

Moderne Experimentalphysik *I* – Atome und Kerne

Vorlesung 19 2.7.2024

www.kit.edu

RECAP: Wirkungsquerschnitte

Der differentielle Wirkungsquerschnitt $d\sigma/d\Omega$

$$\frac{dW_R}{d\Omega} = J \cdot N_{target} \cdot \frac{d\sigma}{d\Omega}$$

- Teilchen wechselwirkt im Target
 ⇒ läuft aus unter Streuwinkel θ
- Detektor mit Fläche A im Abstand d überdeckt Raumwinkel–Element $d\Omega = A/d^2$
- Einheit von $d\sigma/d\Omega$ ist $[cm^2/sr]$ bzw. [b/sr]

RECAP: Formfaktoren & Ladungsverteilungen

do/dA (mb)

- Vom Formfaktor zur Ladungsverteilung über eine Fourier–Transformation
 - Bestimmung des Formfaktors:

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left|F(q^2)\right|^2$$

- Beugungseffekte ermöglichen eine Aussage über die Struktur des Objekts

RECAP: Formfaktoren & Ladungsverteilunghen

punktförmig $ho(r) = \delta(r)/4\pi$

exponentiell $\rho(r) \sim e^{-(r/a)}$

gaußförmig $ho(r) \sim a^{-3} \cdot e^{-(r^2/2a^2)}$

 $\begin{array}{l} \textbf{homogene Kugel}\\ \rho(r) = \text{const.} \ (r < a)\\ \rho(r) = 0 \qquad (r \geq a) \end{array}$

Kugel mit diffusem Rand $ho(r) = r_0/(1 + e^{(r-a)/d})$

konstant $F(q^2) = 1$

$\begin{array}{c} \mathsf{Dipol}\\ F\bigl(q^2\bigr) = 1/(1+a^2q^2)^2\end{array}$

gaußförmig $F(q^2) = e^{-1/2(a^2q^2)}$

Oszillation $F(q^2) \sim sin(aq) - a \cdot q \cdot cos(aq)$

verwaschene Oszillation

Formfaktoren und Ladungsverteilung: Beispiele

punktförmig $ho(r) = \delta(r)/4\pi$

Radius $r \rightarrow$ Impuls $|q| \rightarrow$

weit entfernte Flugbahnen (niedrige Energie des e^-)

- Kern erscheint punktförmig,
- keine Beeinflussung von $d\sigma/d\Omega$

aber: sehr nahe Flugbahn (hohe Energie des e^{-})

- tiefinelastische Streuung am Proton (1968)
 - ⇒ Proton ist aus **punktförmigen** Konstituenten aufgebaut

Formfaktoren und Ladungsverteilung: Beispiele

Homogene Kugel mit Kernradius a

Oszillation $F(q^2) \sim sin(aq) - a \cdot q \cdot cos(aq)$

Radius $r \rightarrow$ Impuls $|q| \rightarrow$

$$\rho(r) = \rho_0 = \frac{3}{4\pi} \cdot \frac{1}{a^3} \qquad \qquad F(q^2) = \frac{3}{(aq)^3} \cdot \{sin(aq) - aq \cdot cos(aq)\}$$

- oszillierender Formfaktor gibt Aufschluss über Kernradius a

Beugungsminima sind von zentraler Relevanz bei Streuexperimenten

Fourier– Transformation

Experimentelle Resultate f ür Ladungsverteilungen von Kernen

Allgemeine Eigenschaften der Ladungsverteilungen von Kernen

- Kerne zeigen eine fast konstante Ladungsdichte $\rho(r)$

> ⇒ Kernkräfte zeigen Sättigungscharakter

- Ausnahme: leichte Kerne (*He*) zeigen ein Gauß-Profil für $\rho(r)$

Allgemeine Eigenschaften der Ladungsverteilungen von Kernen

- Kerne zeigen stets einen sehr ähnlichen Abfall der Ladungsdichte nach außen (´Skindicke´ d)
- Fit der Kern–Ladungsverteilung nach **Woods–Saxon**:

$$\rho(r) = \frac{\rho_0}{1 + e^{(r-a)/d}}$$

Allgemeine Eigenschaften der Ladungsverteilungen von Kernen

- Fitparameter (A = Nukleonenzahl)

 $a = (1, 18 \cdot A^{1/3} - 0, 48) fm$ $d = (0, 55 \pm 0, 07) fm$

- Fit der Kern–Ladungsverteilung nach **Woods–Saxon**:

$$\rho(r) = \frac{\rho_0}{1 + e^{(r-a)/d}}$$

10.4 Kernmodelle und Kernkräfte

Erfolgreiche Modelle erlauben die Beschreibung von:

- kollektive Eigenschaften:

Kernladung Z, Größe (Radius a) und Form (sphärisch, deformiert), Kernmasse M, kollektive Anregungen (Riesenresonanz), Stabilität

- Eigenschaften durch individuelle Nukleonen:

Bindungsenergie pro Nukleon E_B/A , elektrische & magnetische Momente μ , Einteilchen-Anregungszustände (Resonanzen) Quantenzahlen: Spin I & Parität P

neue Quantenzahl: Isospin

Kernmodelle und Kernkräfte

Erfolgreiche Modelle erlauben die Beschreibung von

- dynamische Eigenschaften:

Ablauf & Wirkungsquerschnitte & Energiebilanz von Kernreaktionen wie Fusion, Spaltung, Nukleonentransfer, ...

⇒ experimentelle Messung via Streu–Experimente, Massen–Spektrometer,…

Experimentelle Beobachtungen

Charakteristische Kerneigenschaften

- Kernradien und Kerndichten

Kernmaterie mit konstanter Dichte $\rho = 10^{17} kg/m^3$, $R = 1, 2 fm \cdot A^{1/3}$

- Bindungsenergien und Kernkräfte

konstante Bindungsenergie $E_B/A \sim 8 MeV$ pro einzelnem Nukleon \Rightarrow gesättigte Kernkräfte

Experimentelle Beobachtungen

Charakteristische Kerneigenschaften

- Stabilitätsverhalten

stabile Kerne (Kernladung Z, Nukleonenzahl A Neutronenzahl N) finden sich kleines A: N = Zgrosses A: N > Z

- Zerfallsmoden von Kernen

 α -, β -, γ -Zerfall Kernspaltung Emission von Nukleonen: p, n, d, ...

Experimentelle Beobachtungen

Charakteristische Kerneigenschaften

- Spin und Parität

Kernniveaus besitzen definierten **Spin J** und definierte **Parität P beobachtetes** J^{P} : 0⁺, 2⁺, 4⁺, 0⁻, 1⁻, ...

- Kernanregung und Kerndeformation

Lage von angeregten Zuständen beobachtete kollektive Anregungen beobachtete Kerndeformationen

phänomenologische Kernmodelle

- Kerne sind komplexe Vielteilchensysteme
- es existiert (noch) keine fundamentale Theorie auf
 Basis der *Q*uanten-*C*hromo-*D*ynamik (*QCD*)
- seit langer Zeit arbeitet man daher mit phänomenologischen Modellen
- jedes **spezifische Modell** kann bestimmte Kerneigenschaften besonders gut reproduzieren (aber nicht alle...)

phänomenologische Kernmodelle: 3 wichtige Beispiele

Tröpfchenmodell

Kern in enger Analogie zu geladenem Flüssigkeitstropfen (quasi-klassisch) Nukleonen bewegen sich stark korreliert in inkompressibler Flüssigkeit

reproduziert besonders gut

Bindungsenergie pro Nukleon E_B/A

Nukleonen bewegen sich unabhängig voneinander als Fermionen in einem resultierenden Kernpotenzial Potenzialtiefe folgt aus der Quantenstatistik eines Fermigases

phänomenologische Kernmodelle: Fermigasmodell

Kernmodelle

Fermigasmodell

reproduziert besonders gut

mittlere Energie eines Nukleons **Fermikante**

phänomenologische Kernmodelle: Schalenmodell

Schalenmodell

Nukleonen bewegen sich voll quantenmechanisch: Schrödinger-Gleichung Potenzial mit speziellem Spin-Bahn-Term

reproduziert besonders gut

magische Zahlen Spin & Parität von Kernzuständen

Nobelpreis

1963

Maria

Göppert-

Deutlich verschiedene Energieskalen & stark unterschiedliches Verhalten

Atomphysik

- Zentralpotenzial
- Iangreichweitige Coulomb–
 Wechselwirkung
- Bindungsenergien der Elektronen:

eV ... sub – eV Bereich

Deutlich verschiedene Energieskalen & stark unterschiedliches Verhalten

Mittlere Bindungsenergie $E_B/A \sim 8 MeV$ ab Massenzahl A > 20

Möglichkeit der Kernfusion (leichte Kerne) & Kernspaltung (schwere Kerne)

Möglichkeit der Kernfusion (leichte Kerne) & Kernspaltung (schwere Kerne)

Möglichkeit der Kernfusion (leichte Kerne) & Kernspaltung (schwere Kerne)

QUIZ: weshalb keine *superschweren* **Isotope**?

Frage: die schwersten Kerne haben A < 250: dies erklärt sich, da Kerne

A) ... spontan spalten können!

B) ... α – Teilchen emittieren können !

C) ... Nukleonen emittieren können!

Kernmodelle müssen den beobachteten Verlauf von E_B/A reproduzieren

Kernmodelle: Tröpfchenmodell von H.A. Bethe & C.F. von Weizsäcker

QUIZ: wie schwer sind Nukleonen im Kern?

B

Frage: im Vergleich zu freien Nukleonen sind die Nukleonen im Kern

A) ... schwerer da sie relativisisch sind (aka 'Fermi–Impuls' $p_F \sim 0, 25 c$) !

- B) ... gleich schwer da die Nukleon Masse aus Quarks entsteht
- C) ... leichter da sie gebunden sind!

Kernmodelle: Tröpfchenmodell

- Aufgestellt von H.A. Bethe & C.F. von Weizsäcker
 - semi-klassische Beschreibung:
 - 3 klassische Effekte
 - 2 quantenmechanische Effekte

Tröpfchenmodell: Volumen–Term

semiklassisches Modell für Verlauf von E_B/A

- Kerne als inkompressible, geladene 'Flüssigkeitstropfen'
- **kurzreichweitige**, gesättigte Kernkräfte: $E_R/A = const.$

Nukleon–Ww. nur mit direkten Nachbarn

Nukleon # 1: Ww. nur mit engsten Nachbarn i Nukleon # A : Ww. nur mit engsten Nachbarn

 \Rightarrow Anzahl der Wechselwirkungen $\sim A$

 $\Rightarrow E_B/A \sim const.$

Tröpfchenmodell: Volumen–Term

semiklassisches Modell für Verlauf von E_B/A

- Kerne als inkompressible, geladene 'Flüssigkeitstropfen'

WRONG

- hypothet., langreichweitige Kernkräfte: $E_B/A \sim A$

hypothetische Nukleon–Ww. mit allen Nachbarn

Nukleon # 1: Ww. nur mit allen Nachbarn i i Nukleon # A : Ww. nur mit allen Nachbarn

 \Rightarrow Anzahl der Wechselwirkungen $\sim A^2$

 $\Rightarrow E_R/A \sim A$

- Nukleonen: Austausch von massiven Pionen

- kurzreichweitige, gesättigte Kernkräfte:

 $E_B/A = const.$

Nukleon

#1

Kern mit A

Nukleonen

Tröpfchenmodell: Volumen–Term

semiklassisches Modell für Verlauf von E_B/A

starke

Kraft

Tröpfchenmodell: Volumen–Term

- **semiklassisches Modell für Verlauf von** E_B/A
- Volumenterm: Nukleon 'fühlt' nur die unmittelbaren Nachbarn
- beschreibt einen unendlich großen Kern ohne Oberfläche

- positiver Beitrag zur Bindungsenergie*

$$E_B(Z,A) \sim a_V \cdot A$$

Nukleon

#1

Kern mit A

*wird betrachten $|E_B|$

Tröpfchenmodell: Oberflächen–Term

- **semiklassisches Modell für Verlauf von** E_B/A
- Oberflächenterm: Nukleonen an der Kernoberfläche
- Nukleonen an der Oberfläche des Kerns besitzen weniger Partnernukleonen

$$E_B(Z,A) \sim -a_S \cdot A^{2/3}$$

Nukleon

1

Kern mit A

Nukleonen

*wird betrachten $|E_B|$

Tröpfchenmodell: Oberflächen–Term

- **semiklassisches Modell für Verlauf von** E_B/A
- Oberflächenterm: Nukleonen an der Kernoberfläche
- klassisches Analogon: Oberflächenspannung eines Tropfens

Tröpfchenmodell: Coulomb–Term

- **semiklassisches Modell für Verlauf von** E_B/A
- Protonen erzeugen langreichweitige ($\sim 1/r$) abstoßende Kraft
- klassisches Analogon: homogen geladene Kugel

- Reduktion der Bindungsenergie
- negativer Beitrag

$$E_B(Z,A) \sim -\alpha_C \cdot Z^2 \cdot A^{-1/3}$$
$$R = R_0 \cdot A^{1/3}$$

Tröpfchenmodell: Coulomb–Term

- **semiklassisches Modell für Verlauf von** E_B/A
- Protonen erzeugen langreichweitige $(\sim 1/r)$ abstoßende Kraft
- homogen geladene Kugel mit Radius *R*, Dichte: $\rho = (Z \cdot e)/(4/_3 \cdot \pi \cdot R^3)$

semiklassisches Modell f ür Verlauf von E_B/A

Tröpfchenmodell: Asymmetrie–Term

- Asymmetrieterm: quantenmechanischer Ursprung ideal ist N = Z
- resultiert aus Pauli's Ausschliessungsprinzip

- Reduktion der Bindungsenergie
- negativer Beitrag

$$E_B(Z,A) \sim -a_A \cdot (N-Z)^2/A$$

- Konfiguration mit einer identischen Zahl an Protonen (Z) und Neutronen (N) bevorzugt

$$N = Z$$

Tröpfchenmodell: Asymmetrie-Term

- **semiklassisches Modell für Verlauf von** E_B/A
- Asymmetrieterm: keine stabilen Kerne mit starkem Überschuss an *p* oder *n*
- wird bei Kernen mit N = Z ein Nukleon ausgetauscht ($p \leftrightarrow n$), reduziert sich E_B

Tröpfchenmodell: Paarungs–Term

- **semiklassisches Modell für Verlauf von** E_B/A
- Paarungsterm: quantenmechanischer Ursprung
- basiert auf exp. Befunden: gg Kerne stärker gebunden als ug & uu Kerne

*gg – g*erade *g*erade *uu – u*ngerade *u*ngerade

Tröpfchenmodell: Paarungs–Term

- **semiklassisches Modell für Verlauf von** E_B/A
- Paarungsterm: gepaarte Nukleonen mit antiparallelem Spin
- basiert auf exp. Befunden: Kerne mit geradem N sind 2 MeV stärker gebunden!

- **Bohr–Mottelson** Erweiterung relativ zur Massenformel von Weizsäcker

Nobelpreis 1975

Tröpfchenmodell: Fit der Parameter

semiklassisches Modell für Verlauf von E_B/A

- Bethe–Weizsäcker'sche Massenformel: Zusammenfassung aller Terme

$$E_B(Z,A) = a_V \cdot A - a_S \cdot A^{2/3} - a_C \cdot Z^2 \cdot A^{-1/3} - a_A \cdot (N-Z)^2 / A \pm \delta(Z,A)$$

Beitrag	Faktor <i>a</i>	Größe (MeV)
Volumenterm	a_V	15, 58
Oberflächenterm	a_{S}	16, 91
Coulombterm	a _c	0,71
Asymmetrieterm	a_A	23, 21
Paarungsterm	a_P	11, 46

Anpassung der Terme an zahlreiche experimentell bekannte Kernmassen für Nukleonzahlen A > 40: erlaubt ca. ~ 10% Genauigkeit

Tröpfchenmodell: Beiträge und Verlauf

Bethe–Weizsäcker´sche Massenformel: Zusammenfassung aller Terme

Tröpfchenmodell: Beiträge und Verlauf

Visualisierung von E_B/A für Kerne mit Ladungszahl Z & Neutronenzahl N

Tröpfchenmodell: Bezug zu Kernmassen

Bethe–Weizsäcker´sche Massenformel im Vergleich mit der Kernmasse

Kernmasse M

$$M(Z,A) = Z \cdot M_P + N \cdot M_N - E_B(Z,A)$$

8 ... 9 MeV
938, 27 MeV 939, 57 MeV

klein, $\sim 1\%$ der Nukleonenmasse

Kerne: Begrifflichkeiten bei den Nukliden

- Isotope, Isobare und Isotone sowie Spiergelkerne
- Spiegelkerne:

gleiches $A = Z_1 + N_1 [C - 14: 6p + 8n]$ = $Z_2 + N_2 [N - 14: 8p + 6n]$

ISOTOPE:

Kerne mit gleicher Protonenzahl Z

124,126,128,129,130,131,132,134,136 $5_4 Xe$

ISOTONE:

Kerne mit gleicher Neutronenzahl N

 ${}^{36}S_{20} \;\; {}^{37}Cl_{20} \;\; {}^{38}Ar_{20} \;\; {}^{39}K_{20}$

ISOBARE:

Kerne mit gleicher Nukleonenzahl A

¹³⁸Ba ¹³⁸La ¹³⁸Ce

Tröpfchenmodell: das Tal der Stabilität

Eigenschaften von Isobaren

es gibt für jedes A = const.
 ein stabilstes Nuklid
 mehrere stabile Nuklide
 im ´Stabilitätstal´

- Vorgehen:

a) ordne Nuklide mit Masse M(Z, A = const.)nach Kernladung Z

b) bilde $\partial E_B(Z, A = const.)/\partial Z = 0$

Tröpfchenmodell: das Tal der Stabilität

Tröpfchenmodell: das Tal der Stabilität

Beobachtungen

- Coulomb–Abstoßung

der Protonen erzeugt bei schweren Kernen einen deutlichen **Neutronenüberschuss**

- außerhalb des Stabilitätstals: β – Zerfälle, α – Zerfälle oder Emission von p, n

Lebensdauern

Instabile Nuklide

- außerhalb des Stabilitätstals: β – Zerfälle α – Zerfälle oder Emission von p, n

