

Moderne Experimentalphysik I – Atome und Kerne

Vorlesung 18 27.6.2024

RECAP: *LASER*

 $\blacksquare LASER = Light Amplification by Stimulated Emission of Radiation$

- Besetzungsinversion der Laserniveaus!
- Einstein: stimulierte Emission
- Koeffizienten $B_{21} = B_{12}$

$$N(E_2 \to E_1) \sim B_{21} \cdot (N_2 - N_1)$$

Besetzungsinversion!

- **Pumpen** zum oberen Laserniveau!
 - optisch via Blitzlampe (Xenon)
 - Elektronenstoß (Gasentladung)

10. Eigenschaften stabiler Kerne

Unsere Themengebiete

Kernradien & Formfaktoren: Rutherford, Mott, Hofstadter,...

Kernreaktionen

Kernmodelle & Kernkräfte

Kernspaltung & Kernfusion

Kernphysik: klassische Themengebiete

10.1 Einführung

Eigenschaften der kondensierten Materie

- Atomphysik: Prozesse der elektromagnetischen Wechselwirkung

Kerne und Kernmaterie

Eigenschaften von Kernmaterie (Atomkerne, Neutronensterne,...)

- Kernphysik: Prozesse der starken Wechselwirkung (QCD*)

 α_s : starke Kopplungskonstante = 0, 2 ... 1

abstoßende Coulomb-Kraft (langreichweitig)

*Quanten-Chromo-Dynamik

Atome und Kerne: Vergleich der Skalen

Eigenschaften der Objekte werden festgelegt durch die Wechselwirkung (elektromagnetisch: α, stark: α_s) & Elementarteilchen (e⁻, p/n)

α : Feinstrukturkonstante = 1/137

 α_s : starke Kopplungskonstante = 0, 2 ... 1

Atome und Kerne: Vergleich der Skalen

Eigenschaften der Objekte werden festgelegt durch die Wechselwirkung (elektromagnetisch: α, stark: α_s) & Elementarteilchen (e⁻, p/n)

Nukleonmasse: $m_N = 939 MeV$

Elektronmasse: $m_e = 0,511 MeV$

Atome und Kerne: Vergleich der Skalen

Eigenschaften der Objekte werden festgelegt durch die Wechselwirkung (elektromagnetisch: α, stark: α_s) & Elementarteilchen (e⁻, p/n)

Atome und Kerne: Vergleich der Dichten

Dichten der Objekte werden festgelegt durch die Wechselwirkung (elektromagnetisch: α , stark: α_s) & Elementarteilchen (e^- , p/n)

Rolle des Spins in der Atomphysik

Interne Spineigenschaften: H – Atom (Atomphysik)

- Hyperfeinstruktur

Kopplung von **J** der Hülle und Kern-Spin **I** zu **F**

 $\Delta E = 5, 9 \cdot 10^{-6} eV$

relativ zur Masse des H – Atoms $M_H \approx 10^9 \, eV$

Effekt ~ 10^{-14}

Rolle des Spins in der Kernphysik

Interne Spineigenschaften

Spin spielt in der starken Wechselwirkung eine wesentlich größere Rolle als bei elektrodynamischen Prozessen

Beispiel:

- wesentliche Rolle bei:
 - ⇒ Schalenstruktur der Kerne* (uu, gg)

**u*ngerade-*u*ngerade *g*erade-*g*erade

Rolle des Spins in der Kern- & **Teilchenphysik**

■ Interne Spineigenschaften: Proton und angeregtes Baryon (△ – Resonanz)

- Masse und Lebensdauer

von stark wechselwirkenden Teilchen (p, n, Δ^+) sind stark unterschiedlich

Masse

$$\Delta M \approx 25\% (M_p = 938, 27 MeV)$$

 $M_{\Delta} = 1232 MeV$

Lebensdauer $\Delta \tau > 10^{65}$ ($\tau_p > 10^{41}s$, d. h. stabil $\tau_{\Delta} = (5, 58 \pm 0, 09) \cdot 10^{-24} s$ d. h. extrem kurzlebig

Kerne: ein allererster Überblick

■ Nuklidkarte: 250 stabile (■) & ~3700 instabile (■■■■■) Isotope

- Frage: ein Kern zerfällt....
 - A) ...nach einer inneren Kollision von Nukleonen!

- B) ... durch virtuelle Teilchen des Vakuums !
- C) ... wenn er dadurch Energie gewinnt !

Streuung von Teilchen: grundlegend wichtig

differentieller

Wirkungsquerschnitt

Teilc

Streuexperimente & meine weitere Spezialisierung

ideales Umfeld für Bachelor-, Master- und Doktorarbeiten: Analyse, Detektorbau,...

Wichtige experimentelle Größen: der einfallende Teilchenstrahl

charakterisiert durch:

- Geschwindigkeit $v_i [cm/s]$
- Anzahldichte $n_{Strahl} [cm^{-3}]$

 $J = n_{Strahl} \cdot v_i$

Wichtige experimentelle Größen: der einfallende Teilchenstrahl

charakterisiert durch:

- Geschwindigkeit $v_i [cm/s]$
- Anzahldichte $n_{Strahl} [cm^{-3}]$
- Querschnitt $F[cm^2]$

- Fluss / Intensität $I[s^{-1}]$

 $I = n_{Strahl} \cdot v_i \cdot F$

Wichtige experimentelle Größen: das Target

charakterisiert durch:

- Dichte $ho ~[g/cm^3]$
- Atommasse* $M_A[u]$
- Avogadro-Konstante $N_A [mol^{-1}]$

- Targetkerne pro Einheitsvolumen $[cm^{-3}]$

 $n_{target} = \rho \cdot N_A / M_A$

Wichtige experimentelle Größen: das Target

charakterisiert durch:

- Dichte $ho ~[g/cm^3]$
- Atommasse $M_A[u]$
- Avogadro-Konstante $N_A [mol^{-1}]$

- Targetkerne im Strahl [#]

 $N_{target} = n_{target} \cdot F \cdot \ell$

Wichtige experimentelle Größen: die Streurate W_R

25

Wichtige experimentelle Größen: die Streurate W_R

Der totale Wirkungsquerschnitt σ_{tot}

 $W_R = J \cdot N_{target} \cdot \sigma_{tot}$

- ist proportional zur Wahrscheinlichkeit eines Streuprozesses
- ist das zentrale Resultat eines Streuexperimentes
- hat die Dimension einer Fläche [*cm*²]
- stellt eine **'effektive' Fläche** dar für Streuprozesse, kann verglichen werden mit dem **geometrischen Streuquerschnitt** $\sigma_{geom} = \pi \cdot (R^2 + r^2)$

Projektil

 $r \ll R$

Der totale Wirkungsquerschnitt σ_{tot}

 $W_R = J \cdot N_{target} \cdot \sigma_{tot}$

- Kernphysik-Beispiel: Streuung von Teilchen an einer **Goldfolie (***Au***)**
- daraus ergibt sich ein geometrischer
 Streuquerschnitt

$$\sigma_{geom} = \pi \cdot (R^2 + r^2)$$

 $\sigma_{geom} = 1,54 \cdot 10^{-24} \ cm^2$

Der totale Wirkungsquerschnitt σ_{tot}

 $W_R = J \cdot N_{target} \cdot \sigma_{tot}$

- experimentelle Wirkungsquerschnitte σ_{tot} zeigen oft starke Diskrepanzen zu σ_{geom} (oft: $\sigma_{tot} \ll \sigma_{geom}$, seltener: $\sigma_{tot} > \sigma_{geom}$
- neue ('quasi-*SI*')-Einheit:

 $1 barn = 1 b = 10^{-24} cm^2$ $1 mb = 10^{-27} cm^2$ $1 fb = 10^{-39} cm^2$

barn = Scheunentor

Der differentielle Wirkungsquerschnitt $d\sigma/d\Omega$

$$\frac{dW_R}{d\Omega} = J \cdot N_{target} \cdot \frac{d\sigma}{d\Omega}$$

- Teilchen wechselwirkt im Target \Rightarrow läuft aus unter **Streuwinkel** θ
- Detektor mit Fläche A im Abstand d überdeckt Raumwinkel-Element $d\Omega = A/d^2$
- Einheit von $d\sigma/d\Omega$ ist $[cm^2/sr]$ bzw. [b/sr]

Von $d\sigma/d\Omega$ zu σ_{tot}

$$\sigma_{tot} = \int \frac{d\sigma}{d\Omega} \cdot d\Omega$$

mit Polar– / Azimuth– Winkel bei **azimuthaler Symmetrie** (z.B. Coulomb–Streuung):

$$\sigma_{tot} \sim \int_0^\pi \frac{d\sigma}{d\Omega} \cdot sin\theta \cdot d\theta$$

Experimente zur Messung von $d\sigma/d\Omega$

Geometrie von Streuexperimenten: 4π – Aufbau

- hier wird das Target praktisch vollständig vom Detektor umschlossen
- gesamter Raumwinkel um Target: $d\Omega = 4\pi \cdot sr$

4π – Gamma-Detektoren

Experimente zur Messung von $d\sigma/d\Omega$

Geometrie von Streuexperimenten: verfahrbarer Aufbau

hier deckt der Detektor nur einen sehr kleinen Winkelbereich von gestreuten Teilchen (Elektronen) ab

oft sind die Detektoren verfahrbar angebracht (sofern der Platz verfügbar um das Target verfügbar ist)

> verfahrbares Elektron-Spektrometer für $d\sigma/d\Omega$

Rutherford-Streuformel als Ausgangspunkt

Streuexperimente und differentieller Wirkungsquerschnitt $d\sigma/d\Omega$

 - dσ/dΩ der Rutherford-Streuung: kein Aufschluss über Größe der Kerne, da Streuung am Coulomb-Potenzial mit punktförmigem Kern

Rutherford-Streuformel: Annahmen

Voraussetzungen f ür ´klassische´ Rutherford–Streuung

- elastische Streuung in konservativem Feld
 - \Rightarrow Drehimpuls des $\alpha's$ bleibt erhalten
- Projektil und Target:
 - a) sind punktförmig
 - b) besitzen keinen Spin (S = 0)
 - c) Kernrückstoßvernachlässigbar(ortsfester Kern)
 - d) nur Einmal– streuung

Rutherford-Streuformel: Annahmen

Voraussetzungen f ür 'klassische' Rutherford-Streuung

Rutherford-Streuformel: Stoßparameter

Stoßparameter *b*: legt den Streuwinkel *θ* der elastischen Streuung fest

- **b**: asymptotischer Abstand des α – Teilchens vom Kern mit **b** = $[0, \infty]$

Rutherford–Streuformel: Impulstransfer

Impulstransfer \vec{q} : wichtige kinematische Größe bei elastischer Streuung

Rutherford–Streuformel: Propagatorterm

Impulstransfer \vec{q} : bei elastischer Streuung ohne Kernrückstoß

$$\vec{p}_i = \vec{p}_f = \vec{p}$$
Betrag $q = |\vec{q}|$
 $q^2 = 2 \cdot p^2 \cdot (1 - \cos\theta) = 4 \cdot p^2 \cdot \sin^2\left(\frac{\theta}{2}\right)$
 $q = 2 \cdot p \cdot \sin\left(\frac{\theta}{2}\right)$

 $d\sigma/d\theta \sim 1/sin^4(\theta/2)$

$$d\sigma/d\Omega \sim (2 \cdot m_e \cdot Z \cdot \alpha)^2 \cdot 1/q^4$$

Rutherford–Streuformel: Propagatorterm

Impulstransfer \vec{q} : mit Feynman–Diagrammen geht's ganz einfach...

Richard Feynman

 $d\sigma/d\theta \sim 1/sin^4(\theta/2)$

 $d\sigma/d\Omega \sim (2 \cdot m_{\rho} \cdot Z \cdot \alpha)^2 \cdot 1/q^4 \sim 1/q^4$

Jenseits von Rutherford: Mott–Streuung, ...

Berücksichtigung weiterer Faktoren bei Streuprozessen

- relativistische Effekte Projektil
- Projektil-Spin

- endliche

L_1

Streuung von Projektilen mit Spin (Elektron, Proton,...)

41 G. Drexlin – Atome und Kerne - VL #18 27.6.2024

differentieller

Wirkungsquerschnitt

Mott-Streuung

- Streuung von Projektilen mit Spin (Elektron, Proton,...)
 - Streuung hochenergetischer, relativistischer Spin S = 1/2 Teilchen an einem **punktförmigem Target**
 - Berücksichtigung von:
 - relativistische Effekte
 - Rückstoß-Energie übertragen auf Kern
 - Spin-Bahn Kopplung bei Streuprozess für polarisierte e^-
 - Wechselwirkung über magnetisches Dipol–Moment $\vec{\mu}$ des Teilchens (*'magnetischer Streuterm'*)

Mott-Streuung

Unterdrückung der Rückwärts-Streuung für Projektile mit Spin S = 1/2

Mott-Streuung

Unterdrückung der Rückwärts-Streuung für Projektile mit Spin S = 1/2

QUIZ: Streuprozesse bei hohen Energien

- Frage: wieso wird $d\sigma/d\Omega$ immer kleiner für hohe Energien? Da ...
 - A) ...dann nur ein Teil des Kerns sichtbar!
 - B) ... dann die Zeit für Teilchen anders läuft !
 - C) ... dann der Kern gestaucht erscheint !

10.3 Kernradien und Formfaktoren

Streuung an ausgedehnten Objekten

p

 $\boldsymbol{\lambda} = \frac{2\pi \cdot \hbar}{2\pi \cdot \hbar} = \frac{2\pi \cdot \hbar}{2\pi \cdot \hbar}$

De-Broglie Wellenlänge des Projektils

 $\gamma \cdot m \cdot v$

Streuung bei hohen Elektronenergien

- Mott-Streuformel nur für kleinen Impulstransfer $q \ (\theta \rightarrow 0)$ korrekt
- für höhere Elektron-Impulse *p*:
 de-Broglie Wellenlänge λ wichtig

Wellennatur des Projektils & Kernausdehnung

Streuung bei hohen Elektronenergien

- Effekte der Wellennatur der Elektronen sind spürbar ab
 - λ (*Projektil*) ~ *R* (*Kern*)

einige fm

 $200 MeV/c = 1 fm^{-1}$

Resultierende Beugungseffekte am Kern

Streuung ausgedehnten Kern

- hochenergetisches Elektron "tastet" Kerngröße ($r \sim fm$) ab
- Reduktion von $d\sigma/d\Omega$ da das e^- nur "einen Teil" der Kernladung Z sieht
- Auftreten von Interferenzen:
 Elektron-Welle wird am endlichen
 Kernrand gebeugt: destruktive
 Interferenz (s. Doppelspalt)
 ⇒ Bestimmung von R

Formfaktoren und Ladungsverteilung

Verknüpfung über Fouriertransformation

- Modifikation von $d\sigma/d\Omega$ durch endliche Kernausdehnung wird parametrisiert durch Formfaktor

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left|F(q^2)\right|^2$$

Formfaktoren sind wichtig ab einem Impulstransfer q ~ 1/R, d.h. q ~ 200 MeV/c

Formfaktoren und Born´sche Näherung

- **Kern-Ladungsverteilung** $\rho(r)$
- Born´sche Näherung:
 Beugung einer ebenen Welle
 (hier e⁻) an einer Scheibe mit
 diffusem Rand
- Formfaktor $F(q^2)$ und Ladungs-Verteilung des Kernes $\rho(r)$

$$F(q^2) = \int \rho(r) \cdot e^{iq \cdot r} dr$$

Normierung:
$$\int \rho(r) \cdot dr = 1$$

Formfaktoren und Ladungsverteilung: Beispiele

punktförmig $ho(r) = \delta(r)/4\pi$

exponentiell $\rho(r) \sim e^{-(r/a)}$

gaußförmig $ho(r) \sim a^{-3} \cdot e^{-(r^2/2a^2)}$

 $\begin{array}{l} \textbf{homogene Kugel}\\ \rho(r) = \text{const.} \ (r < a)\\ \rho(r) = 0 \qquad (r \geq a) \end{array}$

Kugel mit diffusem Rand $\rho(r) = r_0/(1 + e^{(r-a)/d})$

konstant $F(q^2) = 1$

$\begin{array}{c} \mathsf{Dipol}\\ F\bigl(q^2\bigr) = 1/(1+a^2q^2)^2\end{array}$

gaußförmig $F(q^2) = e^{-1/2(a^2q^2)}$

Oszillation $F(q^2) \sim sin(aq) - a \cdot q \cdot cos(aq)$

verwaschene Oszillation