatrix} 1\\ e^{i\varphi}\\ 0 \end{pmatrix} e^{-i\omega t} \qquad ; \quad \varphi = (n_{\perp} - n_{\parallel}) k_0 d$$

Nach Austritt der Welle aus dem Plättchen hat sich die Phase der *x*-Komponente gegenüber der *y*-Komponente um φ verschoben.

57 04.12.2018

Anwendungen

a) Halbwellenplättchen, $\varphi = \pi \cong 180^{\circ}$

Hinter dem Plättchen ist die lineare Polarisation um 90° gedreht!

b) Viertelwellenplättchen, $\varphi = \pm \frac{\pi}{2} \cong \pm 90^{\circ}$

z.B.
$$\varphi = +\frac{\pi}{2}$$
: $e^{i\frac{\pi}{2}} = \sin\frac{\pi}{2} + i\cos\frac{\pi}{2} = +i$
 $\vec{E}(d) = \frac{E_0}{\sqrt{2}} \begin{pmatrix} 1\\i\\0 \end{pmatrix} e^{i(n_\perp k_0 d - \omega t)} \Rightarrow \Re(\vec{E}(d)) = \frac{E_0}{\sqrt{2}} \begin{pmatrix} +\cos(n_\perp k_0 d - \omega t)\\ -\sin(n_\perp k_0 d - \omega t)\\0 \end{pmatrix}$

\rightarrow zirkulare Polarisation

An einem festen Ort hinter dem Plättchen dreht sich der \vec{E} -Vektor bei fester Amplitude mit konstanter Winkelfrequenz.

59 04.12.2018

Zirkulare Polarisation

Eine Welle hat eine zirkulare Polarisation, wenn bei Propagation in *z*-Richtung die Komponenten E_x und E_y des elektrischen Feldes \vec{E} immer gleiche Beträge haben, aber ihre Phasen um +90° oder -90° gegeneinander verschoben sind.

$$\frac{E_y}{E_x} = i$$
 : linkszirkular (σ^+) $\frac{E_y}{E_x} = -i$: rechtszirkular (σ^-)

Rechte-Hand-Regel: Zeigt der Daumen entgegen der Propagationsrichtung, dann zeigen die Finger den Umlaufsinn einer rechtszirkularen Welle an.

Optische Aktivität

Die Polarisationsrichtung von linear polarisiertem Licht wird bei Durchgang durch ein "optisch aktives" Medium um einen Winkel α gedreht, der abhängig vom Drehvermögen α_s des Mediums mit der Dicke d zunimmt: $\alpha = \alpha_s d$.

Auftreten in

- Festkörpern mit chiraler Symmetrie (z. B. Quarz),
- Lösungen chiraler Moleküle (Zucker, DNA, Proteine).

Modell

Linear polarisiertes Licht kann stets in zwei entgegengesetzt zirkular polarisierte Wellen zerlegt werden:

$$\vec{E} = E_0 \begin{pmatrix} 1\\0 \end{pmatrix} e^{i(kz-\omega t)} = \underbrace{\frac{E_0}{2} \begin{pmatrix} 1\\i \end{pmatrix} e^{i(kz-\omega t)}}_{\vec{E}^+} + \underbrace{\frac{E_0}{2} \begin{pmatrix} 1\\-i \end{pmatrix} e^{i(kz-\omega t)}}_{\vec{E}^-}$$

Im optisch aktiven Medium haben \vec{E}^+ und \vec{E}^- verschiedene Brechzahlen n^+ und n^- und drehen die Polarisationsebene um

$$\alpha = \frac{\pi}{\lambda_0} \left(n^- - n^+ \right) \cdot d$$

04.12.2018

Beweis

Nach Durchgang durch das Medium mit Dicke d ist der Phasenunterschied der Wellen \vec{E}^+ und \vec{E}^-

$$\varphi = (n^+ - n^-) k_0 d$$

also

$$\vec{E} = \frac{E_0}{2} e^{i(kz-\omega t)} \left[\begin{pmatrix} 1\\i \end{pmatrix} e^{i\frac{\varphi}{2}} + \begin{pmatrix} 1\\-i \end{pmatrix} e^{-i\frac{\varphi}{2}} \right]$$
$$= E_0 e^{i(kz-\omega t)} \begin{pmatrix} +\cos\frac{\varphi}{2}\\ -\sin\frac{\varphi}{2} \end{pmatrix}$$

Wegen

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$$

entspricht das gerade einer Drehung um $\alpha = -\frac{\varphi}{2}$.

$$\alpha = -\frac{k_0 d}{2} \left(n^+ - n^- \right) = \frac{\pi}{\lambda_0} \left(n^- - n^+ \right) \cdot d$$

Optische Aktivität: Anwendung

Bestimmung der Konzentration von Zuckerlösungen

04.12.2018

Polarisatoren

https://commons.wikimedia.org/wiki/ File:Brewster-polarizer.svg

Doppelbrechende Polarisatoren

Nicolsches Prisma

Glan-Thompson-Polarisator

Prinzip: Das Prisma wird schräg geschnitten und mit einem Kleber (oder bei sehr dünnem Luftspalt) wieder zusammengefügt. Dessen Brechungsindex wird so gewählt, dass für den ordentlichen Strahl Totalreflexion auftritt, der außerordentliche Strahl aber (teilweise) hindurchtreten kann.

Im Ergebnis ist der transmittierte Strahl vollständig polarisiert. Ein Vorteil des GT-Polarisators ist, dass er keinen Strahlversatz erzeugt.

65 04.12.2018

Dichroitische Polarisatoren

Bei dichroitischen Kristallen oder Folien ist die Lichtabsorption polarisationsabhängig.

Nachteil

Auch die gewünschte Polarisationskomponente wird geschwächt. Hohe Intensitäten führen zu thermischen Schäden des Polarisators.

Dichroitische Polarisatoren

Ein Polaroid-Filter entspricht in seiner Funktionsweise einem Drahtgitter-Polarisator für langwellige EM-Wellen. Es besteht aus Iod-dotierten (Leitfähigkeit!) Polyvinylalkohol-Ketten (PVA), die durch Streckung eines Films orientiert werden. Licht, das parallel zu den PVA-Ketten polarisiert ist, wird absorbiert.

04.12.2018

Anwendung: Regelung der Lichtintensität

Das erste Polarisationsfilter erzeugt aus unpolarisiertem Licht linear polarisiertes Licht mit Feldstärke E_0 .

Hinter dem zweiten Filter ist dann

 $E(\vartheta) = E_0 \cos \vartheta$

Für die Intensität gilt das Gesetz von Malus:

$$I(\vartheta) = I_0 \cos^2 \vartheta$$

Anwendung: Flüssigkristallanzeige

Abhängig von Temperatur, Randbedingungen an der Oberfläche und einer angelegten Spannung ändern Flüssigkristalle ihre Symmetrie (→ Doppelbrechung, optische Aktivität).

- Spannung aus : Die Oberflächen richten die stäbchenförmigen Moleküle aus.
- Spannung an : Die Stäbchen drehen sich in die Richtung des angelegten Feldes.

Schadt-Helfrich Zelle (1970)

http://de.wikipedia.org/wiki/Schadt-Helfrich-Zelle

04.12.2018

Beugung von Licht

Das Fresnel-Huygenssche Prinzip

Zu einer gegebenen Zeit ist jeder Punkt einer Wellenfront Ausgangspunkt einer sekundären Elementarwelle (≘ Kugelwelle) derselben Frequenz wie die der primären Welle. Die neue Lage der Wellenfront ergibt sich durch Überlagerung all dieser Elementarwellen.

Huygens (1678); Fresnel (1816)

Welche Konsequenzen hat dieses Prinzip für die notwendigen Eigenschaften der Elementarwellen, wenn es mit den Maxwellschen Gleichungen in Einklang gebracht wird?

Fresnelsche Zonen

Von L gehe eine Kugelwelle aus. Die Wellenfront habe den Abstand R von L.

Wie groß ist dann das Feld *E* im Punkt P, wenn über alle Elementarwellen der Wellenfront summiert wird?

Beitrag von Flächenelement dS ist

$$\mathrm{d}E = E_0 \,\frac{\mathrm{e}^{ikR}}{R} \cdot A(\theta) \,\frac{\mathrm{e}^{ikr}}{r} \,\mathrm{d}S$$

mit der Amplitude $A(\theta)$ und Beugungswinkel θ .

Auf der Wellenfront werden Fresnelzonen Z_m definiert durch Kugelflächen um P mit Radien

$$r_m = r_0 + m \cdot \frac{\lambda}{2} \quad ; \quad m \in \mathbb{N}$$

Zu jedem Punkt Q_i einer Fresnelzone gibt es einen Punkt Q_k in der benachbarten Zone, dessen Entfernung zu *P* sich um genau $\lambda/2$ unterscheidet.

Die Beiträge ihrer Elementarwellen sind nur wenig verschieden, so dass sie sich durch Interferenz größtenteils auslöschen (vgl. *Demtröder* oder *Born & Wolf: Principles of Optics*).

71 04.12.2018

Gesamtfeld E in P

Das Ergebnis der Summation aller Beiträge der Fresnelzonen Z_m der Wellenfront ist, dass die Gesamtamplitude E(P) im Punkt P gerade die Hälfte vom Beitrag E_1 der Fresnelzone Z_1 wird.

$$E(P) = \frac{1}{2}E_1$$

$$E_1 = 2iA_1\lambda \frac{E_0 e^{ik(R+r_0)}}{R+r_0}$$

so dass folgt $A_1 = -i/\lambda$ (wegen notwendiger Übereinstimmung mit "direkter" Kugelwelle).

Interpretation: Die Elementarwellen schwingen mit 90° Phasenverschiebung zur primären Welle (ohne physikalische Begründung!).

Den allgemeinen Ausdruck für die Amplitude der Elementarwelle als Funktion des Winkels erhält man erst mit der Theorie von Kirchhoff (1882),

$$A(\theta) = -\frac{i}{2\lambda} \left(1 + \cos\theta\right)$$

Ausblendung Fresnelscher Zonen

Fall a) Eine Blende erlaube nur den Durchtritt der ersten Fresnelzone Z_1 . Allein diese kann damit zum *E*-Feld in *P* beitragen.

Dann wird die Amplitude in P doppelt so groß wie im Fall ohne Blende!

 $E(P) = E_1$

Die Blende verhindert die destruktive Interferenz von Z_1 mit Beiträgen höherer Fresnelzonen.

Fall b) Eine Scheibe verhindere allein den Durchtritt der ersten Fresnelzone Z_1 . Nur die Zonen m > 1 können zum *E*-Feld in *P* beitragen.

Dann wird der Betrag der Amplitude in P genauso so groß wie im Fall ohne Scheibe.

$$E(P) = \frac{1}{2}E_1$$

73 04.12.2018

Poissonscher Fleck

Fresnelbeugung an ...

(für zwei verschiedene Entfernungen)

(Demtröder)

Babinetsches Prinzip

Im Punkt P sei

- E(σ₁) das Feld für eine Blende σ₁
 E(σ₂) das Feld für eine zu σ₁ komplementäre Blende σ₂
 E₀ das Feld ohne Blende

Dann gilt

 $E(\sigma_1) + E(\sigma_2) = E_0$

75 04.12.2018

Fresnelbeugung an Kante

(Demtröder)

Fresnelsche Zonenplatte

Durch Ausblenden höherer Fresnelzonen kann man die Intensität weiter steigern. Blendet man jede zweite Fresnelzone aus (z.B. alle mit geradem m), dann haben alle Beiträge zum *E*-Feld in *P* das gleiche Vorzeichen und interferieren konstruktiv.

Bei Beleuchtung mit parallelem Licht der Wellenlänge λ ist die Brennweite f der Zonenplatte gegeben durch den Radius ρ_1 der zentralen Öffnung (oder Scheibe),

$$f = \frac{\rho_1^2}{\lambda}$$

Anwendung: "Fokussierung" von Röntgenstrahlung oder Materiewellen (z.B. Atomen).

77 04.12.2018

Kirchhoff-Fresnel Beugungsintegral

Randbedingungen (Näherungen):

Im Spalt: $E = E^{(i)}$; $\frac{\partial E}{\partial s} = \frac{\partial E^{(i)}}{\partial s}$ An Blende: E = 0; $\frac{\partial E}{\partial s} = 0$ $E_P(x', y') = \iint_{\sigma} E_S(x, y) A(\theta) \frac{e^{-ikr}}{r} dx dy$ Für den Integralwert ist die rasche Änderung der Phase kr mit r maßgeblich. Die amplitudenabhängigen Änderungen sind vergleichsweise klein. Mit den mittleren Größen x_0, y_0, r_0 und θ_0 nähert man das Integral zu (etwas vereinfacht)

$$E_P(x',y') \cong \frac{A(\theta_0) E_S(x_0,y_0)}{r_0} \iint_{\sigma} e^{-ik r(x,y)} dx dy$$

Die Funktion r(x, y) wird in lineare und quadratische Glieder in x und y zerlegt (Taylorentwicklung). Die quadratischen Glieder bestimmen die Krümmung der Phasenfronten.

- Für kleine *r* ist die Krümmung groß und viele Fresnelzonen liegen in der Apertur *σ* → Fresnelbeugung
- Für große *r* ist die Krümmung vernachlässigbar klein und nur eine Fresnelzonen liegt in der Apertur *σ*. Die Phasenfronten sind ebene Wellen.
 → Fraunhoferbeugung

79 04.12.2018

Entfernungszonen bei der Beugung

Man beobachtet Fresnelbeugung, wenn der Durchmesser b der Apertur bei der Entfernung z_0 viele Fresnelzonen Z_m erfasst,

(Demtröder)

Fraunhofer-Beugung

Für sehr große Abstände r von P zur Öffnung σ können die Phasenflächen der Elementarwellen bei P als eben betrachtet werden, so dass

$$E_P(k_x, k_y) = E_0 \iint_{S} T(x, y) e^{-i(k_x x + k_y y)} dx dy ; \quad \vec{k} = \begin{pmatrix} k_x \\ k_y \\ k_z \end{pmatrix} \quad \text{mit} \quad k = \frac{2\pi}{\lambda}$$
Fouriertransformierte von $T(x, y)$

Die komplexe Funktion T(x, y) gibt die Transmission der Öffnung an (für Amplitude und Phase). Die Intensität der Beugung in Richtung \vec{k} ist dann gegeben durch

$$\frac{I'(k_x, k_y)}{I_0} = \left| \iint_S T(x, y) e^{-i(k_x x + k_y y)} dx dy \right|^2$$

Fraunhofer-Beugung

Das Beugungsbilds des von einer begrenzten Öffnung transmittierten Lichts ist das Betragsquadrat seiner Fouriertranformierten.

81 04.12.2018

Beispiel: Beugung am Einzelspalt

Spalt mit Breite *b* in *x*-Richtung; in *y*-Richtung translationsinvariant

$$T_{1}(x) = \begin{cases} 1 & ; -\frac{b}{2} \le x \le +\frac{b}{2} \\ 0 & ; \text{ sonst} \end{cases}$$
$$\frac{I'_{1}}{I_{0}} = \left| \int_{-b/2}^{+b/2} e^{-ik_{x}x} dx \right|^{2}$$
$$= \left| \frac{1}{ik_{x}} \left(e^{-ik_{x}\frac{b}{2}} - e^{+ik_{x}\frac{b}{2}} \right) \right|^{2}$$
$$= b^{2} \left| \frac{2}{k_{x}b} \sin \left(k_{x}\frac{b}{2} \right) \right|^{2}$$
$$\frac{I'_{1}}{I_{0}} = b^{2} \left(\frac{\sin K}{K} \right)^{2} ; \quad K = \frac{k_{x}b}{2}$$

Wie hängt X mit dem Beugungswinkel α zusammen?

$$\sin \alpha = \frac{k_x}{k} \quad \Rightarrow \quad k_x = \frac{2\pi}{\lambda} \sin \alpha \quad \Rightarrow \quad K = \frac{\pi b}{\lambda} \sin \alpha$$

Für welche Winkel treten Beugungsminima oder -maxima auf?

Mit der Näherung $\sin \alpha \cong \alpha$ sowie $m \in \mathbb{Z} \setminus \{0\}$ folgt

Minima:
$$K = m \cdot \pi$$
 \Rightarrow $\alpha \cong m \cdot \frac{\lambda}{b}$
Maxima: $K = \left(m + \frac{1}{2}\right) \cdot \pi$ \Rightarrow $\alpha \cong \left(m + \frac{1}{2}\right) \cdot \frac{\lambda}{b}$

83 04.12.2018

Anschaulich

Minima: Teile Strahl in gerade Anzahl von Teilbündel auf, so dass benachbarte in Richtung α destruktiv interferieren.

 $\Delta s \,=\, m \cdot \frac{\lambda}{2} \qquad \Rightarrow \qquad \alpha \,\cong\, m \cdot \frac{\lambda}{b}$

Maxima: Wähle ungerade Anzahl von Bündel, dann bleibt immer eines, dass nicht "weginterferiert" wird.

Beispiel: Beugung an p Spalten (I)

Wir berechnen den Fall für Spalten verschwindener Breite $b \rightarrow 0$ und gleichen Abständen a. Zudem sei der Einfachheit halber $T_p(x)$ eine gerade Funktion mit Spalt bei x = 0 und damit ungerader Anzahl von Spalten p.

Somit

$$T_p(x) = \delta(x) + \sum_{m=1}^n (\delta(x+ma) + \delta(x-ma))$$
; $p = 2n+1$

85 04.12.2018

$$T_p(x) = \delta(x) + \sum_{m=1}^{n} (\delta(x+ma) + \delta(x-ma))$$
; $p = 2n+1$

Dann ist die Fouriertransformierte (ohne Vorfaktor)

$$\tilde{T}_p(k_x) = \int_{-\infty}^{+\infty} T_p(x) e^{-ik_x x} dx$$

= $1 + \sum_{m=1}^n \left(e^{+ik_x m a} + e^{-ik_x m a} \right) \stackrel{!}{=} \frac{\sin\left(p \cdot k_x \frac{a}{2}\right)}{\sin\left(k_x \frac{a}{2}\right)}$

Damit wird

Damit wild

$$\frac{I_p}{I_0} = \frac{\sin^2(pK)}{\sin^2(K)}; \quad K = k_x \frac{a}{2}$$
Maxima:

$$\alpha \cong m \cdot \frac{\lambda}{a}$$
...
$$\frac{M_1 - M_2}{M_1 - M_2} = \frac{1}{2} - \frac{1}{2$$

Beweis

$$\begin{split} \tilde{T}_{p}(k_{x}) &= 1 + \sum_{m=1}^{n} \left(e^{+ik_{x}ma} + e^{-ik_{x}ma} \right) \\ &= \sum_{m=0}^{n} \left(e^{+ik_{x}a} \right)^{m} + \sum_{m=0}^{n} \left(e^{-ik_{x}a} \right)^{m} - 1 \qquad \left| \qquad \sum_{m=0}^{n} q^{m} = \frac{1 - q^{n+1}}{1 - q} \right| \\ &= \frac{1 - e^{+ik_{x}(n+1)a}}{1 - e^{+ik_{x}a}} + \frac{1 - e^{-ik_{x}(n+1)a}}{1 - e^{-ik_{x}a}} - 1 \\ &= \frac{e^{-ik_{x}\frac{a}{2}} - e^{+ik_{x}(2n+1)\frac{a}{2}}}{e^{-ik_{x}\frac{a}{2}} - e^{-ik_{x}\frac{a}{2}} - e^{-ik_{x}\frac{a}{2}}} - 1 \\ &= \frac{e^{+ik_{x}(2n+1)\frac{a}{2}} - e^{-ik_{x}(2n+1)\frac{a}{2}}}{e^{ik_{x}\frac{a}{2}} - e^{-ik_{x}\frac{a}{2}}} \\ &= \frac{\sin\left(p \, k_{x}\frac{a}{2}\right)}{\sin\left(k_{x}\frac{a}{2}\right)} \quad \checkmark \end{split}$$

87 04.12.2018

Beispiel: Beugung an p Spalten (II)

Die Spalten haben eine endliche Breite b

Die Transmissionsfunktion wird erzeugt durch die Faltung der Funktionen vom Einzelspalt $T_1(x)$ und der p Deltafunktionen $T_p(x)$.

 $T(x) = (T_p \otimes T_1)(x)$

Dann ist (Faltungssatz!)

$$\tilde{T}(k_x) = \tilde{T}_p(k_x) \cdot \tilde{T}_1(k_x)$$

also

$$\frac{I'}{I_0} = |\tilde{T}(k_x)|^2 = I'_1(k_x) \cdot I_p(k_x)$$

Gaußförmiges Transmissionsprofil

Das gebeugte Lichtbündel behält ein gaußförmiges Profil!

Mit wachsender Entfernung z zur Blende wird es breiter. Wir berechnen das Strahlprofil für die Ebene im Abstand z.

Mit

$$k_\perp^2 \,=\, k_x^2 + k_y^2$$

gilt für den Beugungswinkel α

$$\sin \alpha = \frac{k_{\perp}}{k} = \frac{\lambda}{2\pi} k_{\perp}$$

 \vec{k}

Für das in den Winkel α gebeugte Licht in der Ebene z mit Abstand r von der optischen Achse gilt

$$\tan \alpha \,=\, \frac{r}{z}$$

Für kleine Winkel ist $\sin \alpha \cong \tan \alpha$ und damit

$$k_{\perp} = \frac{2\pi}{\lambda} \frac{r}{z}$$

Damit wird (nach Koordinatentransformation)

$$\frac{E(r)}{E_0} = \frac{w_0}{w(z)} e^{-\frac{r^2}{w(z)^2}} \qquad \qquad \frac{I(r)}{I_0} =$$

mit $w(z) = \frac{\lambda z}{\pi w_0}$ für $z \to \infty$ (I

ir $z \rightarrow \infty$ (Fraunhofer-Näherung)

 $\left(\frac{w_0}{w(z)}\right)^2 \mathrm{e}^{-\frac{2r^2}{w(z)^2}}$

Genaue Rechnung liefert:

$$w(z) = w_0 \sqrt{1 + \left(rac{\lambda z}{\pi w_0^2}
ight)^2}$$

für beliebiges z

91 04.12.2018

Kenngrößen des gaußschen Strahls

Das Strahlprofil von Laserlicht oder des aus Single-Mode-Fasern austretenen Lichts kann oft als gaußförmig angenommen werden. Zur Berechnung optischer Strahlengänge werden gaußsche Strahlen benutzt, da sie auf einfache Weise sowohl strahlenoptisch als auch wellenoptisch behandelt werden können.

Fokussierung gaußscher Strahlen

Anstatt der Beugung an einer Öffnung betrachten wir das Problem "umgekehrt":

Ein gaußscher Strahl (z.B. aus einem Laser) werde fokussiert. Was ist dann die kleinste erreichbare Fokusdurchmesser $2w_0$?

Mit dem gegebenen Öffnungswinkel α folgt

$$w_0 \simeq \frac{\lambda}{\pi \alpha}$$

Genaue Rechnung liefert

$$w_0 = \frac{\lambda}{\pi \sin \alpha} = \frac{1}{\pi} \frac{\lambda_0}{n \sin \alpha}$$

$$w_0 = \frac{1}{\pi} \frac{\lambda_0}{NA}$$
; $NA = n \sin \alpha$

Wegen $NA \le n$ entspricht der kleinste erreichbare Fokusdurchmesser $2w_0$ etwa der Wellenlänge λ des Lichts (im Medium).

93 04.12.2018

"Cleaning" und Aufweitung Gaußscher Strahlen

Abb. 12.29. Punktlochblende als Tiefpass-Raumfrequenzfilter bei der Aufweitung eines Laserstrahls

Räumliche Kohärenz

Doppelspaltexperiment mit ausgedehnter Lichtquelle endlicher spektraler Breite

- Amplitude und Phase des Lichts in jeder der beiden Spalte resultiert aus Überlagerung aller Teilwellen, die von den Flächenelementen dF ausgehen.
- Die Emission der Flächenelemente dF typischer Lichtquellen ist voneinander unabhängig und erzeugt bei Überlagerung "chaotisches" Licht.
- ➢ Die Gesamtfeldstärke ändert sich beliebig, wenn die Überlagerung zweier Teilwellen sich um Wege Δs ≥ $\lambda/2$ ändert (z.B. durch Winkeländerung).
- > Die Korrelation der Feldstärken bei S_1 und S_2 verschwindet für $\Delta s \ge \lambda/2$.

```
95 04.12.2018
```

Kohärenz bei ausgedehnten Lichtquellen

Bedingung für sichtbare Interferenzen

 Wegdifferenz der Teilwellen zum gleichen Spalt ist kleiner als λ/2.

(Demtröder)

Beispiele: $\lambda = 500 \text{ nm}$

Sonne:	$b \simeq 7 \cdot 10^5$ km,	$D = 150 \cdot 10^6 \mathrm{km}$	\Rightarrow	$d < 0.1 {\rm mm}$
Proxima Centauri:	$b \approx 10^7 \mathrm{km}$,	$D = 4.3 \text{ LJ} \approx 4 \cdot 10^{13} \text{ km}$	\Rightarrow	<i>d</i> < 2 m

Allgemeines Ergebnis (Theorie teilweise kohärenten Lichts)

Van-Cittert-Zernike-Theorem

Die räumliche Helligkeitsverteilung eines entfernten Objekts kann aus der vom gegenseitigen Abstand abhängigen Kohärenz der elektrischen Felder an den Orten S_1 und S_2 berechnet werden!

Die Kohärenz wird bestimmt mittels der abstandsabhängigen Korrelationsfunktion der Felder bei S_1 und S_2 . Diese wird durch das von den Spalten bei S_1 und S_2 erzeugte Beugungsbild und der daraus bestimmten *Sichtbarkeit* der Interferenzen direkt gemessen.

(vgl. Kohärenzfunktion, Kap. 1, S. 24)

→ Methode zur Messung von Sterndurchmessern oder Doppelsternsystemen!

Born & Wolf, Principles of Optics, p. 508

97 04.12.2018

Michelson-Sterninterferometer

https://www.astro.uni-jena.de/Teaching/Praktikum/pra2002/node103.html

»Sichtbarkeit« oder »Visibility«

Die Messgröße der Interferometrie ist der Kontrast (die »Sichtbarkeit«) des bei der Interferenz entstehenden Streifenmusters, gemessen als:

$$V = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}.$$
 (1)

Die Visibility kann daher Werte zwischen 0 $(I_{\max} = I_{\min})$, keine Streifen) und 1 $(I_{\min} =$ 0, maximal möglicher Kontrast) annehmen. Physikalisch gesehen ist sie gleich dem Kohärenzgrad der Wellenfrontausschnitte, die von den beiden - vom Stern aus gesehen im Abstand \vec{B}_{\perp} stehenden – Teleskopen aufgenommen werden. Sie ist außerdem gleich der Fouriertransformierten der Helligkeitsverteilung des Objekts bei der Fourierkoordinate \vec{B}_{\perp}/λ (van Cittert-Zernicke-Theorem). Qualitativ bedeutet das, dass für kleine $|\vec{B}_{\perp}|$ die Visibility gegen 1 geht. Bei festem, nicht zu großem $|\vec{B}_{\perp}|$ gilt: kleine Quellen haben hohe, ausgedehntere Quellen geringere Visibility. Die Visibility dient daher meist als Maß für die Größe eines Objekts. Quantitativ

Bild eines Sterns, von Interferenzstreifen durchzogen.

gilt für eine gleichmäßig helle Sternscheibe mit Winkeldurchmesser ϑ :

(2)

$$= 2 \frac{J_{1}(\pi \vartheta | \vec{B}_{\perp} / \lambda)}{|\vec{B}_{\perp} / \lambda|}$$

Dieser Ausdruck wird zu Null, wenn ϑ = 1.22 $|\lambda/\bar{B}_{\perp}|$ ist, z.B. für eine Wellenlänge von 10 µm und 100 m Basislänge bei ϑ = 25.2 Millibogensekunden. Genau ge-

Horizontaler Schnitt durch die Abbildung links.

nommen ist die Visibility als komplexe Größe V·e^{i\varphi} zu beschreiben. Die Phase φ (anschaulich einer durch die Struktur des Objekts bedingten Verschiebung des Streifenmusters entsprechend) ist für unsymmetrische Objekte von Null verschieden und daher unabdingbar zur Rekonstruktion von Bildern aus interferometrischen Messungen.

STERNE UND WELTRAUM November 2004

99 04.12.2018

Michelson-Interferometer

- FTIR-Spektroskopie (FTIR = Fourier-Transform-Infrared) (vgl. Kap. 1, S. 21; E1, S.15)
- Sehr genaue Messung der Wellenlänge (relative Genauigkeit bis ~10⁻⁸)

Geplant (2034): LISA – Laser Interferometer Space Antenna

Ultra-präzise Abstandsmessungen (z.B. Gravitationswellendetektor GEO 600); Messung von Längenänderungen ~10⁻¹⁹ !

GEO 600

Mach-Zehnder-Interferometer

Ein Teilstrahl läuft durch Medium (z.B. Gas) mit Brechzahl n und Länge L. Der optische Weg $n \cdot L$ beeinflusst die Wegdifferenz der Teilstrahlen:

$$\Delta \Phi = \frac{2\pi}{\lambda} \,\Delta n \,L$$

Der Gasdruck verändert die Brechzahl $n \rightarrow$ präzise Druckmessung.

Die Phasendifferenzen an den Detektoren resultieren aus Reflexion am optisch dichteren Medium.

101 04.12.2018

Sagnac-Interferometer

Nach dem Strahlteiler durchlaufen zwei Teilwellen mit Intensitäten I_1 und $I_2 = I_1$ die gleiche Wegstrecke, aber mit unterschiedlichem Drehsinn.

Das Interferometer rotiere im Uhrzeigersinn. Dann durchläuft Teilwelle 1 den längeren Weg und die Gesamtintensität hinter dem Austrittsspiegel wird:

Sagnac-Interferometer: Laser-Kreisel

"Laser-Kreisel" zur Navigation von Flugzeugen (3 zueinander senkrecht stehende Sagnac-Interferometer)

193.196.117.25/.../standdertechnik.html

103 04.12.2018

Großringlaser Wettzell

Spektrometrie

Messung des Farbspektrums $I(\lambda)$ einer Lichtquelle

- o Interferometer: wellenlängenabhängige Transmission (z.B. Fabry-Pérot)
- Spektrometer: räumliche Trennung von Licht unterschiedlicher Wellenlänge (Prismen- oder Gitterspektrometer)

Prinzipielle Funktionsweise des Spektrometers

Das Licht wird durch einen Eingangsspalt geschickt und über ein wellenlängenabhängiges Element auf eine Beobachtungsebene abgebildet. Die Intensitätsmessung $I(\lambda)$ erfolgt

- o mit einem einzelnen Detektor hinter einem Spalt der Breite Δx , oder
- o mit einer Vielzahl von Detektoren (Detektorzeile) in der Beobachtungsebene.

Messung optischer Materialeigenschaften

- Bestimme als Referenz die Intensität der Lichtquelle $I_S(\lambda)$.
- Plaziere die Probe in den Strahlengang vor Eintrittsspalt und messe die Intensität $I_P(\lambda)$.
- Berechne die Transmissionsfunktion $T(\lambda) = I_P(\lambda)/I_S(\lambda)$. Darin wird die *optische Extinktion* der Probe wiedergegeben, aber nicht mehr die Eigenschaften der Quelle.

04.12.2018

Prismenspektrometer

Vorteile

- kompakter Aufbau
- Hohe Transmission
- eindeutige Wellenlängenzuordnung

Nachteile

- geringe, nichtlineare Dispersion
- Prisma muss transparent sein

Beispiel: Quarzprisma

Spektralbereich 180 nm – 3 µm.

Winkeldispersion

Der Ablenkwinkel θ ist abhängig von der Eintrittspupille *D*, der Basis *B* und der Dispersion des Prismas.

$$\frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{\mathrm{d}\theta}{\mathrm{d}n} \frac{\mathrm{d}n}{\mathrm{d}\lambda} = \frac{B}{D} \frac{\mathrm{d}n}{\mathrm{d}\lambda}$$

Räumliche Trennung der Spektrallinien

Die räumliche Trennung Δs verschiedener Wellenlängen hängt von der Brennweite f der Linsen L_1 und L_2 und der Winkeldispersion ab.

$$\Delta s = f \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} \Delta \lambda$$

Beugungsgitter

Typisch einige 100 bis ~2000 Spalte / mm (für hohe spektrale Auflösung)

- o Reflexionsgitter (Furchen in ebener Glasplatte)
- o Herstellung mechanisch durch Ritzen oder optisch mittels Holographie
- "geblaztes" Gitter für hohe Beugungseffizienz in höherer Ordnung (Richtung der gebeugten Ordnung ist identisch mit der Richtung des Lichtes, das an der Flanke gespiegelt wird.)

Geblaztes Gitter: An einer Profilflanke erfolgt Reflexion in die gebeugte Ordnung. Θ Blazewinkel, ψ Apexwinkel.

107 04.12.2018

Gitterspektrometer

z.B. Czerny-Turner-Gitterspektrometer

- o Symmetrischer Strahlengang
- Eingangsspalt wird auf Ausgangsspalt abgebildet (typ. gleiche Spaltbreite)

http://dodo.fb06.fh-muenchen.de/maier/analytik/ Blaetter/N05_Monochromatoren_d_BAneu.pdf

Winkeldispersion

Konstruktive Interferenz, wenn mit m = 0.1, 2, ...

$$\Delta s = \Delta_1 + \Delta_2 = d \cdot (\sin \alpha + \sin \beta) = m\lambda$$

Winkeldispersion durch Differentiation:

(Demtröder)

Spektrales Auflösungsvermögen

Das spektrale Auflösungsvermögen ist definiert als $\frac{\lambda}{\Delta\lambda}$, wobei $\Delta\lambda = \lambda_1 - \lambda_2$ die minimale Differenz zweier Wellenlängen ist, für die getrennte Bilder des Eingangsspaltes in der Beobachtungsebene entstehen.

Es können zwei scharfe Linien im Spektrum gerade noch aufgelöst werden, wenn gilt

$$\Delta s_{\min} = \frac{\Delta x}{2} = \frac{b}{2} + f \frac{\lambda}{D}$$

Minimum Einzelspalt $\alpha = \lambda/D$

04.12.2018

Bei minimaler Spaltbreite, ohne wesentlich Intensität zu verlieren, sind beide Beiträge etwa gleich groß, also

$$\Delta s_{\min} = 2f \frac{\lambda}{D}$$

Erinnerung:
$$\Delta s = f \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} \Delta \lambda$$

Damit ergibt sich:

$$2f \frac{\lambda}{D} = f \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} \Delta \lambda \qquad \Rightarrow \qquad \frac{\lambda}{\Delta \lambda} = \frac{D}{2} \frac{\mathrm{d}\theta}{\mathrm{d}\lambda}$$

Beachte: Für &-förmigen Spalt (Lichtverlust!) entfällt der Faktor 1/2:

$$\frac{\lambda}{\Delta\lambda} \le D \frac{\mathrm{d}\theta}{\mathrm{d}\lambda}$$

Vergleich

Prisma

$$\frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{B}{D} \frac{\mathrm{d}n}{\mathrm{d}\lambda}$$
$$\frac{\lambda}{\Delta\lambda} \le D \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} \qquad \Biggr\} \quad \frac{\lambda}{\Delta\lambda} \le B \frac{\mathrm{d}n}{\mathrm{d}\lambda}$$

Gitter

Breite der Austrittspupille D ist mit Anzahl N der beleuchteten Furchen

$$\begin{array}{l} D = N \, d \, \cos \beta \\ \\ \frac{\mathrm{d}\beta}{\mathrm{d}\lambda} = \frac{m}{d \cdot \cos \beta} \\ \\ \\ \frac{\lambda}{\Delta\lambda} = \frac{D}{2} \, \frac{\mathrm{d}\beta}{\mathrm{d}\lambda} \end{array} \end{array} \right\} \quad \frac{\lambda}{\Delta\lambda} \leq m \cdot N$$

Typische Zahlenwerte:

$$B = 10 \text{ cm}; dn/d\lambda = 1100/\text{cm}$$
 (Suprasil)

$$\Rightarrow \qquad \frac{\lambda}{\Delta\lambda} \le 11000$$

Typische Zahlenwerte:

L = 10 cm; $N = 1200/\text{mm} \cdot L$; m = 2

$$\Rightarrow \qquad \frac{\lambda}{\Delta\lambda} \le 240000$$

111 04.12.2018