

Atome & Kerne

Sommersemester 2019 Vorlesung # 4, 02.05.17

Guido Drexlin, Institut für Experimentelle Teilchenphysik, Fakultät für Physik

Experimentelle Grundlagen – Atome

- Rutherford-Streuung & Atommodell
- Wirkungsquerschnitt (Grundlagen)

Teilchen-Welle Dualismus

- Eigenschaften von Photonen
- schwarzer Strahler
- Planck-Verteilung

Atome – Eigenschaften & Anwendungen

■ Atom-Eigenschaften ⇒ Rydberg-Zustände Detektorauslegung

Streuexperimente & Struktur der Materie

Experimente – Röntgenröhre & -beugung

Röntgenbeugung

- Elektronen erzeugen Röntgenstrahlung über Abbremsung (Bremsstrahlung) (hier: U_{max} = 12 kV)
- Röntgenstrahlung zur Ausmessung der Kristallstruktur (s. Physik 6)

Rutherford-Streuung & die Atom-Struktur

1909: Rutherford, Geiger und Marsden untersuchen in Manchester die Streuung von α-Teilchen (⁴He-Kerne) an sehr dünnen Goldfolien

Rutherford-Streuung & die Atom-Struktur

Ziel: experimentelle Winkelverteilung der gestreuten α -Teilchen

- SRückschlüsse über Struktur des Streuzentrums (Atomkern)
- ⇒ Test verschiedener Atommodelle: Thomson vs. Rutherford

Rutherford-Streuung & die Atom-Struktur

Resultate: experimentelle Winkelverteilung der gestreuten α -Teilchen

Streignisse mit großen Streuwinkeln (bis zu 180°)

Atommodell-1: Rosinenkuchen von Thomson 🔨

Atom-Modell von JJ Thomson (1904): Elektronen in einer Kugel aus gleichmäßig verteilter positiver Ladung (Rosinenkuchen-Modell)

α -Streuung an leichten Elektronen

α's können nur an Elektronen streuen, diese interagieren als gleichmäßig verteilte Ladungen, \Rightarrow keine Rückstreuung von α 's

maximaler Impulstransfer $\Delta p \sim 10^{-4} p_i$ nur sehr kleine Streuwinkel \Theta ~ 0°

02.05.2019

Atommodell-2: Atomkern von Rutherford

Atom-Modell von Lord Rutherford (1904): Elektronen (in der Atom-Hülle) umkreisen einen quasi-punktförmigen Atomkern

α-Streuung an schweren Gold-Kernen

positive Ladungen nur im Kern lokalisiert,

 \Rightarrow Rückstreuung von α 's am Coulombpotenzial des Gold-Kerns mit A = 197

maximaler Impulstransfer $\Delta p \sim 2 \cdot p_i$ $\frac{m_{Au-197}}{\approx} \approx 50$ auch große Streuwinkel bis $\Theta_{max} \sim 180^{\circ}$

02.05.2019

 m_{α}

 $m_{\alpha} = 4 \text{ GeV/c}^2$ $m_e = 0,000511 \text{ GeV/c}^2$ $m_{Au-197} = 197 \text{ GeV/c}^2$

Fun with Facts: Streu-Experimente

Frage: wann erreiche ich einen sehr hohen Impulstransfer bei einem Stossprozeß? Die Massen der Stoßparameter... A) ... sind gleich groß! B) ... sind möglichst verschieden groß ! Facts C) ... spielen kaum eine Rolle (Hauptsache: zentral)! В ACH, EGAL Hauptsache zentral

Rutherford-Streuquerschnitt

Differentieller Wirkungsquerschnitt dσ/dθ: Rate W der unter einem bestimmten Streuwinkel θ gestreuten Teilchen (hier: α-Teilchen), wichtig: dünnes Target, nur Einzelstreuung, keine Mehrfachstreuung

Rutherford-Streuquerschnitt

Differentieller Wirkungsquerschnitt $d\sigma/d\theta$:

 α -Teilchen können nicht bis zum Kernvordringen, trotz E_{kin} = 4,76 MeV α -Teilchen werden nicht absorbiert, keine Kernfusion

Wirkungsquerschnitt

Totaler Wirkungsquerschnitt σ_{tot}

 σ_{tot} = ein Mass für Wahrscheinlichkeit einer (Streu-)Reaktion

σ_{tot} ~ Gesamtrate an Streuereignissen / s

Wirkungsquerschnitt - differentiell

differentieller Wirkungsquerschnitt d\sigma/d\Omega

 $d\sigma/d\Omega = ein Mass für Wahrscheinlichkeit einer winkelabhängigen (Streu-)Reaktion in das Raumwinkelelement d\Omega$

 σ_{tot} aus Integration des differentiellen Wirkungsquerschnitts

Wirkungsquerschnitt - differentiell

differentieller Wirkungsquerschnitt dσ/dΩ

dσ/dΩ = experimentelle Daten lassen durch Vergleich mit Theorie Rückschlüsse zu auf das **Streupotenzial** (z.B. Coulombfeld)

 $d\sigma/d\Omega$ wichtig für die Aufklärung der Struktur von Atomen/Kernen

Was ist die Einheit eines totalen/differentiellen Wirkungsquerschnitts?

Freie Weglänge & Wirkungsquerschnitt

Mittlere freie Weglänge λ [in cm]:

durchschnittliche Weglänge eines Teilchens im Target für eine Reaktion $N(\lambda) = N(0) \times (1/e)$ [\Rightarrow 1/e der Teilchen noch ohne Stoßprozess)

Freie Weglänge & Wirkungsquerschnitt

Beispiel: Stoßprozesse von Gasteilchen (harte Kugel mit Radius r) Wirkungsquerschnitt σ ist verknüpft mit ihrer geometrischen Größe
 hier σ_{tot} = π · (r + r)²

Freie Weglänge & Wirkungsquerschnitt

Beispiel: Stoßprozesse von Billardkugeln (harte Kugel mit Radius r) Wirkungsquerschnitt σ ist verknüpft mit ihrer geometrischen Größe
 hier σ_{tot} = 4 π · r² (~ Kreisfläche der Billard-Kugel: π · r²)

Kontaktwechselwirkung:

Stoß, sobald die Kugeln sich berühren

Wirkungsquerschnitt

Totaler Wirkungsquerschnitt σ_{tot}

 σ_{tot} = ein Mass für Wahrscheinlichkeit einer (Streu-)Reaktion

σ_{tot} ~ Gesamtrate an Streuereignissen / s

- Einheit des Wirkungsquerschnitts σ_{tot} [Fläche]:

 $1 \text{ barn} = 1 \text{ b} = 10^{-24} \text{ cm}^2$

 $1 \text{ mb} = 10^{-27} \text{ cm}^2$ $1 \text{ Mb} = 10^{-18} \text{ cm}^2$

 Größe von σ_{tot} ist abhängig von Target: (Atom [pm], Kern & Nukleon [fm]) & der Art der Wechselwirkung (z.B. elektromagnetisch, stark, ...)

[barn = Scheunentor]

Geometrischer Wirkungsquerschnitt

 σ_{geom}

a

Beispiel: Stoßprozesse unterschiedlich großer Teilchen (s. Rutherford)

- harte Kugeln mit Radien $r = R_a$ und $r = R_b$
- Reaktion erfolge, sobald sich beide Kugeln berühren

Wirkungsquerschnitte von Atomen/Kernen

Totaler Wirkungsquerschnitt σ_{tot}

r = 150 pm r = 150 pm

 $\sigma_{tot,geom} = \pi \cdot (300 \text{ pm})^2 = 2,827 \cdot 10^{-15} \text{ cm}^2 = 2827 \text{ Mb}$

Beispiel: Neonatom-Neonatom-Stöße

r = 2,585 fm r = 2,585 fm

Beispiel: Neon<u>kern</u>-Neon<u>kern</u>-Stöße $\sigma_{tot,geom} = \pi \cdot (2 \cdot 2,585 \text{ fm})^2 = 0,84 \text{ barn}$

Wirkungsquerschnitte der Astrophysik

Totaler Wirkungsquerschnitt σ_{tot}

Teilchen-Welle Dualismus - Einführung

Alle Teilchen (Licht, Elektronen,

besitzen auch Wellencharakter: Teilchen-Welle Dualismus

- von grundlegender Bedeutung für die Quantenmechanik (Wellenfunktion)

Photon als Welle:

Inferenz am Doppelspalt mit konstruktiver/ destruktiver Interferenz

$$E_{\gamma} = \frac{h \cdot c}{\lambda}$$

Teilchen-Welle Dualismus - Einführung

Alle Teilchen (Licht, Elektronen, Kerne, Atome, Moleküle, Cluster...) besitzen auch Wellencharakter: Teilchen-Welle Dualismus

- von grundlegender Bedeutung für die Quantenmechanik (Wellenfunktion)

Atome/Moleküle als Teilchen:

Makromoleküle wie

- Fullerene (Buckyballs)
- Biomoleküle (bis zu 7000 u)

Aufbau Atom-Interferometer

Atome/Moleküle als Welle:

Interferometrie mit Atomen mit konstruktiver/ destruktiver Interferenz

$$\lambda = \frac{h}{p}$$

3.1 PHOTONEN UND IHRE WECHSEL-WIRKUNG

3.1 Photonen & ihre Wechselwirkung

Photon

- Träger des elektromagnetischen Feldes: "virtuelle" Photonen
- reelle Photonen entstehen bei Prozessen der elektromagnetischen Wechselwirkung
- Schwarzkörper (thermische Strahlung) [Kap. 3.1]
- nicht-thermische Strahlung [Kap. 9.2]:

Synchrotronstrahlung, Bremsstrahlung, ...

Photon	
Masse	m = 0
Spin	J = 1
Parität	P = -1

Photonen - Grundlagen

Atomphysik

- IR, optisch & UV:
- Röntgenstrahlung:

Übergänge äußerer Hüllenelektronen (Photoeffekt) Übergänge innerer Hüllenelekronen (Photoeffekt)

Kernphysik

- Gammastrahlung:

Streuung (Comptoneffekt), Paarbildung, Abregung angeregter Kern-Niveaus

Temperaturstrahlung

Thermische Schwarzkörper-Strahlung

- emittiert von Körper in thermodynam. Gleichgewicht
 - ⇒ Hohlraum (Absorption elektromagnetischer Strahlung)

Planck-Verteilung

Temperaturstrahlung

Thermische Schwarzkörper-Strahlung

- emittiert von Körper in thermodynam. Gleichgewicht
 - ⇒ Hohlraum (Absorption elektromagnetischer Strahlung)

Planck-Verteilung

Schwarzkörper-Strahlung & Planck

Thermische Schwarzkörper-Strahlung

- zeigt die Quantisierung des elektromagnetischen Felds
- einzelne diskrete Quanten: Photonen mit E = h v

Planck'sches Wirkungsquantum h

- Entdeckung durch Planck in 1899/1900 begründet die Quantenmechanik führt zu Teilchen-Welle Dualismus der modernen Physik
 - $h = 6,626\,070\,040\,(81)\cdot10^{-34}\,\mathrm{J\,s}$
 - $=4,135\,667\,662\,(25)\cdot10^{-15}\,\mathrm{eV\,s}$
- Dimension einer Wirkung
 Energie × Zeit (skalare Größe)

h = elementares Wirkungsquantum

Das Universum – ein schwarzer Strahler

- Kosmische Hintergrundstrahlung (Cosmic Microwave Background Radiation: CMB) – das Echo des Urknalls
 - entstanden aus Materie-Antimaterie-Annihilation (t ~ 10⁻⁴ s)
 - entkoppelt 380 000 a nach Big Bang von Materie ("Ausfrieren")

Das Universum – ein schwarzer Strahler

Temperaturmessungen mit FIRAS auf dem COBE Satelliten

- Interferometrie-Messungen von Mather

John C. Mather

Das Universum – ein schwarzer Strahler

Temperaturmessungen mit FIRAS auf dem COBE Satelliten

- Interferometrie-Messungen von Mather zeigen für die CMB ein <u>perfektes</u> Schwarzkörperspektrum mit T = 2,725 K

John C. Mather -9 min. Messzeit mit FIRAS: perfekter Schwarzkörper

Nobelpreis 2006

Wiensches Verschiebungsgesetz

- Universum kühlt sich bei seiner Expansion ab (immer Planck-Verteilung)
 - Beschreibung durch Wiensches Verschiebungsgesetz

Universum als Schwarzkörper

Fun with Facts: thermische Strahlung

Frage: warum ist die Schwarzkörperstrahlung so wichtig in der Atomphysik?

- A) die Strahlung ist klassisch nur näherungsweise beschreibbar
- B) alle Atome im Universum geben die 3 K Hintergrundstrahlung ab
- C) alle Atome im Universum sind im thermischen Gleichgewicht

Planck-Verteilung & Näherungen

Näherungen: - kleines v: Wellen-Beschreibung von Rayleigh & Jeans

- großes $\boldsymbol{\nu}$: thermodynamische Beschreibung durch Wien

vgl. Klass. Ex.Phys. III

Planck's Herleitung 2019

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."