Vorlesung 16+17:

Roter Faden:

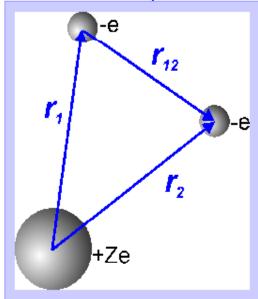
Mehrelektron-Atome Periodensystem

Folien auf dem Web:

http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Siehe auch:

http://www.wmi.badw.de/teaching/Lecturenotes/index.html


http://www.uni-stuttgart.de/ipf/lehre/online-skript/

Zusammenfassung

- Bei Atomen mit mehreren Elektronen führt die elektrostatische Wechselwirkung zwischen den Elektronen dazu, dass das gesamte Potenzial nicht mehr kugelsymmetrisch ist.
- Für die Besetzung der Zustände eines Mehrelektronenatoms gilt das Pauli-Prinzip, für das man folgende äquivalente Formulierungen angeben kann:
 - Die Gesamtwellenfunktion aller Elektronen muss antisymmetrisch gegenüber Vertauschung zweier Elektronen sein.
 - Ein atomarer Zustand, der durch die 4 Quantenzahlen n (Hauptquantenzahl), i (Bahndrehimpulsquantenzahl), m Bahndrehimpulsorientierungsquantenzahl) und m_s (Spinorientierungsquantenzahl) charakterisiert ist, kann nur von einem Elektron besetzt werden.
- Die Besetzung der möglichen Elektronenzustände eines Mehrelektronenatoms erfolgt unter Berücksichtigung des Pauli-Prinzips und der Energieminimierung.
- In der Elektronenhülle von Mehrelektronenatomen fassen wir Zustände mit gleicher Hauptquantenzahl in Schalen (n = 1,2,3,4,... ⇔ K,L,M,N,...) zusammen, solche mit gleicher Haupt- und Bahndrehimpulsquantenzahl in Unterschalen (l = 0,1,2,3,... ⇔ s,p,d,f,...) zusammen.
- Der Schalenaufbau der Atome wird durch die Abhängigkeit der Ionisierungsenergie und der Atomvolumina von der Zahl der Elektronen in der Hülle widergespiegelt. Die Alkalimetalle haben von allen Atomen in der gleichen Periode die kleinsten Ionisierungsenergien und den größten Atomradius, die Edelgase die größten Ionisierungsenergien und den kleinsten Atomradius.

Helium-Atom

Atomkern mit Ladungszahl Z wird als unendlich schwerer Massenpunkt betrachtet.

Die potentielle Energie aller Elektronen ist:

$$E_{pot} = -\sum_{i} \frac{Ze^{2}}{4\pi\varepsilon_{0}r_{i}} + \sum_{j>i} \frac{e^{2}}{4\pi\varepsilon_{0}\left|\vec{r_{i}} - \vec{r_{j}}\right|}$$

wobei der 2.Term die Wechselwirkung der Elektronen untereinander berücksichtigt.

Die Schrödinger-Gleichung des Helium-Atoms

$$\left(-\frac{\hbar^2}{2m_e}(\Delta_1 + \Delta_2) + E_{pot}\right)\psi = E_{ges}\psi$$

mit der potentiellen Energie

$$E_{pot} = -\frac{Ze^2}{4\pi\varepsilon_0 r_1} - \frac{Ze^2}{4\pi\varepsilon_0 r_2} + \frac{e^2}{4\pi\varepsilon_0 |\vec{r_1} - \vec{r_2}|}$$

Modell unabhängiger Teilchen:

- Vernachlässige Elektron-Elektron-Wechselwirkung
- Lösungen wie im H-Atom

Bindungsenergie, je 1 Elektron in Zuständen a und b:

$$E = E_a + E_b = -R_H hcZ^2 \left(\frac{1}{n_a^2} + \frac{1}{n_b^2} \right)$$

Bei Helium im Grundzustand (beide Elektronen in 1S) ist E = $-2x2^2x13.6=-2x54,4=-108,8$ eV.

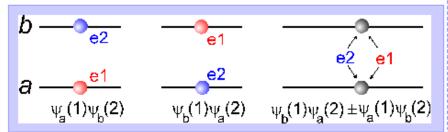
Tatsächliche Bindungsenergie: -24,6 eV für erstes Elektron, -54.4 eV für das zweite. Die Differenz folgt aus Abstoßung der beiden Elektronen

Wellenfunktion des Heliumatoms

Bahnanteil der Wellenfunktion

Wahrscheinlichkeit, Elektron 1 bei r_1 und Elektron 2 bei r_2 zu finden, wenn e1 im Zustand e1 und e2 in e1 ist:

$$\psi(r_1, r_2) = \psi_a(r_1)\psi_b(r_2) \equiv \psi_a(1)\psi_b(2)$$


Elektronen sind aber ununterscheidbar, die Wellenfunktion muss symmetrisiert werden.

Symmetrische Wellenfunktion

$$\psi_s(1,2) = (\psi_a(1)\psi_b(2) + \psi_a(2)\psi_b(1))/\sqrt{2}$$

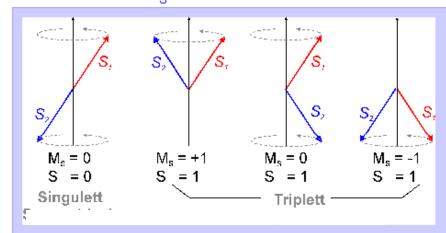
Antisymmetrische Wellenfunktion

$$\psi_A(1,2) = (\psi_a(1)\psi_b(2) - \psi_a(2)\psi_b(1))/\sqrt{2}$$

Die antisymmetrische Wellenfunktion verschwindet für a = b oder $r_1 = r_2$

daher geringere Abstoßung der Elektronen als bei $\Psi_{\rm S}$ und stärker Bindung

Spinanteil der Wellenfunktion


Symmetrische Wellenfunktion

$$\chi_{S}(1,2) = \begin{cases} \chi_{\uparrow}(1)\chi_{\uparrow}(2) \\ \chi_{\uparrow}(1)\chi_{\downarrow}(2) + \chi_{\uparrow}(2)\chi_{\downarrow}(1) \text{ //2} \\ \chi_{\downarrow}(1)\chi_{\downarrow}(2) \end{cases}$$

Gesamtspin S = 1, Projektion $M_S = 1,0,-1$

Antisymmetrische Wellenfunktion

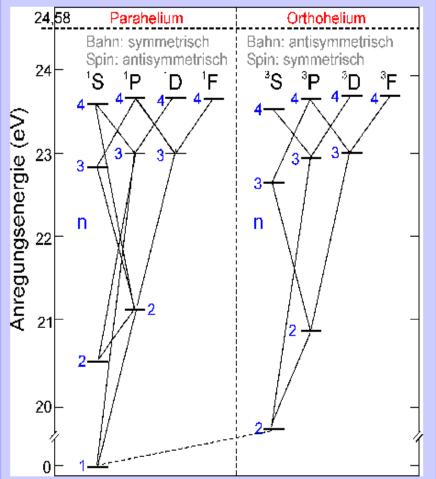
$$\chi_A(1,2)\sqrt{2} = \chi_{\uparrow}(1)\chi_{\downarrow}(2) - \chi_{\uparrow}(2)\chi_{\downarrow}(1)$$
 mit $S=0$ und $M_S=0$

Ortho- und Parahelium

Es gilt: Pauli-Postulat

Die Gesamtwellenfunktion der Elektronen muss antisymmetrisch sein.

Helium kann demnach in 2 Formen voliegen:


Parahelium (S=0)

- Spinfunktion antisymmetrisch
- Bahnfunktion symmetrisch
- Beide Elektronen können in 1S sitzen (Grundzustand)
- Beide Elektronen können am gleichen Ort sein (Abstoßung, geringere Bindungsenergie)
- Keine Feinaufspaltung der Linien

Orthohelium (S=1)

- Spinfunktion symmetrisch
- Bahnfunktion antisymmetrisch
- Im Grundzustand ist 2. Elektron in 2S
- Linien zeigen Feinstruktur (Tripletts, wegen Spin-Bahn-Kopplung)

Termschema

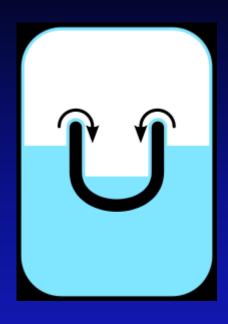
Ein Elektron sitzt in 1S. Die Quantenzahlen geben Gesamtbahnimpuls und Gesamtspin wieder. Die Linien des Ortho-Helium sind wegen S=1 und der Spin-Bahn-Wechselwirkung Tripletts.

Spin-Statistik-Theorem

Unter dem Spin-Statistik-Theorem versteht man die theoretische Begründung für die mehr oder weniger empirische Tatsache, dass alle Elementarteilchen mit halbzahligem Spin (sog. Fermionen) der Fermi-Dirac-Statistik folgen, und alle Teilchen mit ganzzahligem Spin (sog. Bosonen) hingegen der Bose-Einstein-Statistik.

Der Zusammenhang zwischen dem Spin (nicht-klassischer Eigendrehimpuls) eines Teilchens und seinem kollektiven Verhalten in einer Gruppe ununterscheidbarer Teilchen ist durchaus nicht trivial. Man beobachtet, dass sich bei Vertauschung zweier Bosonen ihre quantenmechanische Wellenfunktion nicht ändert, im Gegensatz zu den Fermionen bei denen in diesem Fall das Vorzeichen der Wellenfunktion wechselt.

Von Wolfgang Pauli stammt eine recht komplizierte Begründung dieses Sachverhalts, die allerdings auf nicht-elementare Methoden der relativistischen Quantenfeldtheorie zurückgreift. Quantisierung diese Statistiken daraus, dass man die Quantisierungsbedingung entweder mit Kommutatoren oder mit Antikommutatoren formuliert. Eine Begründung des Spin-Statistik-Theorems erhält man nur insofern, als man zeigen kann, dass die jeweilige Alternative nicht zu einer sinnvollen Theorie führt.


Das Bose-Einstein-Kondensat (Wiki)

Das Bose-Einstein-Kondensat ist ein extremer Aggregatzustand eines Systems ununterscheidbarer Teilchen, in dem sich der überwiegende Anteil der Teilchen im selben quantenmechanischen Zustand befindet. Das ist nur möglich, wenn die Teilchen Bosonen sind und somit der Bose-Einstein-Statistik unterliegen.

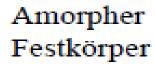
Bose-Einstein-Kondensate sind makroskopische Quantenobjekte, in denen Bosonen vollständig delokalisiert sind. einzelnen die Die Wahrscheinlichkeit jedes Bosons, es an einem bestimmten Punkt anzutreffen, ist also überall innerhalb des Kondensates gleich. Der Zustand kann daher durch eine einzige Wellenfunktion beschrieben werden.

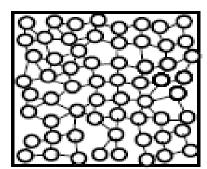
Daraus resultieren Eigenschaften wie Suprafluidität, Supraleitung oder makroskopische Entfernungen. Letztere Kohärenz über Interferenzexperimente mit Bose-Einstein-Kondensaten sowie Herstellung eines Atomlasers, den man durch kontrollierte Auskopplung eines Teils der Materiewelle aus der das Kondensat haltenden Falle erhalten kann.

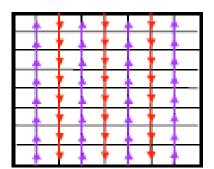
Unter 2.17K wird He superfluide, d.h. Viskosität=0 (He-II)

Helium II "kriecht" an der Wand des inneren Gefäßes hoch - nach einer gewissen Zeit würden sich die Flüssigkeitsstände in den Behältern angleichen. Der Rollin-Film bedeckt auch die Wand des großen Behälters, wäre er nicht geschlossen, so würde der Flüssigkeitsfilm durch jede Öffnung kriechen und so das Helium nach und nach entweichen.

Rollin-Film ist ein etwa 100 Atomschichten dicker Flüssigkeitsfilm um einen Körper, der aus den sehr geringen Kohäsionskräften (Anziehung von Flüssigkeitsteilchen untereinander) in einer Supraflüssigkeit und den deshalb im Vergleich dazu stärkeren Adhäsionskräften (Anziehung zwischen den Teilchen der Feststoffoberfläche und den Flüssigkeitsteilchen) resultiert.

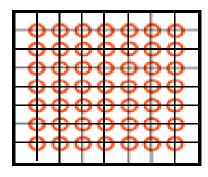

Auch Fermionen können durch Wechselwirkung sich zu Bosonen paaren-> Supraleitung, Superfluides ³He

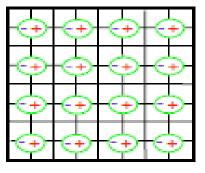

Im Gegensatz zu den bosonischen ⁴He-Atomen handelt es sich bei den Atomen des in der Natur selten vorkommenden ³He um Fermionen. Für diese gilt nicht die Bose-Einstein-Statistik, sondern die Fermi-Dirac-Statistik (=anti-symmetrische Wellenfunktion)


Für die ³He-Atome kann daher das Modell der Bose-Einstein-Kondensation nicht angewandt werden. Dennoch beobachtet man auch bei ³He suprafluide Eigenschaften. Dies ist jedoch kein Widerspruch, wenn man bei der Suprafluidität von ³He nicht von isolierten Atomen, sondern von der Kopplung zweier Atome ausgeht, sodass man analog zur Cooper-Paar-Bildung bei der Elektronen-Supraleitung hier bosonische ³He-Paare mit Spin 1 erhält (man kann verstehen, dass wegen der Schwäche dieser Kopplung die Sprungtemperatur etwa ein 1000-stel der von ⁴He beträgt).

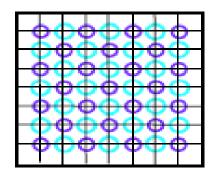
Zwei ³He-Atome können hierbei einen energetisch etwas niedrigeren (und deshalb etwas wahrscheinlicheren) Zustand einnehmen, wenn sich ihre magnetischen Kernmomente (Kernspins) gleichrichten (magn. Zustände) oder entgegengesetzt richten (nichtmagn. Zustand).

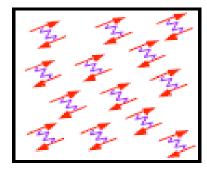
Supraleitung (= Verschwinden des elektrischen Widerstandes, wenn Elektronenspins sich ausrichten)





Magnetische Ordnung


Kristall



Elektrische Ordnung

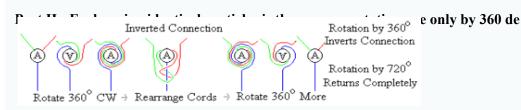
Überstruktur

Supraleiter Cooper-Paare (Bosonen, S=0)

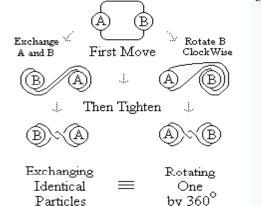
http://newton.umsl.edu/philf//candles.html

Part I - Fermion wavefunctions anti-symmetric under 360 degree rotation AKA "2 turns are better than 1".

Lahbar values for spin, while others (like electrons, protons and neutrons) can have only half-integral hbar values. The wierd thing about the half-integral spin particles (also known as fermions) is that when you rotate one of them by 360 degrees, it's wavefunction changes sign. For integral spin particles (also known as bosons), the wavefunction is unchanged.


The mathematical origins for this property were discovered in the early part of this century, and are often derived by solving an eigenvalue problem with Pauli spin matrices (cf. Shiff, *Quantum Mechanics*, McGraw-Hill 1968 p. 205). One finds that the 360 degree rotation operator multiplies a wavefunction by $\text{Exp}[i \times 2\pi \times spin]$, which is -1 if *spin* is half-integral. However, reasons to suspect this might be the case were already in the hands of Balinese candle dancers, who for centuries have known that 360 degree rotations are incomplete when it comes to your connection to the outside world.

You can convince yourself of this by trying to rotate your hand palm-side up by 360 degrees. A second 360 degree rotation in the same direction is needed to undo the arm twist that results from the first. The drawing below illustrates the effect as well. Note that three strings are needed to make it rigorous.


Half-integral spin particles thus seem to be somehow connected to the world around in such a way that their wavefunction's deBroglie phase is inverted after a 360 degree rotation, as in the diagram above. Quantum mechanics confirms this connection by associating with these particles half-integral "intrinsic" spin

angular-momenta. Fortunately, this particular wierd thing is not true for extended spinning objects, like us. Oth

turns during a dance, to make sure the number is even at the end of the night!

Part III - The 2-particle wavefunction for identical fermions is anti-symmetric under particle exchange.

Part IV - Two-particle wavefunctions don't exist for identical fermions in the same state.

 $A_{A}[x]$ and $\Psi_{B}[x]$ from above therefore combine to make the anti-symmetric 2-particle wavefunction $\Psi_{2}[x_{1},x_{2}] = (\Psi_{A}[x_{1}]\Psi_{B}[x_{2}] - \Psi_{B}[x_{1}]\Psi_{A}[x_{2}])/\sqrt{2}$. Moreover if state A and state B are the same state, subscripts in the foregoing expression become identical and one finds that $\Psi_{2}[x_{1},x_{2}]$ is zero everywhere! In other words, sharing states between identical fermions is not a choice, and quantum mechanics, if anything, is about choices.

Zusammenfassung-I

- Bei Atomen mit mehreren Elektronen führt die elektrostatische Wechselwirkung zwischen den Elektronen dazu, dass das gesamte Potenzial nicht mehr kugelsymmetrisch ist.
- Für die Besetzung der Zustände eines Mehrelektronenatoms gilt das Pauli-Prinzip, für das man folgende äquivalente Formulierungen angeben kann:
 - Die Gesamtwellenfunktion aller Elektronen muss antisymmetrisch gegenüber Vertauschung zweier Elektronen sein.
 - Ein atomarer Zustand, der durch die 4 Quantenzahlen n (Hauptquantenzahl), l
 (Bahndrehimpulsquantenzahl), m Bahndrehimpulsorientierungsquantenzahl) und m_s
 (Spinorientierungsquantenzahl) charakterisiert ist, kann nur von einem Elektron besetzt werden.
- Die Besetzung der möglichen Elektronenzustände eines Mehrelektronenatoms erfolgt unter Berücksichtigung des Pauli-Prinzips und der Energieminimierung.
- In der Elektronenhülle von Mehrelektronenatomen fassen wir Zustände mit gleicher Hauptquantenzahl in Schalen (n = 1,2,3,4,... ⇔ K,L,M,N,...) zusammen, solche mit gleicher Haupt- und Bahndrehimpulsquantenzahl in Unterschalen (l = 0,1,2,3,... ⇔ s,p,d,f,...) zusammen.
- Der Schalenaufbau der Atome wird durch die Abhängigkeit der Ionisierungsenergie und der Atomvolumina von der Zahl der Elektronen in der Hülle widergespiegelt. Die Alkalimetalle haben von allen Atomen in der gleichen Periode die kleinsten Ionisierungsenergien und den größten Atomradius, die Edelgase die größten Ionisierungsenergien und den kleinsten Atomradius.

Besetzungszahlen

n = 1 2 3 4 5

Schale	K	L	M	N	0
Maximale Elektronen- zahl in der Schale	2	8	18	32	50
Elektronenzahl in den Unterschalen	1s 2	2s 2p 2 6	3s 3p 3d 2 6 10	4s 4p 4d 4f 2 6 10 14	5s 5p 5d 5f 5g 2 6 10 14 18
Gesamtzahl aller Elektronen bis zur gefüllten Schale	2	10	28	60	110

Notation für Elektronenkonfiguration:

 $[n \ {
m als} \ {
m Zahl}] \ [l \ {
m als} \ {
m Buchstabe}]^{{
m Zahl} \ {
m der} \ {
m Elektronen}}$

z.B. $1s^2$ für He oder $1s^22s^22p^2$ für Kohlenstoff.

Elektronenanordnung im Grundzustand

Sc	hal	е	ĸ	L	-		М		N	Sch	ale		K	L	-	М			N			C)
Z		Element	1s	2s	2p	3s	3р	3d	4s	z		Element	1s	2s	2p	3s	3р	3d	4s	4р	4d	5s	5p
1 2	H He	Wasserstoff Helium	1 2							28 29 30		Nickel Kupfer Zink	2 2 2	2 2 2	6 6 6	2 2 2	6 6	8 10 10	2 1 2				
3 4 5 6 7 8 9		Lithium Beryllium Bor Kohlenstoff Stickstoff Sauerstoff Fluor	2 2 2 2 2 2	1 2 2 2 2 2 2	1 2 3 4 5					31 32 33 34 35 36	Ga Ge Ar Se Br Kr	Gallium Germanium Arsen Selen Brom Krypton	2 2 2 2 2	2 2 2 2 2	6 6 6 6 6	2 2 2 2 2	6 6 6 6 6	10 10 10 10 10 10	2 2 2 2 2	1 2 3 4 5 6			
10	Ne	Neon	2	2	6					37		Rubidium	2	2	6	2	6	10	2	6		1	
11 12 13 14 15 16 17 18	Mg Al Si P S Cl Ar	Natrium Magnesium Aluminium Silizium Phosphor Schwefel Chlor Argon Kalium Calcium	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6 6 6		1 2	38 39 40 41 42 43 44 45 46 47 48	Mo Tc	Strontium Yttrium Zirkonium Niob Molybdän Technetium Ruthenium Rhodium Palladium Silber Cadmium	2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	6666666666	2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10	2 2 2 2 2 2 2 2	6666666666	1 2 4 5 6 7 8 10 10	2 2 1 1 1 1 1 2	
21 20 23 24 25 26 27	Mn Fe	Scandium Titan Vanadium Chrom Mangan Eisen Kobalt	2 2 2 2 2 2 2	2 2 2 2 2 2 2	6 6 6 6 6	2 2 2 2 2 2 2	6 6 6 6 6	1 2 3 5 5 6 7	2 2 1 2 2 2	49 50 51 52 53 54	Sn Sb Te I	Indium Zinn Antimon Tellur Iod Xenon	2 2 2 2 2 2	2 2 2 2 2 2	6 6 6 6	2 2 2 2 2 2	6 6 6 6 6	10 10 10 10 10 10	2 2 2 2 2 2	6 6 6 6 6	10 10 10 10 10 10	2 2 2 2 2 2	1 2 3 4 5 6

Große Drehimpulse = maximale Abschirmung = geringe Bindung

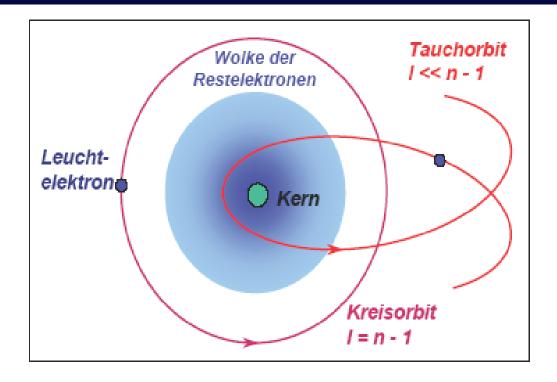


Abbildung 7.3: Zur Veranschaulichung der Aufhebung der l-Entartung mit Hilfe des Sommerfeldschen Modells. Für l = n-1 haben wir es mit einem Orbital zu tun, das einer klassischen Kreisbahn sehr nahe kommt. Für $l \ll n-1$ hingehen ist das Sommerfeldsche Orbit sehr stark elliptisch. Das Elektron kommt auf seiner "Tauchbahn" dem unabgeschirmten Kern häufiger sehr nahe, was auf Grund der Attraktivität der Wechselwirkung zu einer Absenkung der Energieniveaus führt.

Reihenfolge der Besetzung im Periodensystem

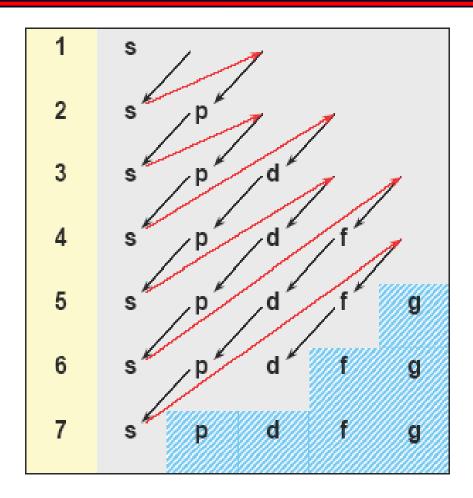
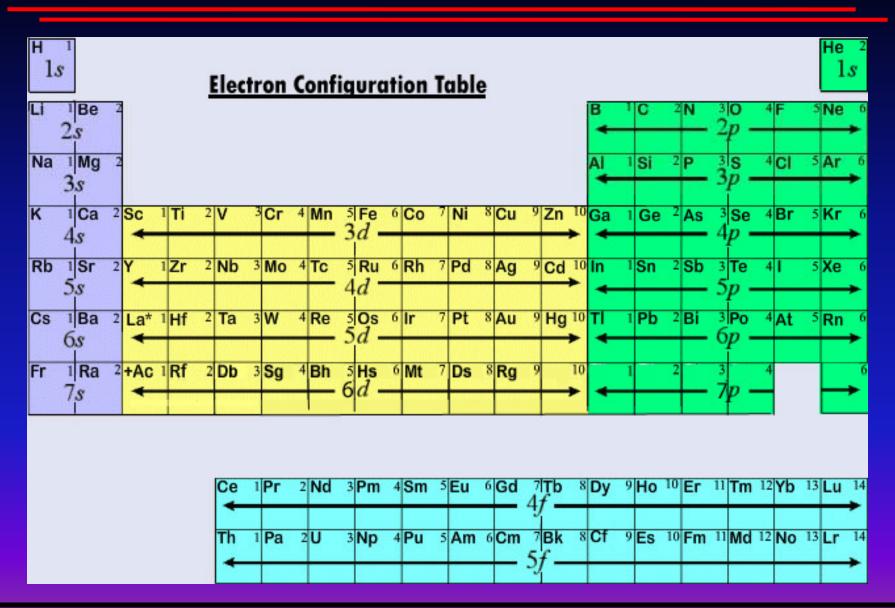


Abbildung 7.9: Graphisches Merkverfahren zur energetischen Abfolge der Einteilchenniveaus. Die Zahlen geben die Schale an, die Buchstaben die zu jeder Schale gehörigen Unterschalen. Die schraffiert hinterlegten Niveaus werden im Grundzustand der stabilen Atome nicht mehr besetzt.

Elektronenanordnung im Grundzustand

Sch	nale		N		()		Р		Sch	nale	
Z		Element	4f	5s	5р	5d	5f	6s		Z		Ε
55	Cs	Cäsium		2	6			1	I	80	Hg	Q
56	Ва	Barium		2	6			2	I	81	TI	Т
57	La	Lanthan		2	6	1		2	I	82	Pb	В
58	Се	Cer	2	2	6			2	I	83	Bi	В
59	Pr	Praseodym	3	2	6			2	I	84	Ро	Р
60	Nd	Neodym	4	2	6			2	I	85	At	Α
61	Pm	Promethium	5	2	6			2	I	86	Rn	R
62	Sm	Samarium	6	2	6			2	I	87	Fr	Fi
63	Eu	Europium	7	2	6			2	I	88	Ra	R
64	Gd	Gadolinium	7	2	6	1		2	I	89	Ac	Α
65	Tb	Terbium	9	2	6			2	I	90	Th	Т
66	Dу	Dysprosium	10	2	6			2	I	91	Ра	Р
67	Но	Holmium	11	2	6			2	I	92	U	U
68	Er	Erbium	12	2	6			2	I	93	Np	N
69	Tm	Thulium	13	2	6			2	I	94	Pu	Р
70	Yb	Ytterbium	14	2	6			2	I	95	Am	Α
71	Lu	Lutetium	14	2	6	1		2	I	96	Cm	С
72	Hf	Hafnium	14	2	6	2		2	I	97	Bk	В
73	Та	Tantal	14	2	6	3		2	I	98	Cf	С
74	w	Wolfram	14	2	6	4		2		99	Es	Ε
75	Re	Rhenium	14	2	6	5		2		100	Fm	F
76	Os	Osmium	14	2	6	6		2		101	Md	М
77	Ir	Iridium	14	2	6	7		2		102	No	N
78	Pt	Platin	14	2	6	9		1		103	Lr	L
79	Au	Gold	14	2	6	10		1		104	Rf	R

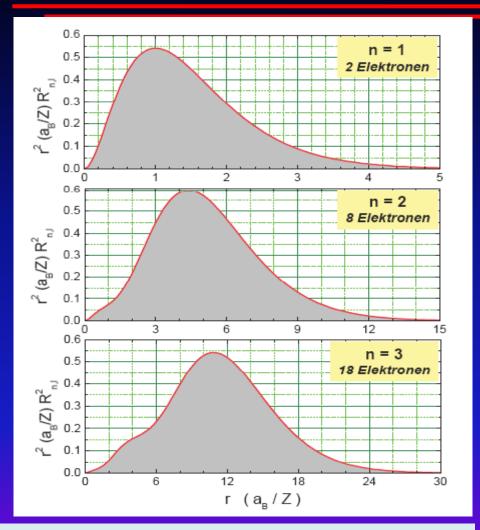
Scł	nale		N		()			Р		Q
Z		Element	4f	5s	5р	5d	5f	6s	6р	6d	7s
80	Hg	Quecksilber	14	2	6	10		2			
81	TI	Thallium	14	2	6	10		2	1		
82	Pb	Blei	14	2	6	10		2	2		
83	Bi	Bismut	14	2	6	10		2	3		
84	Ро	Polonium	14	2	6	10		2	4		
85	At	Astat	14	2	6	10		2	5		
86	Rn	Radon	14	2	6	10		2	6		
87	Fr	Francium	14	2	6	10		2	6		1
88	Ra	Radium	14	2	6	10		2	6		2
89	Ac	Actinium	14	2	6	10		2	6	1	2
90	Th	Thorium	14	2	6	10		2	6	2	2
91	Ра	Protactinium	14	2	6	10	2	2	6	1	2
92	U	Uran	14	2	6	10	3	2	6	1	2
93	Np	Neptunium	14	2	6	10	5	2	6		2
94	Pu	Plutonium	14	2	6	10	6	2	6		2
95	Am	Americium	14	2	6	10	7	2	6		2
96	Cm	Curium	14	2	6	10	7	2	6	1	2
97	Bk	Berkelium	14	2	6	10	8	2	6	1	2
98	Cf	Californium	14	2	6	10	10	2	6		2
99	Es	Einsteinium	14	2	6	10	11	2	6		2
100	Fm	Fermium	14	2	6	10	12	2	6		2
101	Md	Mendelevium	14	2	6	10	13	2	6		2
102	No	Nobelium	14	2	6	10	14	2	6		2
103	Lr	Lawrencium	14	2	6	10	14	2	6	1	2
104	Rf	Rutherfordium	14	2	6	10	14	2	6	2	2

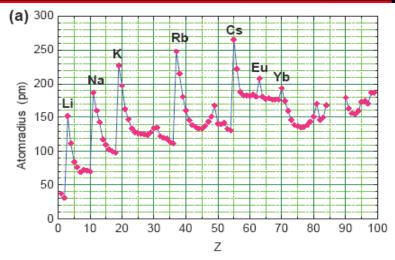

Zusammenfassung-I

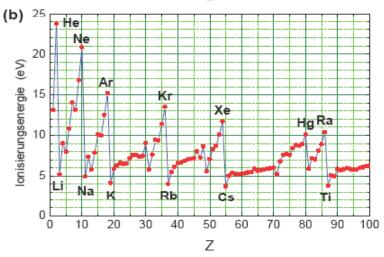
- Bei Atomen mit mehreren Elektronen führt die elektrostatische Wechselwirkung zwischen den Elektronen dazu, dass das gesamte Potenzial nicht mehr kugelsymmetrisch ist.
- Für die Besetzung der Zustände eines Mehrelektronenatoms gilt das Pauli-Prinzip, für das man folgende äquivalente Formulierungen angeben kann:
 - Die Gesamtwellenfunktion aller Elektronen muss antisymmetrisch gegenüber Vertauschung zweier Elektronen sein.
 - Ein atomarer Zustand, der durch die 4 Quantenzahlen n (Hauptquantenzahl), l
 (Bahndrehimpulsquantenzahl), m Bahndrehimpulsorientierungsquantenzahl) und m_s
 (Spinorientierungsquantenzahl) charakterisiert ist, kann nur von einem Elektron besetzt werden.
- Die Besetzung der möglichen Elektronenzustände eines Mehrelektronenatoms erfolgt unter Berücksichtigung des Pauli-Prinzips und der Energieminimierung.
- In der Elektronenhülle von Mehrelektronenatomen fassen wir Zustände mit gleicher Hauptquantenzahl in Schalen (n = 1,2,3,4,... ⇔ K,L,M,N,...) zusammen, solche mit gleicher Haupt- und Bahndrehimpulsquantenzahl in Unterschalen (l = 0,1,2,3,... ⇔ s,p,d,f,...) zusammen.
- Der Schalenaufbau der Atome wird durch die Abhängigkeit der Ionisierungsenergie und der Atomvolumina von der Zahl der Elektronen in der Hülle widergespiegelt. Die Alkalimetalle haben von allen Atomen in der gleichen Periode die kleinsten Ionisierungsenergien und den größten Atomradius, die Edelgase die größten Ionisierungsenergien und den kleinsten Atomradius.

Periodensystem mit Untergruppen

Periode		upt- open												Hau	ptç	grup	ppei	n
	1 IA	2 IIA											13 IIIA	14 IVA			17 VIIA	18 VIIIA
1	1 <u>H</u> 1.008																	2 <u>He</u> 4.003
2	3 <u>Li</u> 6.941	4 <u>Be</u> 9.012			1	Neb	eng	rup	pen				5 <u>B</u> 10.81	6 <u>C</u> 12.01	7 <u>N</u> 14.01	8 <u>O</u> 16.00	9 <u>F</u> 19.00	10 <u>Ne</u> 20.18
3	11 <u>Na</u> 22.99	12 <u>Mg</u> 24.31	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	11 IB	12 IIB	13 <u>Al</u> 26.98	14 Si 28.09	15 <u>P</u> 30.97	16 <u>S</u> 32.07	17 <u>CI</u> 35.45	18 <u>Ar</u> 39.95	
4	19 <u>K</u> 39.10	20 <u>Ca</u> 40.08	21 SC 44.96	22 Ti 47.88	23 <u>V</u> 50.94	24 <u>Cr</u> 52.00	25 <u>Mn</u> 54.94	26 <u>Fe</u> 55.85	30 <u>Zn</u> 65.39	31 <u>Ga</u> 69.72	32 <u>Ge</u> 72.59	33 <u>As</u> 74.92	34 <u>Se</u> 78.96	35 <u>Br</u> 79.90	36 <u>Kr</u> 83.80			
5	37 <u>Rb</u> 85.47	38 <u>Sr</u> 87.62	39 <u>Y</u> 88.91	40 <u>Zr</u> 91.22	41 Nb 92.91	42 <u>Mo</u> 95.94	43 <u>T C</u> (98)	44 <u>Ru</u> 101.1	45 <u>Rh</u> 102.9	46 Pd 106.4	47 Ag 107.9	48 <u>Cd</u> 112.4	49 <u>In</u> 114.8	50 <u>Sn</u> 118.7	51 Sb 121.8	52 <u>Te</u> 127.6	53 <u> </u> 126.9	54 <u>Xe</u> 131.3
6	55 <u>Cs</u> 132.9	56 <u>Ba</u> 137.3	57 <u>La</u> * 138.9	72 <u>Hf</u> 178.5	73 <u>Ta</u> 180.9	74 <u>VV</u> 183.9	75 <u>Re</u> 186.2	76 <u>Os</u> 190.2	77 <u> r</u> 190.2	78 <u>Pt</u> 195.1	79 <u>Au</u> 197.0	80 <u>H g</u> 200.5	81 <u>TI</u> 204.4	82 <u>P b</u> 207.2	83 <u>Bi</u> 209.0	84 <u>P o</u> (210)	85 <u>At</u> (210)	86 <u>Rn</u> (222)
7	87 <u>Fr</u> (223)	88 <u>Ra</u> (226)	89 <u>Ac</u> (227)	104 Rf (257)	105 Db (260)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 0	111 	112 		114 0		116 		118
														kün	stli	ch e	rze	ugt
Lanthai	nideı	n *	58 <u>Ce</u> 140.1	59 <u>Pr</u> 140.9	60 Nd 144.2	61 Pm (147)	62 Sm 150.4	63 <u>Eu</u> 152.0	64 <mark>Gd</mark> 157.3	65 Tb 158.9	66 Dy 162 5	67 Ho 164.9	68 <u>Er</u> 167.3	69 Tm 168.9	Υb	71 <u>Lu</u> 175.0		
Actinio	den	•	90 Th 232.0	91 Pa (231)	92 <u>U</u> (238)	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	98 <u>C f</u> (249)	99 Es (254)	100 Fm (253)	101 Md (256)	102 N o (254)	103 <u>Lr</u> (257)			


Periodensystem mit Elektronen-Konfiguration




Zusammenfassung-I

- Bei Atomen mit mehreren Elektronen führt die elektrostatische Wechselwirkung zwischen den Elektronen dazu, dass das gesamte Potenzial nicht mehr kugelsymmetrisch ist.
- Für die Besetzung der Zustände eines Mehrelektronenatoms gilt das Pauli-Prinzip, für das man folgende äquivalente Formulierungen angeben kann:
 - Die Gesamtwellenfunktion aller Elektronen muss antisymmetrisch gegenüber Vertauschung zweier Elektronen sein.
 - Ein atomarer Zustand, der durch die 4 Quantenzahlen n (Hauptquantenzahl), l
 (Bahndrehimpulsquantenzahl), m Bahndrehimpulsorientierungsquantenzahl) und m_s
 (Spinorientierungsquantenzahl) charakterisiert ist, kann nur von einem Elektron besetzt werden.
- Die Besetzung der möglichen Elektronenzustände eines Mehrelektronenatoms erfolgt unter Berücksichtigung des Pauli-Prinzips und der Energieminimierung.
- In der Elektronenhülle von Mehrelektronenatomen fassen wir Zustände mit gleicher Hauptquantenzahl in Schalen (n = 1,2,3,4,... ⇔ K,L,M,N,...) zusammen, solche mit gleicher Haupt- und Bahndrehimpulsquantenzahl in Unterschalen (l = 0,1,2,3,... ⇔ s,p,d,f,...) zusammen.
- Der Schalenaufbau der Atome wird durch die Abhängigkeit der Ionisierungsenergie und der Atomvolumina von der Zahl der Elektronen in der Hülle widergespiegelt. Die Alkalimetalle haben von allen Atomen in der gleichen Periode die kleinsten Ionisierungsenergien und den größten Atomradius, die Edelgase die größten Ionisierungsenergien und den kleinsten Atomradius.

Abgeschlossene Schalen

Elektronendichte bei vollen Schalen (Z=2,10,28 für n=1,2,3)

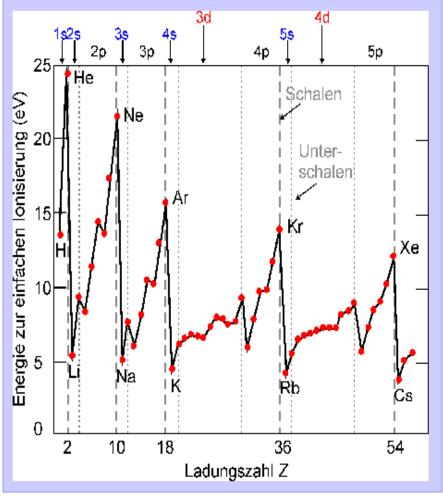
Atomradien und Ionisierungsenergie

Aufbau des Periodensystems

In Modell unabhängiger Teilchen entsteht das Periodensystem durch Auffüllen der Niveaus unter Berücksichtigung folgender Regeln:

Pauli-Prinzip

Zwei Elektronen dürfen nicht Zustände mit den gleichen Quantenzahlen einnehmen.


Hundsche Regel

Äquivalente Niveaus werden so besetzt, dass der Gesamtspin maximal ist (keine strenge Regel).

Nomenklatur:

- Einelektronenniveaus gegeben durch n,l,m,m_S
- ▶ Äquivalent sind Elektronen mit gleichem n, l
- ▶ Schreibweise bei X äquivalenten Elektronen: *nl*×
- ► Schalenabschlüsse bei 2,10,18,36,54,86,118 Elektronen sind besonders stabil mit Gesamtdrehimpuls *J*=0.
- Unterschalen bei Auffüllung aller Niveaus mit n,l

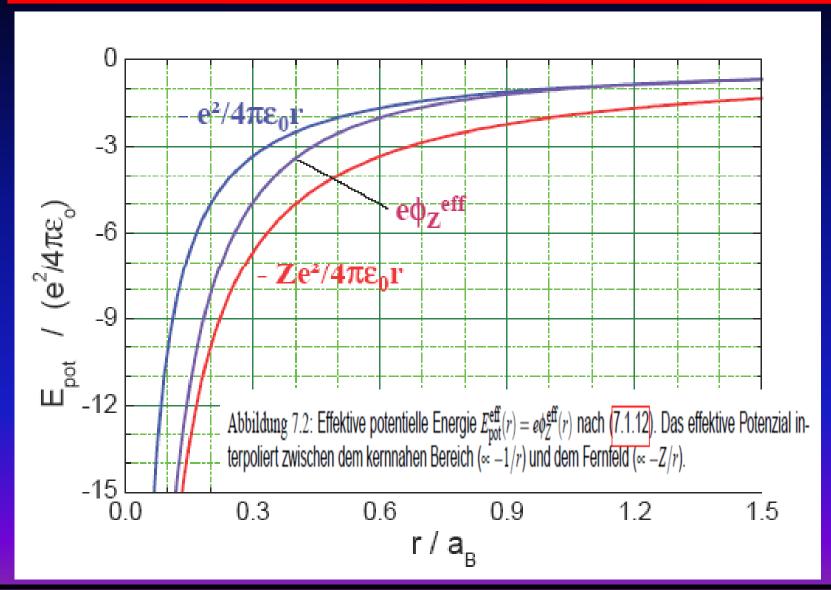
Bindungsenergie des äußersten Elektrons

Interaktives Periodensystem

http://www.periodensystem.info/elemente/

Zusammenfassung - II

- In einem Modell unabhängiger Elektronen nähert man man die Wechselwirkung eines Elektrons mit der Kernladung +Ze und den verbleibenden (Z – 1) anderen Elektronen durch ein effektives kugelsymmetrisches Potenzial. Dadurch wird das Problem für jedes einzelne Elektron auf ein Einteilchenproblem reduziert. Eine numerische Berechnung kann mit Hilfe des Hartree-Verfahren erfolgen. Die Vielelektronenwellenfunktion wird durch eine antisymmetrische Linearkombination von Produkten von Einelektronenfunktionen angenähert.
- Die Reihenfolge bei der Kopplung der Drehimpulse hängt von der Größe der beteiligten Wechselwirkungen ab:
 - L-S-Kopplung:


Bei leichten Kernen ist die Spin-Bahn-Kopplung schwach, es koppeln zuerst alle Bahndrehimpulse zum Gesamtdrehimpuls $\mathbf{L} = \sum \mathbf{l}_i$ und alle Spin zum Gesamtspin $\mathbf{S} = \sum \mathbf{s}_i$. Erst anschließend koppeln \mathbf{L} und \mathbf{S} zum Gesamtdrehimpuls \mathbf{J} des Atoms.

2. j-j-Kopplung:

Bei schweren Kernen ist die Spin-Bahn-Kopplung stark, es koppeln zuerst alle Bahndrehimpulse und Spins der einzelnen Elektronen zu den Gesamtdrehimpuls $j_i = l_i + s_i$ der einzelnen Elektronen. Anschließend koppeln dann die verschiedenen j_i zum Gesamtdrehimpuls $J = \sum j_i$ des Atoms.

 Für das Auffinden des Drehimpulszustandes des Grundzustandes eines Atoms können die Hundschen Regeln verwendet werden:

Effektives Potential bei mehreren Elektronen

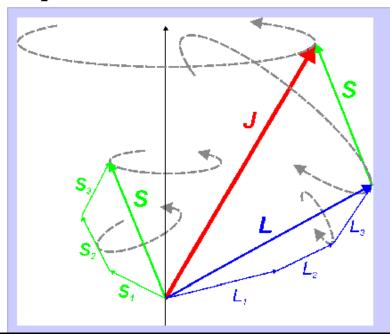
LS-Kopplung

Bahndrehimpulse der Elektronen koppeln zu

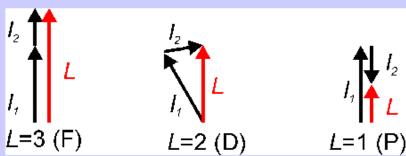
$$\vec{L} = \sum \vec{L_i}$$
; $|\vec{L}| = \sqrt{l(l+1)}\hbar$

Spins der Elektronen koppeln zu Gesamtspin

$$\vec{S} = \sum \vec{S}_i$$
; $|\vec{S}| = \sqrt{s(s+1)}\hbar$


Der Gesamtdrehimpuls ist

$$\vec{J} = \vec{L} + \vec{S}$$


mit

$$\left| \vec{J} \right| = \sqrt{J(J+1)}\hbar$$

$$J_z = M\hbar; \quad M = J, J - 1, ..., -J$$

Beispiel: 2 Elektronen mit $I_1 > I_2$ Mögliche Werte für $L: I_1 + I_2, I_1 + I_2 - 1 \dots I_1 - I_2$

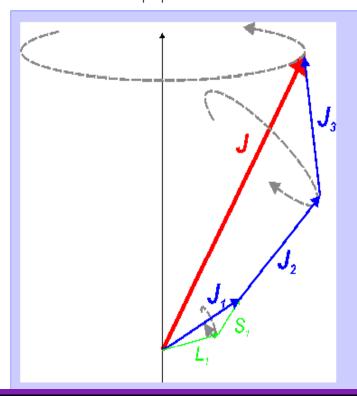
Hierbei handelt es sich nicht um die Drehimpulsvektoren, sondern um eine symbolische Addition der Quantenzahlen.

Term: alle Zustände mit gleichem L und S.

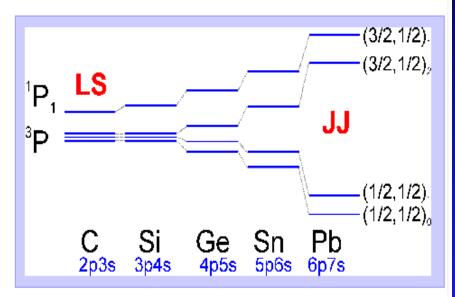
Spin-Bahn-Kopplung \rightarrow (2S+1) Kombinationen: J = L+S, L+S-1 ... L-S (Multipletts)

- ▶ 2 Elektronen: S=0 (Singulett) oder S=1 (Triplett)
- ► 3 Elektronen: S=1/2 (Doublett) oder S=3/2 (Quartett)
- ▶ 4 Elektronen: S=0 oder S=1 oder S=2 (Quintett)

Notation:


JJ-Kopplung

Mit steigender Kernladungszahl Z wird Spin-Bahn-Kopplung einzelner Elektronen stärker.


$$\vec{J}_i = \vec{L}_i + \vec{S}_i$$

Die J_i Koppeln zum Gesamtdrehimpuls des Atoms:

$$\vec{J} = \sum \vec{J}_i$$
; $|\vec{J}| = \sqrt{J(J+1)}\hbar$

LS- und JJ-Kopplung gibt es nur bei leichten bzw. schweren Atomen in Reinform. Die Niveaus im Übergangsbereich lassen sich nicht einfach zuordnen.

Notation: $(J1, J2, J3)_{\perp}$

Vergleich LS und JJ Kopplung

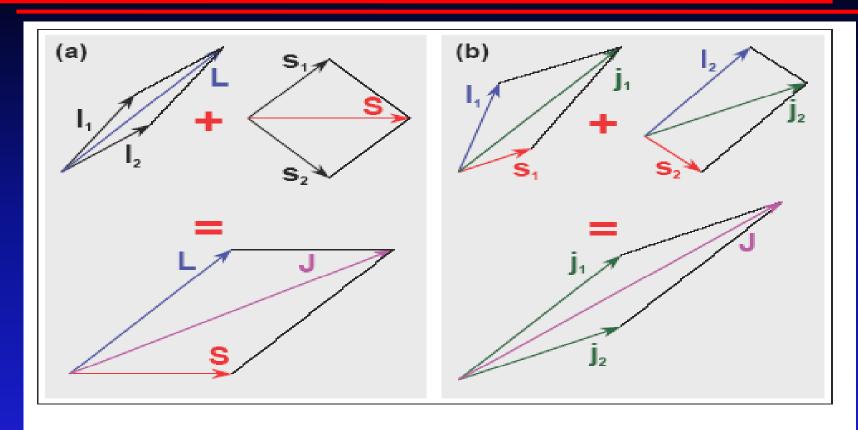
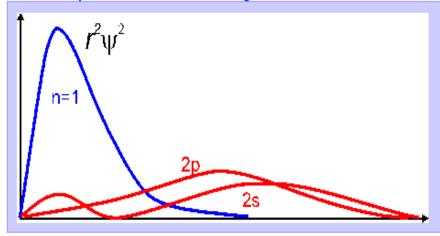


Abbildung 7.5: Vektormodell der L-S-Kopplung (a) und der j-j-Kopplung (b).

Insgesamt ergibt sich damit folgende spektroskopische Notation:

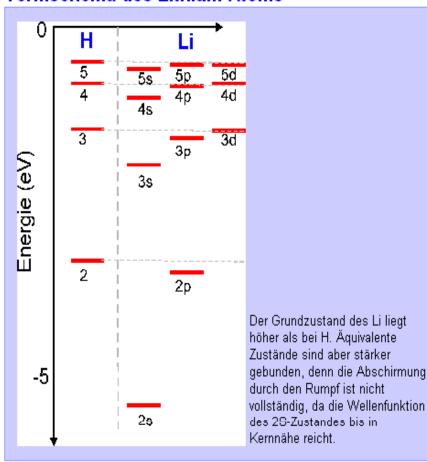
$$^{2S+1}L_{J} \qquad \qquad L=S,\; P,\; D,\; F,\; \ldots \eqno(7.3.8)$$

Es sei hier nochmals darauf hingewiesen, dass diese Notation natürlich L-S-Kopplung voraussetzt.


Atome mit 1 Valenzelektron

Abgeschlossene Schalen bilden Rumpf mit L=0, S=0.

Elektronen außerhalb (Valenzelektronen) bestimmen


- chemische Eigenschaften
- ► metallische Eigenschaften
- magnetische Eigenschaften

Der Rumpf schirmt Kernladung teilweise ab.

Atome mit 1 Valenzelektron (Li, Na ...)
haben wasserstoffähnliche Spektren. Äquivalente
Niveaus sind aber stärker gebunden als im H-Atom.

Termschema des Lithium-Atoms

Atome mit 2 Valenzelektronen (Be, Mg ...) treten, wie Helium, in zwei Zuständen (Singulett und Triplett) auf.

Elektronenanordnung im Grundzustand

Scl	hale	е	K	L	-		М		N	Sch	ale		K	L	-		M			N		(0
z		Element	1s	2s	2p	3s	3р	3d	4s	z		Element	1s	2s	2p	3s	3р	3d	4s	4р	4d	5s	5р
1 2		Wasserstoff Helium	1 2							28 29 30		Nickel Kupfer Zink	2 2 2	2 2 2	6 6	2 2 2	6 6	8 10 10	2 1 2				
3 4 5 6 7 8	Be B C N O	Lithium Beryllium Bor Kohlenstoff Stickstoff Sauerstoff Fluor	2 2 2 2 2 2	1 2 2 2 2 2 2	1 2 3 4 5					31 32 33 34 35 36	Ga Ge Ar Se Br Kr	Gallium Germanium Arsen Selen Brom Krypton	2 2 2 2 2	2 2 2 2 2	6 6 6 6 6	2 2 2 2 2	666666	10 10 10 10 10	2 2 2 2 2	1 2 3 4 5 6			
9 10	-	Neon	2	2	6					37	Rb	Rubidium	2	2	6	2	6	10	2	6		1	
11 12 13 14 15 16 17 18	Mg Al Si P S Cl Ar	Natrium Magnesium Aluminium Silizium Phosphor Schwefel Chlor Argon Kalium Calcium	2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6	1 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6		1 2	38 39 40 41 42 43 44 45 46 47	Mo Tc	Strontium Yttrium Zirkonium Niob Molybdän Technetium Ruthenium Rhodium Palladium Silber Cadmium	2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2	6666666666	10 10 10 10 10 10 10 10 10	2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6	1 2 4 5 6 7 8 10 10	2 2 1 1 1 1 1 1 2	
21 20 23 24 25 26 27	Ti V Cr Mn Fe	Scandium Titan Vanadium Chrom Mangan Eisen Kobalt	2 2 2 2 2 2 2	2 2 2 2 2 2 2	6 6 6 6 6 6	2 2 2 2 2 2 2	6 6 6 6 6	1 2 3 5 6 7	2 2 1 2 2 2	49 50 51 52 53 54	Sn Sb Te I	Indium Zinn Antimon Tellur Iod Xenon	2 2 2 2 2 2	2 2 2 2 2 2	6 6 6 6	2 2 2 2 2 2	6 6 6 6 6	10 10 10 10 10	2 2 2 2 2 2	6 6 6 6	10 10 10 10 10	2 2 2 2 2 2 2	1 2 3 4 5 6

Termschema Na

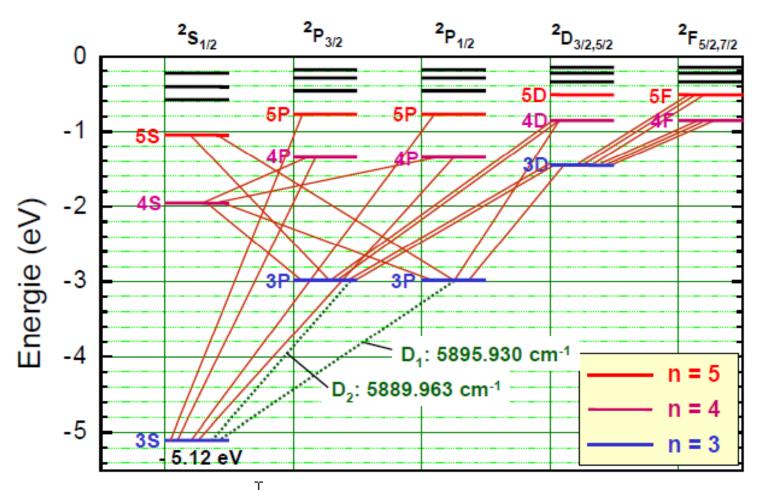


Abbildung 7.16: Termschema des Natriumatoms. Zur spektroskopischen Notation siehe (7.3.8). Besonders hervorgehoben ist die Dublettenstruktur der Natrium D-Linie.

Verbotene QZ

Elektronen- konfiguration	Drehim	npulsquanten	zahlen	Spektroskopische Symbole
Konnguration	٦	S	J	Symbole
s	0	1/2	1/2	² S _{1/2}
S ²	0	0	0	¹ S ₀
sp	1 1	0 1	1 0,1,2	¹ P ₁ ³ P ₀ ³ P ₁ ³ P ₂
p²	0 1 2 0 1 2	0 1 0 1 0	0 0,1,2 2 1 1 1,2,3	1S ₀ 3P ₀ 3P ₁ 3P ₂ 1D ₂ 3S ₁ 1P ₁ 3D _{1,2,3}

Tabelle 7.1: Mögliche Gesamtdrehimpulse und spektroskopische Symbole für verschiedene Elektronenkonfigurationen. Die rot markierten Terme sind aufgrund des Pauli-Prinzips für $n_1 = n_2$ verboten.

L	S	m _{I1}	m _{l2}	m _{s1}	m _{s2}	Ms	MJ	Term
0	0	0	0	+ 1/2	- 1/2	0	0	¹ S ₀
1	1	0	-1	+ 1/2	+ 1/2	+1	0	³ P ₀
		+1	-1	+ 1/2	+ 1/2	+1	+1	
1	1	+1	0	- 1/2	- 1/2	-1	0	3P ₁
		+1	-1	- 1/2	- 1/2	-1	-1	
		+1	0	+ 1/2	+ 1/2	+1	+2	
		+1	-1	+ 1/2	+ 1/2	+1	+1	
1	1	0	0	+ 1/2	- 1/2	0	0	3P ₂
		+1	-1	- 1/2	- 1/2	-1	-1	
		0	-1	- 1/2	- 1/2	-1	-2	
		+1	+1	+ 1/2	- 1/2	0	+2	
		+1	0	+ 1/2	- 1/2	0	+1	
2	0	0	-1	+ 1/2	- 1/2	0	0	¹ D ₂
		0	-1	+ 1/2	- 1/2	0	-1	
		-1	-1	+ 1/2	- 1/2	0	-2	

Tabelle 7.2: Mögliche Zustände der Konfiguration np^2 mit Quantenzahlen $L, S, m_{l_1}, m_{l_2}, m_{s_1}, m_{s_2}, M_S = m_{s_1} + m_{s_2}$ und $M_J = m_{l_1} + m_{l_2} + m_{s_1} + m_{s_2}$ für gleiche Hauptquantenzahlen $n_1 = n_2$ der beiden p-Elektronen.

In Tabelle 7.1 sind Kopplungsmöglichkeiten der Drehimpulse für einige einfache Fälle dargestellt. Es ist wichtig festzuhalten, dass einige Zustände für gleiche Hauptquantenzahl ($n_1 = n_2$) der beiden Elektronen in Tabelle 7.1 aufgrund des Pauli-Prinzips verboten sind. So ist z.B. der 1P_1 -Zustand der p^2 Elektronen-konfiguration nicht erlaubt. Da die Spins einen Singulett-Zustand mit antisymmetrischer Wellenfunktion bilden, muss die Ortsfunktion symmetrisch gegen Vertauschung der beiden Elektronen sein. Für $m_{l_1} = 1$ und $m_{l_2} = 0$ kann es aber keine symmetrische Wellenfunktion geben. Da $-J \le m_J \le +J$ gibt es für die fünf erlaubten Terme $^1S_0, ^3P_0, ^3P_1, ^3P_2, ^1D_2$ der p^2 Konfiguration insgesamt 15 mögliche Zustände (siehe Tabelle 7.2)

Lösungen der SG für QZ n,1,m

Tabelle 5.1. Die normierten radialen Eigenfunktionen R(r) (*Laguerre-Polynome*) für ein Elektron im Coulomb-Potential $(N = (Z/na_0)^{3/2}, x = Zr/na_0, a_0 = 4\pi\epsilon_0\hbar^2/\mu e^2)$

	N. M. C. C. M. C.	0 11
n	1	$R_{n,l}(r)$
1	0	2Ne ^{-x}
2	0	$2Ne^{-x}(1-x)$
2	1	$\frac{2}{\sqrt{3}}Ne^{-x}x$
3	0	$2Ne^{-x}\left(1-2x+\frac{2x^2}{3}\right)$
3	1	$\frac{2}{3}\sqrt{2}Ne^{-x}x(2-x)$
3	2	$\frac{4}{3\sqrt{10}} Ne^{-x} x^2$
4	0	$2Ne^{-x}\left(1 - 3x + 2x^2 - \frac{x^3}{3}\right)$
4	1	$2\sqrt{\frac{5}{3}}Ne^{-x}x\left(1-x+\frac{x^2}{5}\right)$
4	2	$2\sqrt{\frac{1}{5}}Ne^{-x}x^2\left(1-\frac{x}{3}\right)$
4	3	$\frac{2}{3\sqrt{35}}Ne^{-x}x^3$
	The second secon	

Tabelle 5.2. Die normierten vollständigen Eigenfunktionen eines Elektrons im Coulombpotential $V(r) = -Z \cdot e^2/(4\pi\epsilon_0 r)$

n l m	Eigenfunktionen $\psi_{n,l,m}(r,\vartheta,\varphi)$
1 0 0	$\frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$
2 0 0	$\frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$
2 1 0	$\frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \cos \vartheta$
2 1 ±1	$\frac{1}{8\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \sin \vartheta e^{\pm i\varphi}$
3 0 0	$\frac{1}{81\sqrt{3\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(27 - 18\frac{Zr}{a_0} + 2\frac{Z^2r^2}{a_0^2}\right) e^{-Zr/3a_0}$
3 1 0	$\frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - \frac{Zr}{a_0}\right) \frac{Zr}{a_0} e^{-Zr/3a_0} \cos \vartheta$
3 1 ±1	$\frac{1}{\sqrt{81\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - \frac{Zr}{a_0}\right) \frac{Zr}{a_0} e^{-Zr/3a_0} \sin \vartheta e^{\pm i\varphi}$
3 2 0	$\frac{1}{81\sqrt{6\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} (3\cos^2 \vartheta - 1)$
3 2 ±1	$\frac{1}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} \sin \vartheta \cos \vartheta e^{\pm i\varphi}$
3 2 ±2	$\frac{1}{162\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} \sin^2 \vartheta e^{\pm 2i\varphi}$

Zusammenfassung - II

- In einem Modell unabhängiger Elektronen nähert man man die Wechselwirkung eines Elektrons mit der Kernladung +Ze und den verbleibenden (Z – 1) anderen Elektronen durch ein effektives kugelsymmetrisches Potenzial. Dadurch wird das Problem für jedes einzelne Elektron auf ein Einteilchenproblem reduziert. Eine numerische Berechnung kann mit Hilfe des Hartree-Verfahren erfolgen. Die Vielelektronenwellenfunktion wird durch eine antisymmetrische Linearkombination von Produkten von Einelektronenfunktionen angenähert.
- Die Reihenfolge bei der Kopplung der Drehimpulse hängt von der Größe der beteiligten Wechselwirkungen ab:
 - L-S-Kopplung:

Bei leichten Kernen ist die Spin-Bahn-Kopplung schwach, es koppeln zuerst alle Bahndrehimpulse zum Gesamtdrehimpuls $\mathbf{L} = \sum \mathbf{l}_i$ und alle Spin zum Gesamtspin $\mathbf{S} = \sum \mathbf{s}_i$. Erst anschließend koppeln \mathbf{L} und \mathbf{S} zum Gesamtdrehimpuls \mathbf{J} des Atoms.

- 2. j-j-Kopplung:
 - Bei schweren Kernen ist die Spin-Bahn-Kopplung stark, es koppeln zuerst alle Bahndrehimpulse und Spins der einzelnen Elektronen zu den Gesamtdrehimpuls $j_i = l_i + s_i$ der einzelnen Elektronen. Anschließend koppeln dann die verschiedenen j_i zum Gesamtdrehimpuls $J = \sum j_i$ des Atoms.
- Für das Auffinden des Drehimpulszustandes des Grundzustandes eines Atoms können die Hundschen Regeln verwendet werden:

Elektronenanordnung im Grundzustand

Scl	hale	е	K	L	-		М		N	Sch	ale		K	L	-		M			N		(0
z		Element	1s	2s	2p	3s	3р	3d	4s	z		Element	1s	2s	2p	3s	3р	3d	4s	4р	4d	5s	5р
1 2		Wasserstoff Helium	1 2							28 29 30		Nickel Kupfer Zink	2 2 2	2 2 2	6 6	2 2 2	6 6	8 10 10	2 1 2				
3 4 5 6 7 8	Be B C N O	Lithium Beryllium Bor Kohlenstoff Stickstoff Sauerstoff Fluor	2 2 2 2 2 2	1 2 2 2 2 2 2	1 2 3 4 5					31 32 33 34 35 36	Ga Ge Ar Se Br Kr	Gallium Germanium Arsen Selen Brom Krypton	2 2 2 2 2	2 2 2 2 2	6 6 6 6 6	2 2 2 2 2	666666	10 10 10 10 10	2 2 2 2 2	1 2 3 4 5 6			
9 10	-	Neon	2	2	6					37	Rb	Rubidium	2	2	6	2	6	10	2	6		1	
11 12 13 14 15 16 17 18	Mg Al Si P S Cl Ar	Natrium Magnesium Aluminium Silizium Phosphor Schwefel Chlor Argon Kalium Calcium	2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6	1 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6		1 2	38 39 40 41 42 43 44 45 46 47	Mo Tc	Strontium Yttrium Zirkonium Niob Molybdän Technetium Ruthenium Rhodium Palladium Silber Cadmium	2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2	6666666666	10 10 10 10 10 10 10 10 10	2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6	1 2 4 5 6 7 8 10 10	2 2 1 1 1 1 1 1 2	
21 20 23 24 25 26 27	Ti V Cr Mn Fe	Scandium Titan Vanadium Chrom Mangan Eisen Kobalt	2 2 2 2 2 2 2	2 2 2 2 2 2 2	6 6 6 6 6 6	2 2 2 2 2 2 2	6 6 6 6 6	1 2 3 5 6 7	2 2 1 2 2 2	49 50 51 52 53 54	Sn Sb Te I	Indium Zinn Antimon Tellur Iod Xenon	2 2 2 2 2 2	2 2 2 2 2 2	6 6 6 6	2 2 2 2 2 2	6 6 6 6 6	10 10 10 10 10	2 2 2 2 2 2	6 6 6 6	10 10 10 10 10	2 2 2 2 2 2 2	1 2 3 4 5 6

Zusammenfassung-III

Hundsche Regeln:

- 1. Für Atome mit angeschlossenen Schalen gilt L = S = J = 0.
- In offenen s-, p-, d- oder f-Unterschalen liegen die Zustände mit maximalem S energetisch am tiefsten.
- Für die Terme mit maximalem S liegen die Terme mit maximalem L energetisch am tiefsten.
- 4. Ist eine s-, p-, d- oder f-Unterschale weniger als halb gefüllt, so bildet der Term mit J = |L S| den Grundzustand, ist sie mehr als halb gefüllt, der Term mit J = L + S.
- Es wird folgende spektroskopische Notation für die Bezeichnung der Energieniveaus von Mehrelektronenatomen verwendet:

$$^{\mathrm{M}}\mathbf{L}_{J}$$
 mit der Multiplizität $\mathrm{M}=2S+1$ und $|\mathcal{L}-S|\leq J\leq \mathcal{L}+S$.

Für L > S entspricht die Zahl 2S + 1 der Feinstrukturkomponenten der Multiplizität des Zustandes. Für L < S ist die Zahl 2L + 1 der möglichen Feinstrukturkomponenten dagegen kleiner als die Multiplizität und wir sprechen von einer nicht vollständig entwickelten Multiplizität.

Friedrich Hund

Wir haben gesehen, dass durch die Kopplung der Drehimpulse eine Vielzahl von möglichen Termen für eine bestimmte Elektronenkonfiguration möglich ist. Ein Beispiel für die p^2 -Konfiguration wurde in Tabelle 7.1 gezeigt. Einer der vielen elektronischen Zustände muss der energetisch tiefste sein, den dann das Atom im Grundzustand einnimmt. Aus spektroskopischen Daten vieler Atome wurden von Friedrich Hund 12 die folgenden Regeln für das Auffinden des Grundzustandsterms aufgestellt:

Friedrich Hund (1896 - 1997):

Friedrich Hund wurde 1896 in Karlsruhe geboren. Er studierte Mathematik, Physik und Geographie in Göttingen und Marburg und promovierte und habilitierte sich bei Born in Göttingen. Er war Privatdozent für theoretische Physik in Göttingen (1925) und wurde Professor in Rostock (1927). 1929 kam er nach Leipzig als enger Kollege Heisenbergs. Er war anschließend Professor in Jena (1946), Frankfurt (1951) und ab 1956 wieder in Göttingen an. Insgesamt wurden mehr als 100 Schriften und Aufsätze von Hund veröffentlicht.

Friedrich Hund starb 1997 in Göttingen.

Nobelpreis für Physik im Jahre 1945 für seine bahnbrechenden Beitr age in der Quantenmechanik und Molekülphysik.

Elektronenkonfiguration für n=1,2

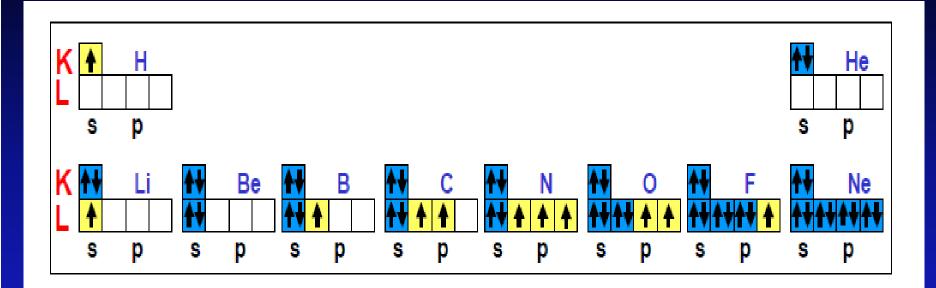
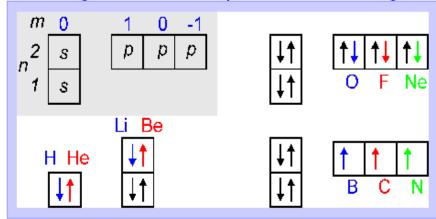
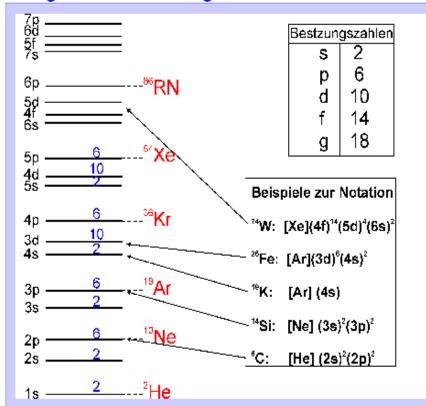



Abbildung 7.11: Darstellung der Elektronenkonfigurationen für die zehn leichtesten Elemente. Vollbesetzte Zustände sind blau, halbbesetzte sind gelb hinterlegt.

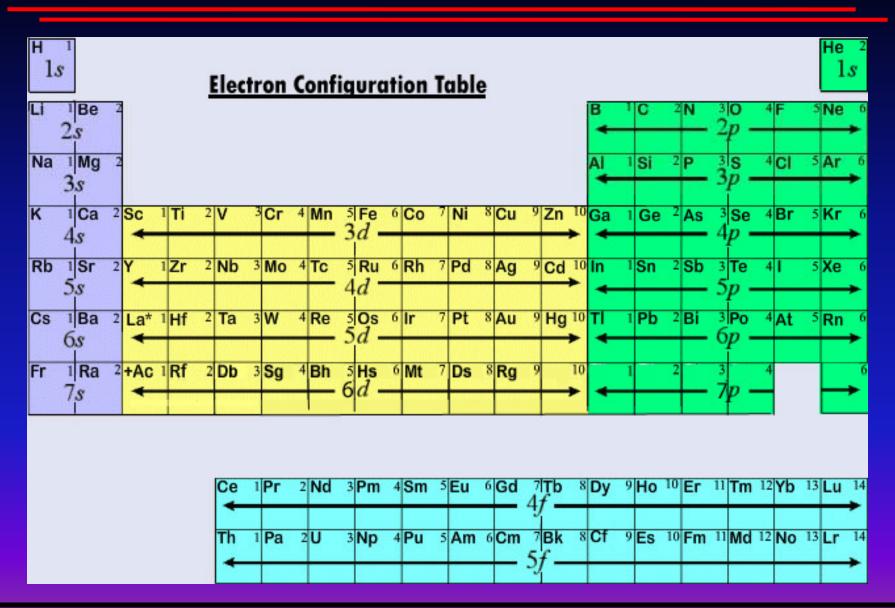
- 1. Für Atome mit angeschlossenen Schalen gilt L = S = J = 0.
- In offenen s-, p-, d- oder f-Unterschalen liegen die Zustände mit maximalem S energetisch am tiefsten.

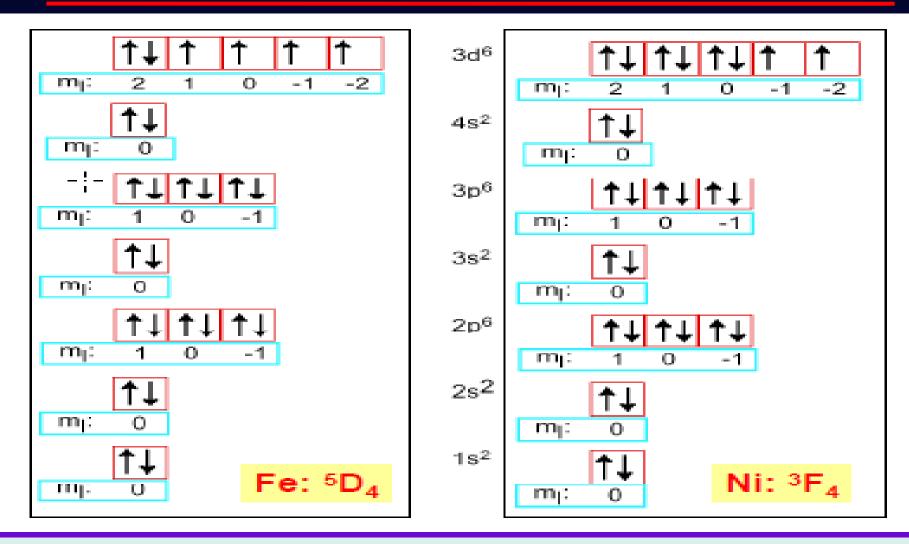
Elektronenstruktur der Elemente

Besetzung nach Pauli-Prinzip und Hundscher Regel:


- Alkali-Metalle (Li, Na, K...) geben 1 Elektron leicht ab → Leitfähigkeit.
- ► Erdalkali-Metalle (Be, Mg, Ca...) sind 2-wertig

- Bohr-Gruppe (B, Al...) ist 3-wertig
- ► Kohlenstoff-Gruppe (C, Si...) ist 4-wertig


Energetische Staffelung der Niveaus


Notation der Elektronenkonfiguration

[Y] $(n_1l_1)^{\times}$ $(n_2l_2)^{\times}$... Mit Y: Atom der letzten abgeschlossenen Schale, n Hauptquantenzahl, l=(s,p,d,...) Drehimpuls des Einteilchenniveaus, X Zahl der Elektronen in diesem Niveau.

Periodensystem mit Elektronen-Konfiguration

Magnetische Materialien

Eisen und Nickel Atome haben starkes magnetisches Moment durch hohe L und S

Zusammenfassung-I

- Bei Atomen mit mehreren Elektronen führt die elektrostatische Wechselwirkung zwischen den Elektronen dazu, dass das gesamte Potenzial nicht mehr kugelsymmetrisch ist.
- Für die Besetzung der Zustände eines Mehrelektronenatoms gilt das Pauli-Prinzip, für das man folgende äquivalente Formulierungen angeben kann:
 - Die Gesamtwellenfunktion aller Elektronen muss antisymmetrisch gegenüber Vertauschung zweier Elektronen sein.
 - Ein atomarer Zustand, der durch die 4 Quantenzahlen n (Hauptquantenzahl), l
 (Bahndrehimpulsquantenzahl), m Bahndrehimpulsorientierungsquantenzahl) und m_s
 (Spinorientierungsquantenzahl) charakterisiert ist, kann nur von einem Elektron besetzt werden.
- Die Besetzung der möglichen Elektronenzustände eines Mehrelektronenatoms erfolgt unter Berücksichtigung des Pauli-Prinzips und der Energieminimierung.
- In der Elektronenhülle von Mehrelektronenatomen fassen wir Zustände mit gleicher Hauptquantenzahl in Schalen (n = 1,2,3,4,... ⇔ K,L,M,N,...) zusammen, solche mit gleicher Haupt- und Bahndrehimpulsquantenzahl in Unterschalen (l = 0,1,2,3,... ⇔ s,p,d,f,...) zusammen.
- Der Schalenaufbau der Atome wird durch die Abhängigkeit der Ionisierungsenergie und der Atomvolumina von der Zahl der Elektronen in der Hülle widergespiegelt. Die Alkalimetalle haben von allen Atomen in der gleichen Periode die kleinsten Ionisierungsenergien und den größten Atomradius, die Edelgase die größten Ionisierungsenergien und den kleinsten Atomradius.

Zusammenfassung - II

- In einem Modell unabhängiger Elektronen nähert man man die Wechselwirkung eines Elektrons mit der Kernladung +Ze und den verbleibenden (Z – 1) anderen Elektronen durch ein effektives kugelsymmetrisches Potenzial. Dadurch wird das Problem für jedes einzelne Elektron auf ein Einteilchenproblem reduziert. Eine numerische Berechnung kann mit Hilfe des Hartree-Verfahren erfolgen. Die Vielelektronenwellenfunktion wird durch eine antisymmetrische Linearkombination von Produkten von Einelektronenfunktionen angenähert.
- Die Reihenfolge bei der Kopplung der Drehimpulse hängt von der Größe der beteiligten Wechselwirkungen ab:
 - L-S-Kopplung:

Bei leichten Kernen ist die Spin-Bahn-Kopplung schwach, es koppeln zuerst alle Bahndrehimpulse zum Gesamtdrehimpuls $\mathbf{L} = \sum \mathbf{l}_i$ und alle Spin zum Gesamtspin $\mathbf{S} = \sum \mathbf{s}_i$. Erst anschließend koppeln \mathbf{L} und \mathbf{S} zum Gesamtdrehimpuls \mathbf{J} des Atoms.

- 2. j-j-Kopplung:
 - Bei schweren Kernen ist die Spin-Bahn-Kopplung stark, es koppeln zuerst alle Bahndrehimpulse und Spins der einzelnen Elektronen zu den Gesamtdrehimpuls $j_i = l_i + s_i$ der einzelnen Elektronen. Anschließend koppeln dann die verschiedenen j_i zum Gesamtdrehimpuls $J = \sum j_i$ des Atoms.
- Für das Auffinden des Drehimpulszustandes des Grundzustandes eines Atoms können die Hundschen Regeln verwendet werden:

Zusammenfassung-III

Hundsche Regeln:

- 1. Für Atome mit angeschlossenen Schalen gilt L = S = J = 0.
- In offenen s-, p-, d- oder f-Unterschalen liegen die Zustände mit maximalem S energetisch am tiefsten.
- Für die Terme mit maximalem S liegen die Terme mit maximalem L energetisch am tiefsten.
- 4. Ist eine s-, p-, d- oder f-Unterschale weniger als halb gefüllt, so bildet der Term mit J = |L S| den Grundzustand, ist sie mehr als halb gefüllt, der Term mit J = L + S.
- Es wird folgende spektroskopische Notation für die Bezeichnung der Energieniveaus von Mehrelektronenatomen verwendet:

$$^{\mathrm{M}}\mathbf{L}_{J}$$
 mit der Multiplizität $\mathrm{M}=2S+1$ und $|\mathcal{L}-S|\leq J\leq \mathcal{L}+S$.

Für L > S entspricht die Zahl 2S + 1 der Feinstrukturkomponenten der Multiplizität des Zustandes. Für L < S ist die Zahl 2L + 1 der möglichen Feinstrukturkomponenten dagegen kleiner als die Multiplizität und wir sprechen von einer nicht vollständig entwickelten Multiplizität.

Zum Mitnehmen

Mehrelektronen: Besetzung der Energieniveaus bestimmt durch Pauli-Prinzip und Hundsche Regeln.

Pauli-Prinzip verbietet mehrere Elektronen in Zustand mit gleichen Quantenzahlen.

Dies führt zum Periodensystem der Elemente