

Atome & Kerne

Sommersemester 2019 Vorlesung # 19, 02.07.19

Guido Drexlin, Institut für Experimentelle Teilchenphysik, Fakultät für Physik

Kerne

- Kernmodelle:
 - Überblick & Aufgaben
- Bindungsenergien von Kernen
- Tröpfchenmodell:
 - Terme und Kernmassen
- Fermigas-Modell: Einführung

Kerne - Eigenschaften

i

Formfaktoren & Ladungsverteilungen

- vom Formfaktoren zur Ladungs-Verteilung via Fourier-Transformation
 - Bestimmung des Formfaktors:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{exp.}} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left|F(q^2)\right|^2$$

- resultierende Ladungsverteilung:

Bindungsenergie bei Atomen und Kernen

Bindungsenergien bei Atomen und Kernen sind deutlich verschieden

Befund 1: Bindungsenergie pro Nukleon

Bindungsenergie pro Nukleon: B/A ~ 8 MeV, ~ konstant für A > 20

Befund 1: Bindungsenergie pro Nukleon

Bindungsenergie pro Nukleon: B/A ~ 8 MeV, ~ konstant für A > 20

maximales B/A bei A = 56-58 (⁵⁶Fe, ⁵⁶Ni) stabilste Elemente

A < 56 : Kernfusion
Fusionsreaktionen
von Kernen führen
zu Kernen mit höherer
Bindungsenergie
⇒ Energiegewinn

```
A > 56 : Spaltung
```

Fun with Facts: Kernmassen - 1

7

Befund 1: Bindungsenergie pro Nukleon

- können die Kernmodelle den Verlauf von B/A reproduzieren?
- generischer Verlauf mit Maximum bei A = 56?
- absolute Größe B/A?
- Peak-Strukturen (A=4) & gerade-ungerade ?

Befund 1: Bindungsenergie pro Nukleon

Tröpfchenmodell – gesättigte Kernkräfte

- Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen
 - Kerne als inkompressible, geladene "Flüssigkeitstropfen"
 - kurzreichweitige, gesättigte Kernkräfte:

B/A = const.

Kern mit A Nukleonen

Nukleon-Ww. nur mit direkten Nachbarn: Nukleon # 1: Ww. nur mit engsten Nachbarn ⋮ ⋮
Nukleon # A: Ww. nur mit engsten Nachbarn
⇔ Anzahl der Wechselwirkungen ~ A

 \Rightarrow B/A = const.

falls Nukleon-Ww. mit allen anderen Nukleonen ⇒ Anzahl der Wechselwirkungen ~ A² ⇒ B/A ~ A

- Semi-empirisches Modell zur Beschreibung von B/A und von **Fusions-/Spalt-Prozessen**
 - Modell der Nukleon-Nukleon Wechselwirkung via Pionen
 - kurzreichweitige, gesättigte Kernkräfte: B/A = const.

bis ~1 fm

Tröpfchenmodell – einzelne Terme

- Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen
 - Berücksichtigung aller Effekte durch empirische Terme: Effekte im Kernvolumen Effekte an der Kernoberfläche Coulomb-Abstoßung der Protonen Verhältnis von Protonen zu Neutronen Paarung von 2 Nukleonen

Tröpfchenmodell – Volumenterm

- Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen
 - Volumenterm : Nukleon "fühlt" nur die unmittelbaren Nachbarn
 - beschreibt unendlich großen Kern ohne Oberfläche, dominanter Term im Tröpfchenmodell

Kern mit A Nukleonen

- Beitrag zur Bindungsenergie (positiv!)

$$B(Z,A) \sim a_V \cdot A$$

Tröpfchenmodell – Oberflächenterm

- Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen
- Oberflächenterm : Nukleonen an der Oberfläche des Kerns besitzen weniger Partnernukleonen
 Nukleon
 ⇒ Reduktion der Bindungsenergie

1 Oberfläche

Oberfläche mit A^{2/3} Nukleonen - Beitrag zur Bindungsenergie (negativ)

$$\mathsf{B}(\mathsf{Z},\mathsf{A})\sim -\,\mathsf{a}_{\mathsf{S}}\!\cdot\!\mathsf{A}^{\mathsf{2/3}}$$

Tröpfchenmodell – Oberflächenterm

- Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen
 - Oberflächenterm : Nukleonen an der Oberfläche des Kerns besitzen weniger Partnernukleonen
 Arbeitzen weniger Partnernukleonen

Nukleon

- klassisch: Oberflächenspannung eines Tropfens

Tröpfchenmodell – Coulombterm

- Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen
 - Coulombterm : Protonen erzeugen langreichweitige (~1/r) abstoßende Coulombkraft
 ⇒ Reduktion der Bindungsenergie

Tröpfchenmodell – Coulombterm

- Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen
 - Coulombterm : Protonen erzeugen abstoßende Coulombkraft über gesamten Kern, vgl. mit starker Kernkraft: stärker, aber nur kurzreichweitig über ~1 fm

- Beitrag zur Bindungsenergie (negativ)

$$B(Z,A) \sim -a_{C} \cdot Z^{2} \cdot A^{-1/3}$$

- dabei Modell homogen geladener Kugel
 - Radius R
 - konstante Ladungsdichte

$$\rho = (Z \cdot e) / (4/3 \cdot \pi \cdot R^3)$$

Tröpfchenmodell – Asymmetrieterm

- Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen
 - Asymmetrieterm : quantenmechanischer Ursprung aus Pauli's Ausschließungsprinzip, ideal ist N = Z
 Reduktion der Bindungsenergie

p/n-"Balance"

Kern mit asymmetrischer Nukleonenzahl - Beitrag zur Bindungsenergie (negativ)

 $\mathsf{B}(\mathsf{Z},\mathsf{A})\sim -\,\mathsf{a}_\mathsf{A}\!\cdot(\mathsf{N}-\mathsf{Z})^2\,/\,\mathsf{A}$

- Kerne bevorzugen Konfiguration mit identischer Zahl an Protonen (Z) und Neutronen (N)

N = Z

Tröpfchenmodell – Asymmetrieterm

- Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen
 - **Paarungsterm**: keine stabilen Kerne mit starkem Protonen- oder Neutronenüberschuss (s. Fermigas-Modell)
 - Pauli-Prinzip : wird bei N = Z ein p gegen ein n ausgetauscht
 ⇒ Reduktion von B/A

Tröpfchenmodell – Paarungsterm

Semi-empirisches Modell zur Beschreibung von B/A und von Fusions-/Spalt-Prozessen

 Paarungsterm : experimenteller Befund – gg (gerade-gerade)- Kerne sind stärker gebunden als ug (ungerade-gerade)-Kerne und uu (ungerade-ungerade) - Kerne

Nukleonenpaar

- Beitrag zur Bindungsenergie (variabel)

ungepaarte Nukleonen

uu-Kern mit 2 ungepaarten Nukleonen

$$\delta(Z,A) \sim a_{P} \cdot A^{-1/2}$$

$$\left\{\begin{array}{c} + & \text{für } gg \\ 0 & \text{für } ug \\ - & \text{für } uu \end{array}\right\}$$

Tröpfchenmodell – Paarungsterm

- **Semi-empirisches Modell** zur Beschreibung von B/A und von **Fusions-/Spalt-Prozessen**
 - **Paarungsterm** : experimenteller Befund Kerne mit gerader Neutronenanzahl sind 2 MeV stärker gebunden gepaarte Nukleonen mit antiparallelem Spin

Aage Niels Bohr Ben Mottelson

21 02.07.2019 G. Drexlin – AK19

Tröpfchenmodell – alle Terme

BETHE-WEIZSÄCKER

FORMEI

Tröpfchen-Modell: Zusammenfassung aller Terme zu einer (semi-)empirischen Bethe-Weizäcker´sche Massenformel:

 $B(Z,A) = a_{V} \cdot A - a_{S} \cdot A^{2/3} - a_{C} \cdot Z^{2} \cdot A^{-1/3} - a_{A} \cdot (N - Z)^{2} / A + \delta(Z,A)$

Beitrag	Faktor a	Größe (MeV)
Volumenterm	a _v	15,58
Oberflächenterm	a _s	16,91
Coulombterm	a _c	0,71
Asymmetrieterm	a _A	23,21
Paarungsterm	a _P	11,46

Anpassung an zahlreiche experimentell bekannte Kernmassen für A > 40: ~ 10% Genauigkeit

Tröpfchenmodell – alle Terme

Tröpfchen-Modell: Zusammenfassung aller Terme zu einer (semi-)empirischen Bethe-Weizäcker´sche Massenformel:

H. A. Bethe CElepin

Tröpfchenmodell & Kernmassen

Kernmassen: die berechneten Bindungsenergien können verglichen werden mit gemessenen Kernmassen M

Fun with Facts: Kernmassen - 2

Wie schwer sind Nukleonen im Kern? Sie sind...

- A) ...schwerer, da relativistisch (p_{Fermi})!
- B) ... gleich schwer, da Nukleon = Nukleon !

C) ... leichter, da im Kernverbund mit Masse A !

frei

Kerne – Bindungsenergie & Masse

Begrifflichkeiten bei Kernen (Nukliden):

Tröpfchenmodell – Bindungsenergien

Tröpfchenmodell - Stabilitätstal

Masse M(Z,A)

Eigenschaften von Isobaren

- es gibt f
 ür jedes A = const.
 ein stabilstes Nuklid im "Stabilitätstal"
- wie finde ich dieses?
 a) ordne Nuklide mit
 Masse M(Z, A = const.)
 bzw. B(Z, A = const.)
 nach Kernladung Z
 b) bilde ∂B(Z,A = const.)/∂Z = 0
- Kerne mit A = ungerade
 ⇒ 1 Massenparabel für ug- Kerne

Tröpfchenmodell - Stabilitätstal

Massenparabel Stabilität in gg- / uu- Kernen uu - Kerne mit A = gerade uu ⇒ 2 Massenparabeln gg (gg- und uu- Kerne) durch Paarungsterm Masse M(Z,A) mehrere stabile Nuklide wichtiger Beitrag der Paarungsenergie δ $M(Z, A) = \alpha \cdot A - \beta \cdot Z + \gamma \cdot Z^{2} + \delta \cdot A^{-1/2}$ n-Überschuss p-Überschuss **Z-4 Z-**2 7 Z+2 stabil Kernladung Z

Tröpfchenmodell - Stabilitätstal

Tröpfchenmodell - Stabilitätstal

Stabilitätstal

Coulomb-Abstoßung der Protonen erzeugt bei schweren Kernen einen deutlichen Neutronenüberschuss

außerhalb des Stabilitätstals:
 β-Zerfälle, α-Zerfälle oder
 Emission von p, n

Tröpfchenmodell - Stabilitätstal

Stabilitätstal

 Coulomb-Abstoßung der Protonen erzeugt bei schweren Kernen einen deutlichen Neutronenüberschuss (Neutronen als Kitt)

außerhalb des Stabilitätstals:
 β-Zerfälle, α-Zerfälle oder
 Emission von p, n

Tröpfchenmodell - Limits

Vergleich von empirischem Modell und experimentellen Daten

aber: magische Zahlen

Z oder N = 20, 28, 50, 82, 126 ⇒ Schalenstruktur der Kerne

Fermigasmodell

Fermigas-Modell

- Kern-Eigenschaften können auch beschrieben werden durch Modell, in dem sich Nukleonen in einem mittleren Potenzial frei bewegen
- zwei unabhängige Fermionen-Systeme: Neutronen, Protonen
- Nukleonen bewegen sich unter Beachtung des Pauli-Prinzips (da Spin = ½ Teilchen) im Kern wechselwirkungsfrei
- mittleres Kernpotenzial =
 Überlagerung der einzelnen kurzreichweitigen Nukleon-Nukleon-Wechselwirkungen

Fermigasmodell

Fermigas-Modell - Grundlagen

- verschiedene Potenziale für Protonen und Neutronen
- Neutronen: Kastenpotenzial

$$V(r) = \begin{cases} -V_0 & 0 \le r \le R \\ 0 & r > R \end{cases}$$

- Protonen: Kastenpotenzial & Coulombkraft
 ⇒ geringere Tiefe V₀
- Grundzustand des Kerns (T =0): alle Nukleon-Zustände sind besetzt

⇒ keine Stöße bzw. Wechselwirkungen

Fermigasmodell

Fermigas-Modell: Quantenstatistik

- Nukleonen bilden ein wechselwirkungsfreies Fermigas, d.h. statistisches Ensemble (s. Kap. 6, Spin)
- Grundzustand (T = 0) alle Nukleon-Zustände ab dem Potenzialboden V₀ sind besetzt bis zur Fermi-Energie E_F
- Pauli-Prinzip:

jeder p- oder n-Zustand besetzt mit 2 Teilchen (Spin ⊕ ₽)

Fun with Facts: Fermi-Kante

- A) Es entsteht ein Nukleon-Loch !
- B) Es entsteht kein Nukleon-Loch !

B

Die Abstände der besetzten Niveaus bleiben gleich !

Die Abstände der besetzten Niveaus werden größer !

Quantenphysik früher und heute

