

WS18/19

THERMODYNAMIK UND THEORIE DER WÄRME VORLESUNG #4

27.09.2018 Prof. Dr. Florian U. Bernlochner | IETP - KIT

ÜBERBLICK ÜBER DIE VORLESUNG

- 1. Grundbegriffe und Hauptsätze
- 2. Das ideale Gas
- 3. Die kinetische Gastheorie
- 4. Transportvorgänge
- 5. Phänomenologische Thermodynamik
- 6. Thermodynamische Prozesse
- 7. Thermodynamische Potentiale
- 8. Reale Gase
- 9. Das Plancksche Strahlungsgesetz

Zurückführen von thermodynamischer Größen auf Mittelwerte von Teilchenzahlen, Impulsen, etc. sehr vieler Teilchen

- Zusammenhang mittlerer kinetischer Energie und Temperatur: $\langle \frac{1}{2}mv^2 \rangle = \frac{3}{2}k_BT$
- Zusammenhang $\langle v^2 \rangle$ und Temperatur: $\langle v^2 \rangle = \frac{3 k_B T}{m}$

• Maxwell-Verteilung:
$$F(v) dv = 4\pi \left(rac{m}{2\pi \, k_B \, T}
ight)^{3/2} \, v^2 \, e^{-m \, v^2/(2k_B \, T)} \, \mathrm{d} v$$

Verwandt: Verteilung der kinetischen Energie $p(E) dE = \frac{2\pi}{(\pi k_B T)^{3/2}} \sqrt{E} e^{-E/(k_B T)} dE$

- **Boltzmann-Faktor**: $\frac{N_1}{N_0} = e^{-\frac{E_1 E_0}{k_B T}}$
- Herleitung barometrische Höhenformel: $P(h) = P_0 e^{-\frac{\rho_0 g n}{P_0}}$

Mittlere freie Weglänge:
$$\ell = \frac{1}{\sqrt{2rac{V}{V}\sigma}}, \sigma = \pi d^2$$

3.7 Molekulare Effusion

Aufbau:

- Gasmoleküle entweichen durch kleine Öffnung in Gefäßwand
- Fläche A der Öffnung kleiner als mittlere freie Weglänge, dann ist der Effusionsfluss:

 $\frac{1}{A}\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{1}{4}\frac{N}{V}\left\langle v\right\rangle$

Ohne Herleitung

Mittlere Geschwindigkeit solcher Moleküle **größer** als Durchschnittsgeschwindigkeit $\langle v \rangle$

$$E_{\rm kin, eff.} = 2 k_B T = \frac{4}{3} E_{\rm kin}$$

Ohne Herleitung, $E_{\rm kin} = \frac{3}{2} k_B T$

Grund: W'keit die Fläche der Öffnung zu treffen ist proportional zur Geschwindigkeit

5/47

 \Rightarrow leichtere Moleküle haben eine höhere Effusionsrate R als schwerere Moleküle

$$\frac{R_2}{R_1} = \sqrt{\frac{M_1}{M_2}}$$
 Gesetz von Graham

Hiermit lassen sich z.B. Isotopen trennen.

(1)

Effekt in 2D Simulation:

$$E_{\rm kin, eff.} = \frac{3}{2} E_{\rm kin} \rightarrow {\it T}_2 = \frac{3}{2} {\it T}_1$$

mit T_1 der Temperatur links und T_2 der Temperatur rechts.

In **drei Dimensionen** würden wir $T_2 = \frac{4}{3}T_1$ erwarten

4.1 Einleitung

Bisher haben wir im wesentlichen Gleichgewichtszustände betrachtet, i.e. wir haben noch keine Antwort auf Fragen wie

- Wie schnell stellt sich ein thermisches Gleichgewicht ein, wenn zwei Gase mit Temperaturen T₁ und T₂ in Kontakt stehen?
 - \Rightarrow Wärmeleitung
- Wie schnell stellt sich eine Gleichverteilung der Teilchendichte ein, wenn zwei Gase mit ^{N1}/_V und ^{N2}/_V in Kontakt gebracht werden?
 - \Rightarrow Diffusion

Zur **Beschreibung** solcher Transportvorgänge können wir Erhaltungssätze bzw. Kontinuitätsgleichungen verwenden

Wärmeenergie kann auf drei Arten übertragen werden

Wärmeleitung

Energietransport durch Wechselwirkung zwischen Molekülen, welche aber selber nicht transportiert werden

Konvektion

Wärmeübertragung auch mit einem Stofftransport verbunden

■ Wärmestrahlung → spätere Vorlesung

Absorption von Energie in Form von elektromagnetischer Strahlung

Wir beschränken uns heute auf Wärmeleitung und Konvektion

Gedankenexperiment: zylindrischer Stab mit Querschnittsfläche *A* zwischen Behälter mit Wasserdampf und einem Eisbad

Nach einiger Zeit: **stationärer Zustand**; Temperatur nimmt gleichmässig entlang des Stabes ab.

```
Temperaturgradient: Änderung entlang dem Stab: \Delta T / \Delta x
```

Durch Querschnitt des Stabes fliesst in Δt eine Wärmemenge ΔQ

Der Wärmestrom / ist dann definiert als

$$I = \frac{\Delta Q}{\Delta t} = -\kappa A \frac{\Delta T}{\Delta x}$$

Annahme: Kein Wärmeverlust durch die Seitenwände des Stabes.

Mit κ einer Konstante, welche von der **Wärmeleitfähigkeit** eines Gases oder Festkörpers abhängt, $[\kappa] = \frac{W}{Km}$.

Wärmeleitfähigkeiten κ für verschiedene Materialien (in $\frac{W}{Km}$):

Wir können diese Gleichung auch nach ΔT auflösen

$$\Delta T = -\frac{\Delta x}{\kappa A}I = RI$$

mit R dem Wärmewiderstand.

Verallgemeinerung: Wärmefluss durch mehrere Schichten unterschiedlicher Materialen

R = Wärmewiderstand der gesamten Schicht

Beispiel: Wärmemenge die aus einem Haus pro Stunde durch Fenster, Wände, etc. entweicht

 \rightarrow Näherungsweise gleiche Temperaturdifferenz ΔT zwischen dem Inneren und Äusseren des Hauses

Gesamte Wärmestrom / ist

$$I = I_1 + I_2 + \cdots = \frac{\Delta T}{R_1} + \frac{\Delta T}{R_2} + \dots$$

oder

$$I = \Delta T / R_{ ext{tot}}$$
 mit 1 $/ R_{ ext{tot}} = \sum_i (1/R_i)$.

- Wärmeleitfähigkeit von Gasen wesentlich geringer als Flüssigkeiten / Festkörper
- ightarrow Doppelfenster; Dicke des Glases hat sehr kleinen Einfluss auf $R_{
 m tot}$.

4.2 Volumentransport

Wir betrachten ein abgeschlossenes Volumen *V* in dem sich eine bestimmte Gasmenge befindet.

Das Gas selber ist nicht in Ruhe, sondern fliesst mit einer Geschwindigkeit von $\vec{v}(\vec{r})$

Mit einer Dichte von $\rho(\vec{r})$ ist die Gesamte Gasmenge *N* im Volumen *V*

$$N = \int_V \rho(\vec{r}) \, \mathrm{d}V$$

Die Stromdichte $\vec{j}(\vec{r})$ ist definiert als

$$\vec{j}(\vec{r}) = \vec{v}(\vec{r}) \, \rho(\vec{r})$$

Betrag: Gasmenge, die pro Zeit und Flächenstück das Volumen verlässt.

 $\rightarrow \vec{v}(\vec{r}) \rho(\vec{r}) = \vec{w}(\vec{r}) \frac{ds}{dt} \frac{dN}{dV} = \vec{e}_v(\vec{r}) \frac{dN}{dAdt} \text{ mit } \vec{e}_v(\vec{r})$ der normierten Richtung von \vec{v} und dV = ds dA.

Der Volumenfluss / ist dann

 $I = \text{Integral über die Oberfläche von } \vec{j}(\vec{r})$ $= \oint_{A} \vec{j} \, d\vec{A} = \oint_{A} \vec{j} \cdot \vec{n} \, dA$

 $d\vec{A} = Flächennormale \ \vec{n} \times Fächenelement \ dA$

Der **Volumenfluss** *I* in und aus dem Volumen ist gleich der zeitlichen Änderung \dot{N} der Teilchen im Volumen

$$-I \stackrel{!}{=} \dot{N} = \partial_t N \,.$$

mit $\partial_t = \frac{\partial}{\partial t}$. Vorzeichen: Positives *I* = Abfluss, Negatives *I* = Zufluss.

Aus dieser Beziehung ergibt sich

$$\partial_t N + I = 0 = \partial_t \int_V \rho(\vec{r}) \, \mathrm{d}V + \oint_A \vec{j} \cdot \vec{n} \, \mathrm{d}A$$

Aus dem Gaußschem Satz folgt, dass zwischen Fluss und Divergenz gilt

$$\oint_{A} \vec{j} \cdot \vec{n} \, \mathrm{d}A = \int_{V} \mathrm{div} \, \vec{j} = I$$

mit div $/\vec{\nabla} = (\partial_x, \partial_y, \partial_z)$ der Divergenz des Vektorfeldes \vec{j} .

Illustration der Flächennormalen \vec{n} und des Oberflächenintegrals A

Beispiel: Fluss eines Vektorfeldes $\vec{j} = (x, y, z)$ durch die Oberfläche eines Würfels mit Volumen V

Die Kantenlänge sei 2 und der Mittelpunkt in $\vec{x} = (2, 2, 2)$, i.e. $x, y, z \in [1, 3]$

Gesamtfluss durch die Oberfläche:

$$\begin{split} \int_{A} \vec{j} \cdot \vec{n} \, \mathrm{d}A &= \int_{A_1} \vec{j} \cdot \vec{n}_1 \, \mathrm{d}y \mathrm{d}z + \int_{A_2} \vec{j} \cdot \vec{n}_2 \, \mathrm{d}x \mathrm{d}z \\ &+ \int_{A_3} \vec{j} \cdot \vec{n}_3 \, \mathrm{d}y \mathrm{d}z + \int_{A_4} \vec{j} \cdot \vec{n}_4 \, \mathrm{d}x \mathrm{d}z \\ &+ \int_{A_5} \vec{j} \cdot \vec{n}_5 \, \mathrm{d}x \mathrm{d}y + \int_{A_6} \vec{j} \cdot \vec{n}_6 \, \mathrm{d}x \mathrm{d}y \end{split}$$

Für den Fluss durch A₁ folgt z.B.

$$\int_{A_1} (3, y, z) \cdot (1, 0, 0) \, dy dz = \int_1^3 \int_1^3 3 \, dy dz = 2 \times 2 \times 3 = 12$$
(2)

Thermodynamik und Theorie der Wärme Vorlesung #4 - Prof. Dr. Florian U. Bernlochner

Beispiel: Fluss eines Vektorfeldes $\vec{j} = (x, y, z)$ durch die Oberfläche eines Würfels mit Volumen V

Die Kantenlänge sei 2 und der Mittelpunkt in $\vec{x} = (2, 2, 2)$, i.e. $x, y, z \in [1, 3]$

Gesamtfluss durch die Oberfläche:

$$\oint_{A} \vec{j} \cdot \vec{n} \, \mathrm{d}A = 12 + 12 - 4 - 4 + 12 - 4 = 24$$

Analog finden wir mit

$$\operatorname{div} \vec{j} = \vec{\nabla} \cdot \vec{j} = \partial_x x + \partial_y y + \partial_z z = 3$$

für das Volumenintegral

$$\int_{V} \operatorname{div} \vec{j} \, \mathrm{d}V = \int_{1}^{3} \int_{1}^{3} \int_{1}^{3} 3 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = 2^{3} \times 3 = 24$$
(3)

D.h. für unsere Beziehung ergibt sich ($\rho = \rho(\vec{r})$)

$$\partial_t N + I = 0 = \partial_t \int_V \rho \, \mathrm{d}V + \oint_A \vec{j} \cdot \vec{n} \, \mathrm{d}A$$
$$= \partial_t \int_V \rho \, \mathrm{d}V + \int_V \operatorname{div} \vec{j} \, \mathrm{d}V$$

Wir können Integral und Differential vertauschen: (p differenzierbar, V konst. über t)

$$\int_{V}\left[\partial_{t}\,
ho+{
m div}\,ec{j}
ight]{
m d}\,V=0$$

bzw.

$$\partial_t \rho + \operatorname{div} \vec{j} = \partial_t \rho + \vec{\nabla} \cdot \vec{j} = 0$$

denn für die beiden Integranden gilt $\int_{V} \partial_t \rho \, dV = - \int_{V} \operatorname{div} \vec{j} \, dV$.

Thermodynamik und Theorie der Wärme Vorlesung #4 - Prof. Dr. Florian U. Bernlochner

4.3 Kontinuitätsgleichungen

Wir haben uns die Kontinuitätsgleichungen hergeleitet:

Partielle Differentialgleichung die zu einer Erhaltungsgröße gehört.

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \vec{j} = \partial_t \rho + \operatorname{div} \vec{j} = \mathbf{0} = \partial_t \rho + \partial_x j_x + \partial_y j_y + \partial_z j_z \,.$$

Verknüpft zeitliche Änderung der zur Erhaltungsgröße gehörenden Dichte ρ mit der räumlichen Änderung ihrer Stromdichte $\vec{j} = (j_x, j_y, j_z)$.

Zusammenhang der Kontinuitätsgleichung mit ihrer Erhaltungsgröße Q:

Die in einem Volumen *V* enthaltene Erhaltungsgröße (Ladung, Energie, Masse) ist das **Volumenintegral ihrer Dichte**

$$Q = \int_V \mathrm{d}^3 x \, \rho(t, \vec{x})$$

Für die zeitliche Änderung einer Erhaltungsgröße Q gilt dann, dass

$$\partial_t Q = \dot{Q} = \int_V \mathrm{d}^3 x \, \partial_t \rho(t, \vec{x}) \stackrel{!}{=} - \int_V \mathrm{div} \, \vec{j}$$

u

Thermischer Fluss als Kontinuitätsproblem:

 $\widehat{=} \text{ thermische Energiedichte} = \frac{\text{thermische Energie } W_T}{\text{Volumen } V} \quad [u] = \frac{J}{m^3},$ $W \\ \overrightarrow{arme} \quad V \\ W \\ \overrightarrow{arme} \quad V \\ W \\ \overrightarrow{arme} \quad V \\ \overrightarrow{arme} \quad V$

$$\vec{w} \cong \text{Warmestromdichte} = \frac{\text{Warme}}{\text{Zeit} \times \text{Fläche}} \qquad [w] = \frac{\text{W}}{\text{s}\,\text{m}^2}$$

Aus der Kontinuitätsgleichung folgt die Bedingung für

Energieerhaltung:

$$\vec{
abla} \vec{w} + \partial_t u = 0$$
.

4.4 Allgemeine Wärmeleitung

Wärme fließt nur, wenn eine Temperaturdifferenz ΔT zwischen zwei Orten vorliegt:

$$w\sim rac{\Delta T}{\Delta x}$$
 (Gradient)

mit Δx der **Distanz zweier Punkte**.

Ansatz für die Wärmestromdichte \vec{w} aus den Überlegungen in der Einleitung:

$$\vec{w} = -\kappa \operatorname{grad} T$$

Einsetzen unseres Ansatzes $\vec{w} = -\kappa$ grad T in die Kontinuitätsgleichung:

div $(-\kappa \operatorname{grad} T) + \partial_t u = 0$

Mit der Wärmekapazität pro Volumen $\tilde{c} = C_V / V$ folgt

 $u = \tilde{c} T$

und mit der Annahme, dass $\tilde{c} \neq \tilde{c}(T)$, $\kappa \neq \kappa(T)$ erhalten wir die Wärmeleitgleichung:

$$abla^2 T - rac{ ilde{c}}{\kappa} \, \partial_t T = \mathbf{0}$$

mit $\nabla^2 T = \vec{\nabla} \cdot \vec{\nabla} T = \text{div grad } T$.

Thermodynamik und Theorie der Wärme Vorlesung #4 - Prof. Dr. Florian U. Bernlochner

Beispiel: Wärmeleitung in einem Stab mit $T_2 > T_1$

Mit der Wärmeleitgleichung finden wir

$$\partial_x^2 T - \frac{\tilde{c}}{\kappa} \partial_t T = 0$$

mit $\partial_x^2 = \frac{\partial^2}{\partial x^2}$.

Stationäre Lösungen mit $\partial_t T = 0$ dieser Differentialgleichung:

stationär = unendlich großes Wärmereservoir auf beiden Seiten

4.5 Diffusion

Ein Teilchen in "thermischer Bewegung" ($E_{kin} \sim k_B T$) ändert unregelmässig Richtung und Betrag seiner Geschwindigkeit

Der Fluss einer bestimmten Art Teilchen von einem Ort x_0 nach x_1 hängt von der Konzentration ρ ab. \Leftrightarrow Analog für den Fluss von x_1 nach x_0 .

4.5.1 Das erste Ficksche Gesetz

Das erste Ficksche Gesetz setzt die Gestamtflussdichte \vec{j} mit dem Gradienten der Konzentration, grad $\rho = \nabla \rho$ in Verbindung,

$$\vec{j}=-D$$
 grad ho

mit dem Diffusionskoeffizienten D, $[D] = \frac{m^2}{s}$.

D hängt von dem involvierten Gas ab, und es kann gelten, dass $D = D(\rho)$.

Herleitung des ersten Fickschen Gesetzes in einer Dimension (Berg, 1977)

Teilchen bewegen sich **zufällig** um Längenskala Δx während Zeit Δt

- N(x, t): Anzahl Teilchen bei x zum Zeitpunkt t
- Zu einem gewählten Zeitpunkt t bewegt sich die Hälfte der Teilchen um Δx nach rechts bzw. links

ightarrow Es gibt keine bevorzugte Gesamtrichtung

Die Anzahl Teilchen, welche sich insgesamt nach rechts bewegen ist dann

$$\frac{1}{2}N(x,t) - \frac{1}{2}N(x + \Delta x, t) = -\frac{1}{2}[N(x + \Delta x, t) - N(x, t)]$$

Stromdichte *j*: Anzahl Teilchen, welche sich während Δt durch Fläche *A* bewegen

$$j = -\frac{1}{2} \left[\frac{N(x + \Delta x, t)}{A \Delta t} - \frac{N(x, t)}{A \Delta t} \right]$$

$$N(x,t) \qquad \mathbf{A} \qquad N(x+\Delta x,t)$$

A ist normal zur Bewegungsrichtung x

Wir können Zähler und Nenner mit $(\Delta x)^2$ multiplizieren, Δt nach vorne ziehen:

$$j = -\frac{(\Delta x)^2}{2\Delta t} \left[\frac{N(x + \Delta x, t)}{A (\Delta x)^2} - \frac{N(x, t)}{A (\Delta x)^2} \right]$$

Die Konzentration ist definiert als Anzahl Teilchen pro Volumen:

$$\rho(x,t) = \frac{N(x,t)}{A\Delta x} = \frac{N(x,t)}{\Delta V}$$

Weiter führen wir den **Diffusionskoeffizienten** ein: $D = (\Delta x)^2 / (2\Delta t)$.Es folgt

$$j = -D\left[\frac{\rho(x + \Delta x, t)}{\Delta x} - \frac{\rho(x, t)}{\Delta x}\right] \Rightarrow j = -D\frac{\partial \rho}{\partial x}$$

Wobei wir für den letzten Schritt $\Delta x \rightarrow 0$ angenommen haben.

Verallgemeinerung in drei Dimensionen ergibt: $\vec{j} = -D \nabla \rho = -D \operatorname{grad} \rho$

4.5.2 Das zweite Ficksche Gesetz

Setzen wir unseren gefunden Ausdruck für die Stromdichte nun in die Kontinuitätsgleichung ein, erhalten wir

$$\partial_t \rho + \operatorname{div} \vec{j} = \mathbf{0} \Rightarrow \partial_t \rho - \operatorname{div} (D \operatorname{grad} \rho) = \partial_t \rho - \nabla \cdot (D \nabla \rho) = \mathbf{0}$$

Wenn wir annehmen, dass D konstant ist, erhalten wir

$$\partial_t \rho = D \, \nabla^2 \rho = D \, \Delta \rho$$

mit $\Delta = \nabla^2$ dem Laplace-Operator $\rightarrow \Delta \rho = \partial_x^2 \rho + \partial_y^2 \rho + \partial_z^2 \rho$

Der Zusammenhang zwischen zeitlicher und räumlicher Ableitung ist das zweite Ficksche Gesetz oder die **Diffusionsgleichung**:

$$\Delta \rho - \frac{1}{D} \partial_t \rho = 0$$

Beispiel: Ausbreitung eines gauß-verteilten Gases ($\sigma_x = \sigma_y = \sigma_0$, $\mu_x = \mu_y = 0$)

Anfangsverteilung bei $t = 0, r = \sqrt{x^2 + y^2}$:

$$ho(r, t = 0) = rac{
ho_0}{2\pi \, \sigma_0^2} \, e^{-r^2/(2\sigma_0^2)}$$
 $ho(r, t = 0) \, \mathrm{d}V =
ho_0$

 \int_{0}^{∞}

Wie schaut diese Verteilung nach einer Zeit t aus?

Wie schaut diese Verteilung nach einer Zeit t aus?

Lösungsskizze: Transformiere 2D Diffusionsgleichung in den Fourierraum $(x, y \rightarrow k_x, k_y)$

$$\hat{\rho}(k_x,k_y,t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-2\pi i (k_x x + k_y y)} \rho(x,y,t) \,\mathrm{d}x \,\mathrm{d}y$$

mit $\hat{\rho}$ der Dichte im Fourierraum. Wir finden:

$$\Delta \rho - \frac{1}{D} \partial_t \rho = \mathbf{0} \Rightarrow (2\pi)^2 \hat{\rho} \left(k_x^2 + k_y^2 \right) + \frac{1}{D} \partial_t \hat{\rho} = \mathbf{0}$$

wobei $\partial_j^2
ho = \left(2\pi i \, k_j\right)^2 \hat{
ho}$ und wir $i^2 = -1$ benutzt haben

Die Lösung der Differentialgleichung ist dann schlicht $\hat{\rho} = A e^{-D(2\pi)^2 (k_x^2 + k_y^2)t}$

Wir transformieren unsere Lösung $\hat{\rho} = A e^{-D(2\pi)^2 (k_x^2 + k_y^2)t}$ zurück in den Normalraum:

$$\rho(x, y, t) = A \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{2\pi i (k_x x + k_y y)} e^{-D(2\pi)^2 (k_x^2 + k_y^2)t} dk_x dk_y$$

= $A \left(\int_{-\infty}^{\infty} e^{2\pi i k_x x - Dt(2\pi k_x)^2} dk_x \right) \left(\int_{-\infty}^{\infty} e^{2\pi i k_y y - Dt(2\pi k_y)^2} dk_y \right)$

Nach Auswertung der beiden Integrale erhalten wir als Lösung:

$$\rho(x, y, t) = \frac{A}{4\pi D t} e^{-(x^2 + y^2)/(4Dt)}$$

und können noch die Ersetzung $x^2 + y^2 = r^2$ vornehmen und für die Normierung erhalten wir $A = \rho_0$.

Einschub:

Lösung der Rücktransformationsintegrale $2\pi k_x = k \rightarrow dk_x = \frac{1}{2\pi} dk$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx - Dtk^2} dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx - Dtk^2 - \frac{x^2}{4Dt} + \frac{x^2}{4Dt}} dk$$
$$= \frac{1}{2\pi} e^{\frac{-x^2}{4Dt}} \int_{-\infty}^{\infty} e^{ikx - Dtk^2 + \frac{x^2}{4Dt}} dk$$
$$= \frac{1}{2\pi} e^{\frac{-x^2}{4Dt}} \int_{-\infty}^{\infty} e^{-\left(k\sqrt{Dt} - \frac{ik}{2\sqrt{Dt}}\right)^2} dk$$

Wir substituieren $k\sqrt{Dt} - \frac{ik}{2\sqrt{Dt}} = u$ und d $k = \frac{1}{\sqrt{Dt}} du$ und erhalten

$$\frac{1}{2\pi\sqrt{Dt}}e^{\frac{-x^2}{4Dt}}\int_{-\infty}^{\infty}e^{-u^2}\,\mathrm{d}u = \frac{1}{2\pi\sqrt{Dt}}e^{\frac{-x^2}{4Dt}}\times\sqrt{\pi} = \frac{1}{2\sqrt{\pi}\sqrt{Dt}}e^{\frac{-x^2}{4Dt}}$$

Der Vergleich mit unseren Anfangsbedingungen (t = 0) ergibt dann

$$\rho(r,t) = \frac{\rho_0}{2\pi \,\sigma^2(t)} \, e^{-r^2/(2\sigma(t)^2)}$$

mit $\sigma(t)^2 = \sigma_0^2 + 2Dt$.

Zeitpunkt bei dem
$$\sigma_0^2 \rightarrow 2\sigma_0^2$$
:
 $2\sigma_0^2 = \sigma_0^2 + 2Dt \quad \Rightarrow \sigma_0^2 = 2Dt$
 $\Rightarrow t = \sigma_0^2/(2D)$

Für große t gilt: $\sigma(t) \sim \sqrt{t}$

Die Lösung für die ein-dimensionalen Diffusionsgleichung

$$\partial_x^2 \rho(x,t) - \frac{1}{D} \partial_t \rho(x,t) = 0$$

kann mit der gleichen Methode hergeleitet werden.

Wir finden

$$\rho(x,t) = \frac{\rho_0}{\sqrt{4\pi Dt}} e^{-x^2/(4\,D\,t)}$$

bzw.

$$\rho(x,t) = \frac{\rho_0}{\sqrt{2\pi\sigma^2(t)}} e^{-x^2/(2\sigma^2(t))}$$

mit $\sigma^2(t) = \sigma_0^2 + 2Dt$ falls die Anfangsdichte schon eine Breite σ_0 aufweist.

Thermodynamik und Theorie der Wärme Vorlesung #4 - Prof. Dr. Florian U. Bernlochner

(4)

Beispiel: Brownsche Bewegung in der Atmosphäre

Betrachte Teilchen im Gravitationspotential der Erde mit Teilchenzahldichte $\rho(h) = \rho_0 e^{-mg h/(k_BT)}$ (vgl. letzte Vorlesung, Folie 37)

- Grav.-Kraft führt zu Teilchengeschw. v_G:
 v_G = B m g (Reibungsabhängig)
- $j_G=
 ho(h)\, v_G$
 - Diffusion:

$$j_D = -D \partial_h \rho(h)$$

- Im Gleichgewicht muss gelten
 - $\vec{j}_G + \vec{j}_D = j_G j_D = 0$

Die Reibungskraft F_f kompensiert im Gleichgewicht die Gravitationskraft F_g :

 $F_{f} = 6\pi r \eta v_{G} \quad \text{Wir finden}$ $mg = 6\pi r \eta v_{G} \rightarrow v_{G} = \frac{mg}{6\pi r \eta}$ $F_{g} = mg \quad \text{mit } \eta \text{ der Viskosität und } r \text{ dem Teilchenradius.}$

Damit finden wir mit $\vec{j}_G + \vec{j}_D = j_G - j_D = 0$:

$$\left(\frac{mg}{6\pi r\eta}\right)\rho + D\left(-\frac{mg}{k_BT}\right)\rho = 0 \quad \Rightarrow D = \frac{k_BT}{6\pi \eta r}$$

Wir groß ist das mittlere Verschiebungsquadrat eines Probeteilchens?

$$\langle x^2 \rangle = rac{\int x^2 \,
ho(x) \, \mathrm{d}x}{\int
ho(x) \, \mathrm{d}x}$$

Lösung der 1D Diffusionsgleichung:
$$\rho(x) = \frac{\rho_0}{\sqrt{4\pi Dt}} e^{-x^2/(4Dt)}$$

Wir finden

$$\langle x^2 \rangle = \sigma^2 = 2 D t = \frac{k_B T}{3\pi \eta r} t$$

In 2 bzw. 3 Dimensionen, erhalten wir 2 $\langle x^2 \rangle$ bzw. 3 $\langle x^2 \rangle$

D.h. bei bekannter Viskosität und gemessener Verschiebung kann *r* bestimmt werden

Thermodynamik und Theorie der Wärme Vorlesung #4 - Prof. Dr. Florian U. Bernlochner

Anwendungen: Bestimmung der Größe von Makromolekülen in Lösungen via Fluoreszenzmarkierungen

4.6 Konvektion

Wärmetransport durch Stofftransport

Beispiel: Konvektion eines idealen Gases

Simulation mit $T_1 = 300$ K, $T_2 = 600$ K

Die Wärmeleitfähigkeit eines idealen Gases mit Durchschnittsgeschwindigkeit $\langle v \rangle$ und mittlerer freier Weglänge ℓ der Gasmoleküle ist

Theorie von Enskog:

$$\kappa = rac{25\pi}{64} rac{N}{V} rac{3}{2} \, k_B \, \ell \left< \mathbf{v} \right>$$

Herleitung von κ umständlich

 $\Rightarrow \kappa$ ist unabhängig von $\frac{N}{V}$, da $\ell \propto \frac{V}{N}$ (vgl. letzte Vorlesung)

Erst bei niedrigem Druck *P* wird κ abhängig von $\frac{N}{V}$, da dann ℓ > Gefäßabmessung \Rightarrow Wärmeisolierung durch Vakuum

Verständnisfragen: (Diskutieren Sie mit ihrem Sitznachbarn)

- Was ist Effusion? Was ist Diffusion?
- Auf welche drei Arten kann Wärmeleitung stattfinden?
- Was ist die Kernaussage der Kontinuitätsgleichung? Was ist die Relation zwischen der Dichte und ihrer zugehörigen Erhaltungsgröße?
- Was sind die Kernaussagen des ersten und des zweiten Fickschen Gesetzes? Wie haben wir beide Relationen hergeleitet?
- Was sind die wesentlichen Eigenschaften der Wärmeleitgleichung und wie sieht ihre stationäre Lösung aus?
- Was ist Brownsche Bewegung? Was kann man aus dem mittleren Verschiebungsquadrat lernen?