

Atome & Kerne

Sommersemester 2024 Vorlesung # 13, 11.06.2024

Thomas Müller, Institut für Experimentelle Teilchenphysik, Fakultät für Physik

7. Atome im Magnetfeld und im elektrischen Feld

- 7.1 Elektronspin-Resonanz
- 7.2 Zeeman-Effekt

Wh.: Lambshift & Vakuumpolarisation

Aufspaltung von J-Orbitalen durch QED-Effekte

Wh.: Kernspin & Hyperfeinstruktur

- Aufspaltung durch magnet. Moment des Kerns im B-Feld der e-
- Kernspin & Kernmagneton:
 - Schalenmodell des Kerns zur Berechnung des Kernspins I

$$\vec{I} = \sum_{i=1}^{A} (\vec{s}_i + \vec{l}_i)$$

- gg-Kerne: | = 0 uu-Kerne: I = 0, 1, 2,... ug-Kerne: $| = \frac{1}{2}, \frac{3}{2},...$
- Kernmagneton:

$$\mu_N = \frac{e}{2m_p} \cdot \hbar$$

- magnet. Moment:

 $\vec{\mu}_I = g_I \cdot \frac{\mu_N}{\hbar} \cdot \vec{I}$

Hyperfeinstruktur:

- Kopplung von Kernspin \vec{I} mit Drehimpuls \vec{J} der Hüllenelektronen zum Gesamtdrehimpuls F

$$\vec{J} + \vec{I} = \vec{F}$$

$$V_{HFS} = -\vec{\mu}_I \cdot \vec{B}_J$$

$$V_{HFS} = -\bar{\mu}_I \cdot B_J$$

$$\nu_{HFS} = -\mu_I \cdot D_J$$

$$\mu_{HFS} \equiv -\mu_I \cdot B_J$$

$$HFS \quad \mu_I \quad D_J$$

$$HFS \quad \mu_1 = j$$

Wh.: Hyperfein-Wechselwirkung - Anwendung

- Atomuhren: wichtiges Anwendungsgebiet der Hyperfeinstruktur
 - Atomuhren auf Basis von Cäsium-133 nutzen den Hyperfeinstruktur-Übergang F=3 ↔ F=4 im Mikrowellenbereich (ΔE = 38 μeV)

Definition der Sekunde

1 Sekunde = 9192631770-fache der Perioden-Dauer der Mikrowellen-Strahlung aus dem Hyperfeinstruktur-Übergang $F=3 \leftrightarrow F=4$ des Grundzustands des Isotops Cäsium-133

7. Atome im B-Feld und im E-Feld

ESR – Zeeman-/Paschen-Back-Effekt – Stark-Effekt – MRI

1. Larmor-Präzession von Elektronen

In Magnetfeld erfährt ein Objekt mit magnetischem Moment $\vec{\mu}$ Drehmoment $\vec{M} = \vec{\mu} \times \vec{B}$. Es erfolgt Präzession um Feldachse mit charakteristischer Larmorfrequenz ω_{L} .

Elektron:

$$\omega_L = |\gamma_e| \cdot B$$

gyromagnetisches Verhältnis γ:

$$\gamma_e = \frac{-e}{2m_e} \cdot g_e = \frac{\mu_B}{\hbar} \cdot g_e$$

- freies **Elektron** mit Spin S = $\frac{1}{2}$

mit
$$E_{pot} = -\vec{\mu} \cdot \vec{B}$$

Joseph Larmor

Larmor-Frequenz & Zyklotron-Frequenz

Freies Elektron mit Spin S = $\frac{1}{2}$ im Magnetfeld:

Larmorfrequenz ω_L leicht unterschiedlich zur Zyklotronfrequenz ω_C (Umlauffrequenz eines geladenen Teilchens im B-Feld), da g-Faktor nicht exakt 2

2. Larmor-Präzession von Protonen

+55857

Das magnetische Moment $\vec{\mu}$ eines Protons unterliegt ebenfalls einer Präzessionsbewegung mit ω_{L} in einem Magnetfeld \vec{B}

Proton:
$$\omega_L = \gamma_p \cdot B$$
 mit $\gamma_p = \frac{e}{2m_p} \cdot g_p = \frac{\mu_N}{\hbar} \cdot g_p$ (freies p)
gyromagnetisches Verhältnis γ

- freies **Proton** mit Spin S = $\frac{1}{2}$

$$\gamma_p = 2,675 \ 221 \ 900(18) \times 10^8 \ \frac{\text{rad}}{\text{s} \cdot \text{T}}$$

 $\gamma_p \ / \ 2\pi = 42,577 \ 478 \ 92(29) \ \text{MHz/T}$

freies Proton mit Spin S = ½ :
 ⇒ Präzession erfolgt mit dem Uhrzeigersinn

 ω_L

Mikrowellenresonanzen: ESR und NMR

Experimenteller Ansatz:

Einstrahlung eines Mikrowellenfelds zur Erzeugung von Übergängen zwischen verschiedenen Spin-Orientierungen

Resonanz bei $\omega = \omega_L$

- Elektronspinresonanz (ESR), typische B-Feldstärken: 0,1-0,5 T
- Kernspinresonanz (NMR), typische
 B-Feldstärken: 10-25 T

7.1 Elektronenspinresonanz

- Elektronen-Spin-Resonanz (ESR) = resonante Absorption von Mikrowellen in externem B-Feld führt zu Übergängen von Spin-Zuständen des e⁻
 - experimentelles Vorgehen: erzeuge feste Mikrowellenfrequenz ω durch HF-Generator & variiere des externe B-Feld bis zur Resonanz $\omega = \omega_L$

Th. Müller, Moderne Physik I, Sommersemester 2024, Vorlesung 13

Elektronenspinresonanz – Prinzip

Elektronenspinresonanz:

Übergänge zwischen Spinzuständen von freien Elektronen (kein L)

- magnet. Moment µ des Elektrons:

 $\mu_{s} = \sqrt{s \cdot (s+1) \cdot g_{s} \cdot \mu_{B}}$

- Komponenten in z-Richtung (B₀): $(\vec{\mu}_S)_z = \pm \frac{1}{2} \cdot g_s \cdot \mu_B$
- Energie-Differenz Spin-Zustände:

$$\Delta E = h \cdot v = g_s \cdot \mu_B \cdot B_0$$
$$= \hbar \cdot \omega_L$$

Anwendung: ESR-Spektrometer

Karlsruhe Institute of Technology

ESR-Spektrometer – genereller Aufbau & funktionales Prinzip: variiere Magnetfeld bei fester MW-Frequenz bis ESR eintritt
BESR

Elektronenspinresonanz - Datenanalyse

 Elektronenspinresonanz: typischer HF-Bereich 9-10 GHz, damit tritt Resonanz auf bei B ~ 0,35 T (Elektromagnet)

ESR-Spektrometer in Medizintechnik

von der ESR zum Zeeman-Effekt

Wechselwirkung des Bahnmagnetismus L und Gesamtmagnetismus J in einem externem B-Feld: der Zeeman-Effekt

7.2 Zeeman-Effekt

Zeeman-Effekt: experimenteller Nachweis der Aufspaltung der beiden D-Linien von Natrium in externem B-Feld durch Pieter Zeeman (1896)

Nobelpreis Pieter Zeeman 1902 (1865-1943)

In externem Magnetfeld: Aufspaltung der D-Linien von Natrium: D1 (λ = 589,6 nm) \rightarrow 4 Linien D2 (λ = 589,0 nm) \rightarrow 6 Linien

Zeeman-Effekt in der Spektroskopie

Anwendung: Messung von Magnetfeldern auf Sternenoberfläche

Demonstration: Zeeman-Effekt bei Cadmium

Zeeman-Effekt: Beobachtung der Linienaufspaltung von Cadmium

- heute: normaler Zeeman-Effekte (rote Cd-Linie)
- nächste VL: anomaler Zeeman-Effekte (grüne Cd-Linie)

Cd-Atome

Experiment: Zeeman-Effekt (Aufbau)

Zeeman-Effekt: Cadmium-Lampe wird in starkes B-Feld gebracht

- wir beobachten die rote Linie (via Farbfilter) mit λ = 643,8 nm

Beobachtung in transversaler / longitudinaler Richtung:

Magnet-Anordnung + Lampe sind schwenkbar

ohne B-Feld

0°: Sicht parallel zu B-Feld (longitudinal)

90°: Sicht senkrecht zu B-Feld (transversal)

normaler Zeeman-Effekt: Aufspaltung der Linie in ein Triplett

- rote Linie aus Übergang von **D-Orbital** (l = 2) zu **P-Orbital** (l = 1) **Dipol-Übergang (** $\Delta l = 1$)
- bei <u>transversalem</u> B-Feld:
 ⇒ Aufspaltung in **3 Linien** mit Δλ/λ ~ 3 · 10⁻⁵ bei B = 1 T

- D-Orbital: $(2\ell + 1) = 5 m_{\ell}$ Zustände

mit B-Feld

- P-Orbital: $(2\ell + 1) = 3 m_{\ell}$ Zustände

- rote Linie aus Übergang von **D-Orbital** (l = 2) zu **P-Orbital** (l = 1)

Ε

23

Sehen nur 3 Linien, da Aufspaltung der Orbitale energetisch äquidistant

B > 0

Ω

B = 0

Zur Erläuterung:

24

Normaler Zeeman Effekt für L=1

- Äquidistante Energieaufspaltung in (2 ℓ+1) = 3 Zeeman-Niveaus durch Wechselwirkung des Bahnmagnetismus µ_L mit externem Feld B₀
 - Energie - quantisierter Drehimpuls ΔE in z-Richtung des B-Felds _ = 1 E₁ $L_{z} = m_{e} \cdot \hbar$ ΔE ہے ا - aufgespaltene Zeeman-Niveaus mit individueller magnetischer Quantenzahl E₀ $m_{\ell} = \ell, \ell - 1, \dots, 0, -\ell$ L = 0 $\Delta m_{e} = +1$ 0

m_ℓ

+1

()

Energieaufspaltung

Strahlung ist polarisiert, da $\vec{\mu}_L$ um die z-Achse präzediert (Vorzugsrichtung)

σ-Übergänge mit $Δm_e = ±1 ⇔$ zirkular polarisiertes Licht (LH oder RH)

Experiment: Zeeman-Effekt bei Cadmium

Zeeman-Effekt: Polarisationseffekte

- a) longitudinale Beobachtung (^{↑↑} zu B-Feld)
- zirkularpolarisierte Komponenten o⁺ o⁻
 wir beobachten 2 Linien
- linearpolarisierte Komponente π nicht beobachtbar in longitudinaler Richtung

b) transversale Beobachtung (⊥zu B-Feld)

 Dipolverteilung erlaubt Beobachtung von drei linearpolarisierten Komponenten: σ⁺, σ⁻, π

- transversale Beobachtung ($\perp zu B$ -Feld)
- 3 linearpolarisierte Komponenten: σ^+ , σ^- , π

