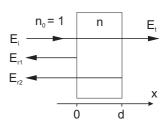
Prof. Dr. M. Wegener / Priv.-Doz. Dr. A. Naber Übungen zur Klassischen Experimentalphysik III (Optik & Thermodynamik), WS 2016/17

ÜBUNGSAUFGABEN (III)

(Besprechung Donnerstag, 17.11.16)


Aufgabe 1: (4 Punkte)

Betrachten Sie eine ebene elektromagnetische Welle mit Intensität $I=1\,\mathrm{mW/mm^2}$, die aus dem Vakuum senkrecht auf einen Glashalbraum ($\epsilon=2.25,\,\mu=1$) trifft. Eine Reflexion wird durch eine Antireflexbeschichtung unterdrückt, so dass die gesamte Intensität in das Glas eintritt. Im Vakuum wird die elektrische Feldstärke beschrieben durch $E(x,t)=E_0\cos(kx-\omega t)$ und die magnetische Feldstärke durch $B(x,t)=B_0\cos(kx-\omega t)$. Berechnen Sie zunächst E_0 und E_0 im Vakuum. Welche Werte nehmen diese Größen im Glas an? Wie ändern sich die mit dem elektrischen und magnetischen Feld verbundenen Energiedichten?

Hinweis: Wegen der Beschichtung ist die Anwendung der Kontinuitätsbedingungen hier nicht sinnvoll.

Aufgabe 2: (4 Punkte)

Wie ändert sich die Reflexion an einem dünnen Glasplättchen, wenn deren Dicke d immer kleiner gewählt wird? Dazu betrachten wir ein Plättchen mit Brechungsindex n=1.5, dass unter senkrechtem Einfall mit Licht der Vakuumwellenlänge λ_0 bestrahlt. Zur näherungsweisen Berechnung der Reflexion als Funktion von d betrachten wir nur die beiden Teilstrahlen $E_{\rm r1}$ und $E_{\rm r2}$ (keine Vielfachreflexionen; vgl. Abbildung) und nehmen einfachheitshalber an, dass diese bei ihrer Überlagerung außerhalb des Plättchens bei x=0 gleiche Am-

plituden haben. Zeigen Sie, dass die Reflexionsintensität I_r proportional ist zu $\sin^2(2\pi nd/\lambda_0)$. Wie groß ist dann I_r und der Phasensprung der reflektierten Welle für $d \ll \lambda$?

Aufgabe 3: (4 Punkte)

Ein Taucher in 40 m Wassertiefe erzeugt durch Ausatmen eine $V_0=15\,\mathrm{cm}^3$ große Luftblase der Temperatur $T_0=37^\circ\mathrm{C}$. Berechnen Sie das Volumen V_1 der Blase bei Erreichen der Wasseroberfläche für zwei Extremfälle: a) Es findet kein Wärmeaustausch zwischen Luft und Wasser statt; b) die Luft hat bei Erreichen der Oberfläche die Wassertemperatur $T_1=16^\circ\mathrm{C}$ angenommen. Der Außendruck sei $P_1=1013\,\mathrm{hPa}$.

Hinweis: Der Adiabatenkoeffizient von Luft ist $\kappa = 1.4$.

Aufgabe 4: (4 Punkte)

Die Luft in einer am Ausgang verschlossenen zylindrischen Fahrradpumpe mit Stempelfläche $A=5\,\mathrm{cm^2}$ wird ausgehend von der Temperatur $T_0=20\,^\circ\mathrm{C}$, dem Druck $P_0=1013\,\mathrm{hPa}$ und dem Volumen $V_0=200\,\mathrm{cm^3}$ auf $V=V_0/3$ adiabatisch komprimiert. Man nehme an, die Pumpe arbeite ohne Reibungsverluste und die Luft verhalte sich wie ein ideales Gas mit Adiabatenkoeffizient $\kappa=1.4$. Berechnen Sie den Temperaturanstieg ΔT des Gases, die zur Komprimierung aufgewandte Arbeit W sowie die bei maximaler Kompression benötigte Kraft F. Leiten Sie dafür zunächst die entsprechenden Endformeln als Funktion der Ausgangsgrößen und der Kompressionszahl $K=V_0/V$ her.