

Atome & Kerne

Sommersemester 2019 Vorlesung # 5, 07.05.19

Guido Drexlin, Institut für Experimentelle Teilchenphysik, Fakultät für Physik

Teilchen-Welle Dualismus

- Einsteinkoeffizienten und Schwarzkörperstrahlung
- Photon-Wechselwirkungen:
 - a) Photoeffekt
 Messung & Anwendungen
 b) Compton-Effekt

differentielle Streuquerschnitte

Strukturuntersuchungen mit Streuprozessen

Materiewellen & Photonen

Quantennatur von Photonen

Materiewellen

Ableitung durch Einstein (1917): - Photonen mit $E = h \cdot v$ Niveau - 2 diskrete atomare Niveaus: 1, 2 5500 K 800 Absorption spontane stimulierte/induz. u(Դ) (kJ/nm) 600 5000 K Emission Emission 400 4500 K 4000 K 200 3500 K Photonλ (µm) Prozesse $u(v,T) = \frac{4\pi}{c}I(v,T)$ erklären alles $=\frac{8\pi h\nu^3}{r^3}\cdot\frac{1}{e^{h\nu/kT}-1}$ Planck & Einstein

- Atome wechselwirken mit externem Strahlungsfeld:
 - Übergänge durch 3 Prozesse:

Absorption:

Photon mit $E = E_2 - E_1 = h \cdot v$ wird absorbiert \Rightarrow Niveau-Übergang $E_1 \rightarrow E_2$

spontane Emission:

Photon mit $E = E_2 - E_1 = h \cdot v$ wird emittiert (Lebensdauer τ) \Rightarrow Niveau-Übergang $E_2 \rightarrow E_1$

stimulierte/induzierte Emission: Niveau-Übergang $E_2 \rightarrow E_1$ wird durch <u>externes</u> Photonfeld induziert

Einsteinkoeffizienten

- System sei im thermodynamischen Gleichgewicht mit Boltzmann-Verteilung:

$$\frac{N_2}{N_1} = \frac{e^{-E_2/kT}}{e^{-E_1/kT}}$$

- Absorption eines $\underline{externen}$ Photons $N_1 \rightarrow N_2$

 $dN_{12} = B_{12} \cdot N_1 \cdot u(v) \cdot dt$

- spontane Emission eines Photons $N_2 \rightarrow N_1$

$$dN_{21,sp} = A_{21} \cdot N_2 \cdot dt$$

- induzierte Emission eines Photons $N_2 \rightarrow N_1$

$$dN_{21,ind} = B_{21} \cdot N_2 \cdot u(v) \cdot dt$$

 Wahrscheinlichkeit für Übergang pro Zeiteinheit Einsteinkoeffizienten:

8 07.05.2019 G. Drexlin – AK05

Planck Verteilung - Herleitung

Einsteinkoeffizienten

- daraus ergibt sich

$$\frac{B_{12} \cdot u(\nu)}{A_{21} + B_{21} \cdot u(\nu)} = \frac{e^{-E_2/kT}}{e^{-E_1/kT}}$$

- Übergang durch Photon mit $h\cdot \nu$

 $E_2 - E_1 = hv$ $= e^{-hv/kT}$

- damit für Planck´sche Strahlungsdichte u(v):

$$u(v) = \frac{A_{21}}{B_{12} \cdot e^{hv/kT} - B_{21}}$$

Leistungsdichte Schwarzer Körper

Anzahl N₂

N(0)

Atomare Übergänge – spontane Emission

Lebensdauer und Zerfallsbreite

- angeregtes Niveau N₂ zerfällt über
 <u>spontane</u> Emission eines Photons
- Zustand N₂ charakterisiert durch:
 - exponentielle Abnahme der Anzahl N₂ mit Lebensdauer τ

 $N(t) = N(0) \cdot e^{-t/\tau}$

τ

Zeit t

 \Rightarrow endliche (natürliche) Linienbreite Γ

spontane Emission $\tau = \frac{1}{A_{21}}$

Fourier-

Transformation

Atomare Übergänge – stimulierte Emission

Externe Photonen wechselwirken

stimulierte/induzierte Emission: Niveau-Übergang $E_2 \rightarrow E_1$ wird durch <u>externes</u> Photonfeld induziert

wichtig für Laser, Kap. 9.4

- Absorption + stimulierte Emission:
 Verstärkung des externen Felds wenn
 N₂ > N₁ (Besetzungsinversion)

Wechselwirkung von Gammas

die Wechselwirkung von γ 's erfolgt über 3 fundamentale Prozesse:

organ.

Photoeffekt

niedrige Gammaenergie

Comptonstreuung

Paarbildung

Photoeffekt – Einführung

Photoeffekt = Freisetzung von Elektronen nach Absorption von Photonen

Photo-Emission:

- Elektronen-Emission aus Metall-(Halbleiter-) Oberflächen
 - ⇒ Bänderstruktur im Festkörper charakteristische Austrittsarbeit

Photo-Ionisation:

- Elektronen-Emission von einzelnen Atomen / Molekülen, z.B. in Gasen
- Struktur der Elektronenschalen charakteristische Ionisationsenergie

Photoeffekt – Einführung

Photoeffekt = Freisetzung von Elektronen nach Absorption von Photonen mit Energie E = h · v

The Nobel Prize in Physics 1921 was awarded to Albert Einstein "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect."

6. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt; von A. Einstein.

Experimente - Hallwachseffekt

16

Beleuchtung einer Zink-Platte durch eine Kohle-Bogenlampe (UV Licht!) Elektronenaustritt erzeugt positive Ladung an Oberfläche ⇒ Entladung eines vorher negativ aufgeladenen Elektroskops

Experimente - Hallwachseffekt

CHALLENGE

Beleuchtung einer Zink-Platte durch eine Kohle-Bogenlampe (UV Licht!)

- Austrittsarbeit von Elektronen in Zink: $W_A (Zn) = 4,34 \text{ eV}$
- erforderlich: reine Metall-Oberfläche, kein Oxid oder Adsorption!

Photoelektronenerzeugung bei KATRIN

Erzeugung eines Elektronenstrahls durch UV-Licht

- UV-Lichtquelle: Xe-Gasentladung für UV-A-B-C
- Ziel: Beeinflussung von Plasma-Eigenschaften
- wichtig: Austrittsarbeit von Elektronen aus Gold-Oberfläche (Vakuum!)

Photoeffekt – Gegenfeldmethode

Bestimmung von Austrittsarbeiten in metallischen Festkörpern

- UV-Lichtquelle mit Monochromator beleuchte eine metallische **Photokathode**
- an evakuierte Röhre wird
 eine Spannung U₀ angelegt
 zwischen Kathode und Anode
- Photoelektronen erzeugen einen messbaren Photo-Strom I_{phot}

Photoeffekt – Gegenfeldmethode

Bestimmung von Austrittsarbeiten in metallischen Festkörpern

variiere Gegenspannung U₀(f) bis der Photoelektronen-Strom
 I_{phot} = 0 wird f
ür verschiedene Frequenzen f

Photoeffekt – Gegenfeldmethode

- Austrittsarbeit W_k =

Geradensteigung:

Photoeffekt – Austrittsarbeit

Bestimmung von Austrittsarbeiten in metallischen Festkörpern

- Austrittsarbeit W_k =

(minimale) thermodynamische Arbeit, die aufgebracht werden muss, um ein Elektron aus dem Material (Fermi-Kante) in das oberflächennahe Vakuum zu bringen (keine kinetische Energie)

```
W_{\kappa} (Ru, Cs) = 2,1 eV
W_{\kappa} (Au) = 4,8 - 5,4 eV
```


Austrittsarbeit & Ionisationspotenzial

Ionisationspotenzial von Atomen & Austrittsarbeit

 höhere Photon-Energien erforderlich zur Ionisation von freien Atomen als zur Auslösung von Elektronen aus Festkörpern

Photoeffekt – Wirkungsquerschnitt

Kinematik des Photoeffekts masseloses γ wird von e- in bestimmter (z.B. der innersten K-) Schale absorbiert "Mismatch" der Energie-Impuls-Relation von Elektron & Photon führt zu Peaks bei σ_{tot} bei E_γ ~ E_b (Bindungsenergie des Elektrons)

Elektron

$$E_e = \sqrt{\left(p_e \cdot c\right)^2 + \left(m_e c^2\right)^2}$$

Schalenstruktur schwerer Atome wird sichtbar bei σ_{tot} (Photoeffekt)

Photoeffekt – Wirkungsquerschnitt

Photoeffekt dominiert bei

- \Rightarrow niedriges E_{γ}
- ⇒ schwere Atomkerne
- Energieabhängigkeit von σ
 - niedrige Energien < 0,5 MeV:

$$\sigma_{\gamma} \sim \alpha^4 \cdot \frac{m_e^{7/2}}{E_{\gamma}^{7/2}}$$

Z-abhängiger Wirkungsquerschnitt

Fun with Facts: Nachweis von X-Rays

Photoeffekt – Wirkungsquerschnitt

Photoeffekt dominiert bei

- \Rightarrow niedriges E_{γ}
- ⇒ schwere Atomkerne
- Energieabhängigkeit von σ
 - niedrige Energien < 0,5 MeV:

$$\sigma_{\gamma} \sim \alpha^4 \cdot \frac{m_e^{7/2}}{E_{\gamma}^{7/2}}$$

Z-abhängiger Wirkungsquerschnitt

Plastik-Szintillatoren (organ. Material C_nH_{2n})

kaum/kein Photoeffekt da niedriges Z !

Anwendung: Photomultiplier (PMT)

Nachweis von Szintillations<u>licht</u> (keine Gammas!) durch dünne Bialkali-Photokathode (~25% Effizienz bei λ = 400 nm)

Photomultiplier (PMT)

Elektronenvervielfachung in der Dynodenkette (BeO, Mg-O-Cs), Verstärkung bis ~ 10⁸, Signal-Laufzeit im PMT τ ~ 40 ns

Anwendungen: PMTs für v-Detektoren

"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos"

Masatoshi Koshiba Nobelpreis 2002

Compton-Effekt

Compton-Streuung:

inelastischer Stoßprozess

eines Gammas an einer Ladung, i.a. an (gebundenem) Elektron

Effekt demonstriert bei niedrigen
 Intensitäten den Teilchencharakter
 von Gammaquanten

für γ´s im MeV-Bereich kann
 Elektronen-Bindungsenergie in der
 Hülle vernachlässigt werden

Compton-Effekt

Compton-Streuung: Einmal-Streuung eines Gammas im Target

- Wellenlängen-Änderung dλ des Gammas*:

$$\lambda' - \lambda = \frac{h}{m_e c} \cdot (1 - \cos \theta)$$

gestreutes λ Elektron Elektron Gamma

nur der Streuwinkel θ bestimmt Energieverlust des Gammas

kein Energieverlust $\theta = 0^{\circ}$

 $\theta = 180^{\circ}$ maximaler Energieverlust

*aus Energie- und Impulssatz (s. Haken-Wolf, S. 67)

Compton-Effekt: Energieverteilungen

Compton-Streuung:

Streuwinkel θ legt kinematische
 Variable fest

- Energie $E'_{\gamma}(\theta)$ des gestreuten Gamma-Quants:

$$E'_{\gamma}(\theta) = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} \cdot (1 - \cos \theta)}$$

Gamma-Quelle: Cs-137 Präparat emittiert Gammas

Compton-Streuung experimentell:

- Nachweis von **Compton-gestreuten Gamma-Quanten** mit einem anorganischen Szintillator (NaJ)
- Ziel: Messung der Gamma-Energie als Funktion des Streuwinkels θ (Bestätigung der Compton-Formel)

NaJ

PMT

Compton-Streuung experimentell:

- Messung der **Elektronen-Energie** aus einer Compton-Wechselwirkung in einem Szintillator

gestreutes Elektron deponiert seine Energie $E'_{e}(\theta)$ im Szintillator

auslaufendes gestreutes Gamma mit kleinerer $E'_{\gamma}(\theta)$

Energie des Elektrons für Streuwinkel θ

$$E_{e}'(\theta) = E_{\gamma} - E'_{\gamma}(\theta) = E_{\gamma}$$

$$\left(1 - \frac{1}{1 + \frac{E_{\gamma}}{m_e c^2} \cdot (1 - \cos \theta)}\right)$$

Erv

Compton-Streuung experimentell:

- Messung von Gammas i.a. ohne Kenntnis des Streuwinkels θ , d.h. alle θ aus [0, π] tragen bei
- kontinuierliches Energie-Spektrum abhängig von θ

E_{YVN}

NaJ

PMT

Compton-Streuung experimentell:

 $\mathsf{E}_{\gamma \mathcal{V}_{\mathcal{U}}}$

Compton-Kontinuum: Messung der Energie-Verteilung der gestreuten Elektronen mit hochauflösendem Ge-Detektor (P3)

Comptoneffekt – Wirkungsquerschnitt

Y. Nishina

Compton-Streuquerschnitt (Klein-Nishina)

- fällt ab für hohe γ -Energien $\sigma \sim 1/E_{\gamma}$
- proportional zur Kernladungszahl $\sigma \sim Z$

Oskar Klein 10⁰ Cs-137 K-40 Abschwächkoeffizient 10-1 (cm² g⁻¹) 10⁻² 10⁻³ $\sigma \sim 1 / E_{\gamma}$ 10-4 10⁻² 10-3 10-1 10² 10³ 10⁰ 10¹ 104 Gamma-Energie (MeV)

Comptoneffekt – Winkelverteilung

Winkelverteilung als Funktion der γ-Energie

EINSTEIN SIMPLIFIED 3 4 11/1VIIN 1111 s.hakis