

Atome & Kerne

Sommersemester 2019 Vorlesung # 18, 27.06.19

Guido Drexlin, Institut für Experimentelle Teilchenphysik, Fakultät für Physik

Kerne

- Einführung:
 - Kerne & Kernmaterie
- Rutherford-Streuung
- Mott-Streuung
- Formfaktor & Ladungsverteilung
- Kernmodelle: Überblick

www.kit.edu

LASER - Eigenschaften

Light Amplification by Stimulated Emission of Radiation

- **Besetzungsinversion** der Laserniveaus!
- Einstein: stimulierte Emission
- Koeffizienten $B_{21} = B_{12}$ (Absorption), Übergangsrate E2 \rightarrow E1 daher

$$N(E_2 \rightarrow E_1) = B_{21} \cdot (N_2 - N_1) \cdot u(v)$$

Besetzungsinversion!

- **Pumpen** zum oberen Laserniveau!
- optisch via Blitzlampe (Xenon)
- Elektronenstoß (Gasentladung)

LASER – Typen & Anwendungen

LASER – zahlreiche Typen und Anwendungen

Laser-Typen:

Laser-Anwendungen:

10. Eigenschaften stabiler Kerne

klassische Kernphysik – Übersicht

5

10.1 Einführung

Eigenschaften der kondensierten Materie (Festkörper)

- ergeben sich aus grundlegenden Parametern der Atomphysik
- Atomphysik: Prozesse der elektromagnetischen Wechselwirkung

 α : Feinstrukturkonstante = 1/137

Kerne und Kernmaterie

Eigenschaften von Kernmaterie (Atomkerne, Neutronensterne)

- ergeben sich aus grundlegenden Parametern der Kernphysik
- Kernphysik: Prozesse der starken Wechselwirkung (QCD)

 α_s : starke Kopplungskonstante ~ 0,2

abstoßende Coulomb-Kraft (langreichweitig)

m_N = 939 MeV

Kerne und Atome: Skalen

Objekt-Eigenschaften festgelegt durch Wechselwirkung ($\alpha \leftrightarrow \alpha_s$) elementare Teilchen (e- \leftrightarrow p,n)

$$r_{Kern} = (2-8) \cdot 10^{-15} \text{ m}$$

 $\frac{r_{Kern}}{r_{Atom}} \sim \frac{\alpha}{\alpha_{s}} \cdot \frac{m_{e}}{m_{N}} \sim 3 \cdot 10^{-5}$

 $m_{e} = 0,511 \text{ MeV}$

Kerne und Atome: Skalen

Objekt-Eigenschaften festgelegt durch Wechselwirkung ($\alpha \leftrightarrow \alpha_s$) elementare Teilchen (e- \leftrightarrow p,n)

Spineigenschaften

interne Spineigenschaften:

Spin spielt in der starken Wechselwirkung eine wesentlich größere Rolle als bei elektrodynamischen Prozessen

- wesentliche Rolle bei:

⇒ Schalenstruktur der Kerne (uu, gg)

~ 10⁻¹⁴

Spineigenschaften

interne Spineigenschaften:

Spin spielt in der starken Wechselwirkung eine wesentlich größere Rolle als bei elektrodynamischen Prozessen

- Beispiel bei Baryonen

- Masse, Lebensdauer von stark wechselwirkenden Teilchen (p, n, Δ⁺) sind stark unterschiedlich
- S = $\frac{1}{2}$ Proton $\tau > 10^{41}$ S m = 938,27 MeV

S = 3/2
$$\triangle^+$$
 Resonanz $\tau = (5.58 \pm 0.09)$
m = 1232 MeV × 10⁻²⁴ s

Kerne – ein erster Überblick

Nuklidkarte

- ~ 250 stabile (d.h. extrem langlebige) Isotope (
)
- ~ 3700 instabile Isotope (\blacksquare \blacksquare \blacksquare \blacksquare) über α , β , γ & p,n Zerfall, Spaltung

Fun with Facts: instabile Isotope

Weshalb gibt es so viele instabile Kerne? Ein Kern zerfällt...

- A) ...nach innerer Kollision von Nukleonen!
- B) ... durch virtuelle Teilchen des Vakuums !
- C) ... wenn er dadurch Energie gewinnt !

10.2 Rutherford-Streuung

Experimente zur Messung von d σ /d Ω

- Geometrie einer experimentellen Anordnung wird entsprechend ihrer physikalischen Aufgabe optimiert:
 - 4 π Geometrie: Target wird praktisch vollständig vom Detektor umschlossen

4 π Gamma-Detektoren

G. Drexlin – AK18

verfahrbares Elektron-Spektrometer für $d\sigma/d\Omega$

27.06.2019

Rutherford-Streuformel als Ausgang

Streuexperimente & differentieller Wirkungsquerschnitt:

die Winkelverteilung d σ /d Ω der Rutherford-Streuung gibt noch keinen Aufschluss über Größe der

Kerne, da Streuung am Coulomb-Potenzial mit punktförmigem Kern

18

Rutherford-Streuformel - Annahmen

p_f

Rutherford-Streuexperiment:

- elastische Streuung in konservativem Feld
 - \Rightarrow Drehimpuls des α 's bleibt erhalten

- Annahmen für Streuquerschnitt:

p_i

- Projekt und Target
 - a) sind punktförmig
 - b) besitzen keinen Spin (S=0)
- Kernrückstoß kann vernachlässigt werden
- d.h. ortsfester Kern
- nur Einmalstreuung

7

Rutherford-Streuformel - Potenzial

Rutherford-Streuexperiment:

- elastische Streuung in konservativem Feld ⇒ Drehimpuls bleibt erhalten
- Annahmen:

rein elektromagnetische Wechselwirkung mit Coulomb-Abstoßung Kern – α -Teilchen

Rutherford-Streuformel - Stoßparameter

Rutherford-Streuexperiment:

- elastische Streuung unter Winkel Θ
- Einführung des Stoßparameters b (legt den Streuwinkel fest)
 - = asymptotischer Abstand des α -Teilchens vom Targetkern b = [0, ∞] kleiner Stoßparameter: b $\rightarrow 0 \Rightarrow \theta \rightarrow \pi$

großer Stoßparameter: $b \rightarrow \infty \Rightarrow \theta \rightarrow 0$

Rutherford-Streuformel - Impulstransfer

Definition des Impulstransfers bei elastischer Streuung:

$$\vec{q} = \vec{p}_i - \vec{p}_f$$

Betrag des Impulstransfers $q = |\vec{q}|$:

Rutherford-Streuformel: Propagator ~1/q⁴

elastische Streuung ohne Kernrückstoß:

mit
$$p_i = p_f = p$$

 $q^2 = 2 \cdot p^2 \cdot (1 - \cos \theta) = 4 \cdot p^2 \cdot \sin^2 \frac{\theta}{2}$
 $q = 2 p \cdot \sin(\theta/2)$
 $d\sigma/d\theta \sim 1 / \sin^4(\Theta/2)$
 $d\sigma/d\Omega \sim 1/q^4$
 $d\sigma/d\Omega \sim 1/q^4$
 σ Wahrscheinlichkeitsamplitude
(Photon-Propagator 1/q²)²

Jenseits von Rutherford – Mott & Co. ...

Berücksichtigung weiterer Effekte für dσ/dΩ:

- relativistische Effekte
- Projektil-Spin
- endliche
 Kernausdehnung
 (Formfaktoren)

Nevill F. Mott

Mott-Streuung

Mott-Streuung

- Streuung hochenergetischer, relativistischer Spin S = ½ Teilchen an punktförmigem Target
- Berücksichtigung von:
 - relativistische Effekte
 - Rückstoß-Energie an Kern

- Spin-Bahn Kopplung bei Streuprozess für polarisierte e-
- Wechselwirkung über magnetisches Dipol-Moment des Teilchens ("magnetischer Streuterm")

Nevill F. Mott

Mott-Streuung

Mott-Streuung

- Unterdrückung der Rückwärts-Streuung für S = $\frac{1}{2}$ Projektile (e, μ , p,...), d.h. d σ /d Ω deutlich kleiner für große Streuwinkel θ ($\theta \rightarrow \pi$)

Mott-Streuung

- bei longitudinal polarisierten Elektronen müsste bei der Rückstreuung ($\theta = 180^\circ$) der Spin S umklappen:

Mott-Streuung & beyond

⇒ starke Unterdrückung!

e-

e-

180

Fun with Facts: Streuprozesse

Wieso wird dσ/dΩ immer kleiner für hohe Energien ? Da…

- A) ...dann nur ein Teil des Kerns sichtbar!
- B) ... dann die Zeit für Teilchen anders läuft !

C) ... dann der Kern gestaucht erscheint !

10.3 Kernradien und Formfaktoren hohe Elektron-Energien: Einfluss der endlichen Kernausdehnung 10⁴ 10²

- Mott-Streuformel nur für kleinen Impulstransfer q ($\theta \rightarrow 0$) korrekt
- höhere Elektron-Energien:
 de-Broglie Wellenlänge wichtig

$$\lambda = \frac{2\pi \cdot \hbar}{p} = \frac{2\pi \cdot \hbar}{\gamma \cdot m \cdot \nu}$$

 λ (Projektil) ~ λ (Kern)

 $200 \text{ MeV/c} = 1 \text{ fm}^{-1}$

Beugung am Kern

- Beugungseffekte am ausgedehnten Kern
 - hochenergetisches Elektron "tastet" Kerngröße (R ~ fm) ab
 - Reduktion von dσ/dΩ da das enur "einen Teil" der Kernladung Z sieht
 - Auftreten von Interferenzen:
 Elektron-Welle wird am endlichen Kernrand gebeugt: destruktive
 Interferenz (s. Doppelspalt)
 ⇒ Bestimmung von R

Formfaktoren

- Formfaktoren & Ladungsverteilung: Fourier-Transformation
 - Modifikation von $d\sigma/d\Omega$:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{exp.}} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left|F(q^2)\right|^2$$

- Formfaktoren sind wichtig ab einem Impulstransfer q ~ 1/R, d.h. q ~ 200 MeV/c
- Formfaktor F(q2) aus Vergleich
 von (dσ/dΩ)_{exp} mit (dσ/dΩ)_{Mott}

Formfaktoren

Formfaktor = Fourier-Transformierte der Ladungsverteilung ρ(r)

- Born´sche N\u00e4herung:
 Beugung einer ebenen Welle an einer Scheibe mit diffusem Rand
- Formfaktor F(q²)

$$F(q^2) = \int \rho(r) \cdot e^{i\vec{q}\cdot\vec{r}} d^3\vec{r}$$

Ladungsverteilung des Kerns

mit
$$\int \rho(r) d^3 \vec{r} = 1$$

Formfaktoren - Beispiele

Beispiele für Ladungsverteilungen $\rho(r)$ & zugehörige Formfaktoren F(q²)

punktförmig $\delta(r)$

$$\rho(r) = \frac{1}{4\pi} \cdot \delta(\vec{r}) \implies F(q^2) = 1$$

weit entfernte Flugbahnen: Kern erscheint punktförmig, keine Beeinflussung von dσ/dΩ

homogene Kugel

mit a = Kernradius

$$\rho(r) = \rho_0 = \frac{3}{4\pi} \cdot \frac{1}{a^3} \implies F(q^2) = \frac{3}{(aq)^3} \cdot \left[\sin(aq) - aq \cdot \cos(aq)\right]$$

oszillierender Formfaktor

Formfaktoren & Ladungsverteilungen

Formfaktoren & Ladungsverteilungen

Ladungsverteilung $\rho(r)$

punktförmig $\rho(r) = \delta(r)/4\pi$

 $\begin{array}{l} \textbf{exponentiell} \\ \rho(r) \sim exp(-r/a) \end{array}$

 $\frac{\text{gaußförmig}}{\rho(r) \sim a^{-3} \exp(-r^2/2a^2)}$

 $\begin{array}{l} \textbf{homogene Kugel} \\ \rho(r) = \text{const. } r < a \\ \rho(r) = 0 \qquad r \ge a \end{array}$

Kugel mitdiffusem Rand $\rho(r) = r_0 / (1 + exp((r-a)/d))$

Formfaktor |F(q²)|

konstant $F(q^2) = 1$

Dipol $F(q^2) = 1/(1 + a^2 q^2)^2$

 $\begin{array}{l} \textbf{gaußförmig} \\ F(q^2) = \exp(-\frac{1}{2} \cdot a^2 q^2) \end{array}$

Oszillation $F(q^2) \sim [sin(aq) - a \cdot q cos(aq)]$

> verwaschene Oszillation

Ladungsverteilungen von Kernen

Kerne zeigen ein fast konstante Ladungsdichte ρ(r)
⇒ Kernkräfte zeigen Sättigungscharakter

- Ausnahme: leichte Kerne zeigen ein Gauß-Profil

Kerne zeigen stets einen sehr ähnlichen Abfall der Ladungsdichte außen (Skindicke)

Woods-Saxon Ladungsverteilung

$$\rho(r) = \frac{\rho_0}{1 + e^{(r-a)/d}}$$

Kernradius a Skin-Dicke d a = $(1.18 \text{ A}^{1/3} - 0.48)$ fm

 $d = (0.55 \pm 0.07) \text{ fm}$

10.4 Kernmodelle und Kernkräfte

Kernmodelle sollen beschreiben:

- kollektive Eigenschaften:

Kernladung Z, Größe (Radius a) und Form (sphärisch, deformiert), Kernmasse M, kollektive Anregungen (Riesenresonanz), Stabilität

- Eigenschaften durch individuelle Nukleonen: Bindungsenergie E_B/A, elektrische & magnetische Momente μ, Einteilchen-Anregungszustände (Resonanzen) Quantenzahlen: Spin I & Parität P, neue Quantenzahl: Isospin
- dynamische Eigenschaften:

Ablauf & Wirkungsquerschnitte & Energiebilanz von Kernreaktionen wie Fusion, Spaltung, Nukleonentransfer, ...

⇒ experimentelle Messung via Streu-Experimente, Massen-Spektrometer

Kernmodelle

Kernmodelle sollen beschreiben:

Kernradien & -dichten

Kernmaterie - konstante Dichte $\rho = 10^{17} \text{ kg/m}^3$, R = 1,2 fm • A^{1/3}

Stabilitätsverhalten

stabile Kernefür kleines A: N = Z, für großes A: N > Z, Spaltung, α , ß, γ - Zerfall Bindungsenergien & Kernkräfte

konstante Bindungsenergie B/A ~ 8 MeV pro Nukleon , gesättigte Kernkräfte

Spin und Parität

Kernniveaus mit definiertem Spin & Parität J^P= (0⁺, 2⁺, 4⁺, 0⁻, 1⁻, ...)

Kernanregung und Kerndeformation

Lage von angeregten Zustände, kollektive Anregungen & Deformation

Kernmodelle – drei wichtige Entwicklungen

■ Kerne = komplexe Vielteilchensysteme (d.h. noch keine fundamentale Theorie auf QCD-Basis) ⇒ Entwicklung phänomenologischer Modelle

Kernmodelle – drei wichtige Entwicklungen

Kerne = komplexe Vielteilchensysteme (d.h. noch keine fundamentale Theorie auf QCD-Basis)

Entwicklung phänomenologischer Modelle

Tröpfchenmodell

Kern in enger Analogie zu geladenem Flüssigkeitstropfen (quasi-klassisch)

Nukleonen bewegen sich stark korreliert in inkompressibler Flüssigkeit

Schalenmodell

Nukleonen bewegen sich voll quantenmechanisch (Schrödinger-Gleichung), Potenzial mit Spin-Bahn-Term

magische Zahlen, Spin, Parität

Fermigasmodell

Nukleonen bewegen sich unabhängig voneinander in einem resultierenden Kernpotenzial

Potenzialtiefe aus der Quantenstatistik eines Fermigases

Streuung an ausgedehnten Objekten

