

Atome & Kerne

Sommersemester 2017 Vorlesung # 3, 30.04.19

Guido Drexlin, Institut für Experimentelle Teilchenphysik, Fakultät für Physik

Experimentelle Grundlagen – Atome

- Größenskalen von Atomen
- Rydberg-Atome & Anwendungen
- Ionisationsenergien von Atomen
- Vieldrahtkammern für Teilchen
- spezifische Ladung e/m
- von Rutherford zu HERA

Energie- & Zeitskalen

Typische Energie- und Zeit- Skalen von atomaren Prozessen

Rotation von Molekülen
 Energieskala: 10⁻⁶ eV (µeV)
 Zeitskala: 10⁻¹² s (ps)

Vibration von Molekülen
 Energieskala: 10⁻³ eV (meV)
 Zeitskala: 10⁻¹⁵ s (fs)

 Bindungsenergie leichtes Atom Energieskala: einige eV Anregung: Licht (optisch)

- **Bindungsenergie** schweres Atom Energieskala: **einige keV** Anregung: Röntgenphoton

Bindungsenergie Kerne
 Energieskala: einige MeV
 Anregung: Gammaquanten

- Anregungsenergien Baryonen Energieskala: GeV Anregung: Teilchenstreuung

2.2 EIGENSCHAFTEN VON ATOMEN

Einheiten: das H-Atom

Eigenschaften des Grundzustands eines H-Atoms

Atome – Größenskalen

KIT-ETP

Atome – Größenskalen

Atomradien korrelieren mit ihrer Stellung im Periodensystem der Elemente (He: 122 pm, Li: 155 pm, O: 55 pm, Fe: 126 pm) Atomradius Ionenradius

Fun with Facts: Atomradien

Frage: Innerhalb einer Periode nimmt der Atomradius ab, weil...

- sich die zusätzlichen Elektronen in Richtung des Kerns abstoßen.
- die Protonenzahl und damit die Ladung im Kern zunimmt.
- das Volumen des Kerns zunimmt und so effektiv das anziehende Coulombfeld verstärkt.
 - die zusätzlichen Elektronen Paare bilden, die zu einer weiteren Wechselwirkung mit dem Kern führen. Facts

B

Größenskalen & Coulombpotenzial

Coulombpotenzial ~ Z, aber Abschirmung durch Hüllenelektronen

Wie erzeuge ich ein riesiges Atom?

Rezept f
ür sehr große Atome: kleines Z, hohe Quantenzahl n, **Rydberg-Zustände** sehr nahe an der Ionisationskante (nur wenige meV!!) V(r) bis n>100 **n=2** Coulomb-"Rydberg"-Potenzial Zustände "Planetensystem" n=1

oft hochangeregte Erdalkali-Atome: Na, K, Rb, Cs

Wie erzeuge ich ein riesiges Atom?

Erzeugung hochangeregter Rydberg-Zustände über verschiedene Laser-Anregungsprozesse

Atome – "Guinness Buch der Rekorde"

Rydberg-Atome: die "Giganten" unter den Atomen

- Riesen-H-Atome mit Radien bis ~ 1 mm!
- Elektron in hochangeregtem Zustand n (n = 20-600)

Atome – Anwendungen von Rydbergs

Rydberg-Zustände zur Prozessierung von Quanten-Informationen (Qubits)

Atome – einzeln sichtbar gemacht

Atome: sichtbar durch spezielle Techniken (Rastertunnelmikroskope,...)

- <u>nicht</u> sichtbar in optischen Mikroskopen, λ_{opt} : 380 – 780 nm (10⁻⁹ m) vs. atomare Größe: 50-300 pm (10⁻¹² m)

- hohe Werte für Edelgase: He, Ne, Ar, Kr, Xe, Rn: 10 eV...25 eV
- wichtig z.B. für Ionisationsdetektoren (Vieldrahtkammer, Driftkammer)
- im Festkörper: Austrittsarbeiten (Energiebänder)

- erklärbar durch Elektronenschalen-Modell ⇒ modern: Orbitale
- Effekte: höhere Kernladungszahl Z ⇒ tieferes Coulombpotenzial Teil-Abschirmung von Z durch tiefere Elektronenschalen

- wichtig für Auslegung von Teilchendetektoren (Gase, Flüssigkeiten)
- wenn nur wenig Energie zur Erzeugung eines freien Elektrons bereitsteht, nimmt man Erdalkali-Metalle (z.B. bei der Detektion von Licht!!!)

Ionisierungsenergien von freien Atomen

- wichtig für Auslegung von Teilchendetektoren (Gase, Flüssigkeiten)
- wenn nur wenig Energie zur Erzeugung eines freien Elektrons bereitsteht, nimmt man Erdalkali-Metalle (z.B. bei der Detektion von Licht!!!)

viele Photomultiplier zum Lichtnachweis

- wichtig für Auslegung von Teilchendetektoren (Gase, Flüssigkeiten)
- Vieldrahtkammern oder Driftdetektoren: **Ionisation durch Teilchen** oft Betrieb mit Argon: $\Delta E_{min} = 15,76 \text{ eV}$ pro Elektron/Ion-Paar

Argon

Ionisierungsenergien und Teilchendetektoren

- Vieldrahtkammern sind gefüllt mit einem inerten Zählgas (Edelgas Argon, & weitere Gasanteile)
- Zähldrähte zum Aufsammeln der erzeugten Ladungen (e-)

Ionisation von Atomen zur Spurrekonstruktion

- Moderne Vieldrahtkammern unverzichtbar f
 ür Spur- (Orts-) Rekonstruktion von geladenen Teilchen aus Kollisionen
- Edelgase als Standardfüllung der Kammern

Bachelor-Arbeit: DARWIN-Spur-Simulation

Optimierung der Ladungssammlung in einer großen LXe-TPC

DARWIN Observatorium: eine große zukünftige Driftkammer mit
 50 t flüssig-Xenon (Liquid Xenon, LXe) zum Nachweis von WIMPs
 Aufgabe: Simulation des Driftverhaltens von Elektronen in LXe an Anode

Ionisation von Atomen zur Spurrekonstruktion

- Teilchenidentifikation über spezifische Ladung e/m
 z.B. Protonen vs. Positronen
- Nachweis der Teilchenspur in externem Magnetfeld

Experiment - Fadenstrahlrohr

Bestimmung des Verhältnisses e/m

- Messung mit **Elektronen** in einem Fadenstrahlrohr: nach Beschleunigung Kreisbahn in homogenem B-Feld, da Kräftegleichgewicht Helmholt
- Lorentzkraft = Zentripetalkraft

Elektronen – spez. Ladung e/m

Bestimmung des Verhältnisses e/m

Lorentzkraft = Zentripetalkraft

$$\vec{F}_L = |e| \cdot \vec{v} \times \vec{B} \iff \vec{F}_Z = m_e \cdot \frac{v^2}{r}$$

- Verhältnis e/m_e:
$$\frac{|e|}{m_e} = \frac{V}{r \cdot B}$$

- spezifische Ladung des Elektrons: $e/m_{e} = -1,758820024(11) 10^{11} C/kg$ $\pm 0,00000011$ ist 1σ Fehler
- Massenverhältnis Proton-Elektron: $\mu = m_p / m_e = 1846$ (wichtig für H-Atom,...)

Elemente besitzen oft verschiedene Isotope

- Isotop: gleiche Kernladung Z (Protonenzahl), unterschiedliche Neutronenanzahl, d.h. unterschiedliche Gesamtmasse M
- Isotope mit sehr kleiner / sehr großer Neutronenanzahl N oft instabil
- Bestimmung natürlicher Isotopen-Verhältnisse oft sehr wichtig

Karlsruher Nuklidkarte

Beispiel:

Quecksilber

Massenzahl M

Massenspektrometrie von Ionen

Bestimmung von Massenspektren M/Q für Ionen

- Erzeugung von Ionen in Ionenquelle, dann Ionen-Transport zum Analysator
- Selektion einzelner Isotope über spez. Ladung M/Z in homogenem B-Feld

Massenspektrometrie von Ionen

Moderne Massenspektrometer f ür Ionen

27

- heutige Massen-Spektrometer erreichen Auflösung von milli-Dalton

2.3 ATOMSTRUKTUR & STREU-EXPERIMENTE

Vorbemerkung-1: Röntgenstreuung

Streuung mit Röntgenphotonen (keV-Energien) an Kristallen:

- Ziel: Bestimmung des Abstands d zwischen Kristallebenen

Röntgenstreuung: Bragg-Bedingung

Streuung mit Röntgenphotonen (keV-Energien) an Kristallen:

- einfallender Strahl: Wellenlänge λ unter Winkel θ relativ zur Kristallebene auftretender Gangunterschied $2\delta = 2d \cdot \sin \theta$ [da sin $\theta = \delta / d$]
- Bragg-Reflexionsbedingung für *konstruktive* Interferenz

Laue-Verfahren

Streuung mit Röntgenphotonen (keV-Energien) an einem **Einkristall**:

- Erzeugung **kontinuierlicher** (weißer) **Röntgenstrahlung** durch Bremsstrahlung von beschleunigten Elektronen an Anode
- mehrere Gitterschichten erfüllen Bragg-Bedingung, da λ = variabel
- erlaubt z.B. Untersuchung dynamischer Prozesse in Proteinkristallen

Max von Laue (1897-1960) Nobelpreis 1914

Vorbemerkung-2: Kathodenstrahlen

Karlsruhe Institute of Technology

Streuung von Elektronen an Materie

- Erzeugung von Kathodenstrahlen (Elektronenstrahl) über Gasentladung
- Lenard: erste Untersuchungen zur Reichweite von Elektronen in Gasen
- Aufstellung des Streugesetzes an dünnem Absorber (Folie)

 $N(x) = N_0 \cdot e^{-\alpha \cdot x}$ α : Absorptionskoeffizient

Kathodenstrahlen

Streuung von Elektronen an Materie

- Erzeugung von Kathodenstrahlen (Elektronenstrahl) über Gasentladung
- Lenard: erste Untersuchungen zur Reichweite von Elektronen in Gasen
- Aufstellung des Streugesetzes an dünnem Absorber (Folie)

 $N(x) = N_0 \cdot e^{-\alpha \cdot x}$ α : Absorptionskoeffizient

Streuung von Elektronen an Materie

34

- Erzeugung von Kathodenstrahlen (Elektronenstrahl) über Gasentladung
- Lenard: erste Untersuchungen zur Reichweite von Elektronen in Gasen
- Aufstellung des Streugesetzes an dünnem Absorber (Folie)

 $N(x) = N_0 \cdot e^{-\alpha \cdot x}$ α : Absorptionskoeffizient

Atome & Kerne: Beginn von Untersuchungen immer kleinere Materie-Bausteine

Atome & Kerne: Beginn von Untersuchungen immer kleinere Materie-Bausteine

PHYSICAL REVIEW

VOLUME 102, NUMBER 3

MAY 1, 1956

Elastic Scattering of 188-Mev Electrons from the Proton and the Alpha Particle* $\dagger \ddagger \$ \parallel \P$

R. W. MCALLISTER AND R. HOFSTADTER Department of Physics and High-Energy Physics Laboratory, Stanford University, Stanford, California (Received January 25, 1956)

The elastic scattering of 188-Mev electrons from gaseous targets of hydrogen and helium has been studied. Elastic profiles have been obtained at laboratory angles between 35° and 138°. The areas under such curves, within energy limits of ± 1.5 Mev of the peak, have been measured and the results plotted against angle. In the case of hydrogen, a comparison has been made with the theoretical predictions of the Mott formula for elastic scattering and also with a modified Mott formula (due to Rosenbluth) taking into account both the anomalous magnetic moment of the proton and a finite size effect. The comparison shows that a finite size of the proton will account for the results and the present experiment fixes this size. The root-mean-square radii of charge and magnetic moment are each $(0.74\pm0.24)\times10^{-13}$ cm. In obtaining these results it is assumed that the usual laws of electromagnetic interaction and the Coulomb law are valid at distances less 10^{-13} cm and that the charge and moment radii are equal. In helium, large effects of the finite size of a particle are observed and the rms radius of the alpha particle is found to be $(1.6\pm0.1)\times10^{-13}$ cm.

Ladungsradius r = $0.8 \cdot 10^{-15}$ m

Robert Hofstadter (1915-1990)

Nobelpreis 1961

36

30.04.2019 G. Drexlin – AK03

Robert Hofstadter

Atome & Kerne: Beginn von Untersuchungen ⇒ immer kleinere Materie-Bausteine

Henry W. Kendall Jerome Friedman **Richard Taylor**

Nobelpreis 1990

1956: Hofstadter Größe des Protons Elektronen 1962: Kendall et al., Entdeckung Quarks Elektronen

Atomkern

Atome & Kerne: Beginn von Untersuchungen immer kleinere Materie-Bausteine

Aufbau Proton

Elektronen, Myonen

Atome & Kerne: Beginn von Untersuchungen immer kleinere Materie-Bausteine

α-Energie: 5 MeV

Faktor ~10000

in Teilchenenergie

Atom damals

p-Energie: **800 GeV** e-Energie: 30 GeV

Proton heute

Fun with Facts: Streu-Experimente

DHELDON CO

-FUN WITH

Facts

Frage: warum braucht man immer höhere Teilchenenergien für immer kleinere Strukturen?

- A) schnellere Teilchen sehen alles relativistisch verkürzt!
- B) für schnellere Teilchen vergeht Zeit langsamer (\rightarrow > Rate) !

C) schnellere Teilchen können mehr Energie übertragen !

Struktur der Materie 2019

