

Moderne Experimentalphysik I – Atome und Kerne

Vorlesung 20 4.7.2024

RECAP: Kernmodelle

phänomenologische Kernmodelle: 3 wichtige Beispiele

RECAP: Tröpfchenmodell

Bethe–Weizsäcker´sche Massenformel: Zusammenfassung aller Terme

$$E_B(Z,A) = a_V \cdot A - a_S \cdot A^{2/3} - a_C \cdot Z^2 \cdot A^{-1/3} - a_A \cdot (N-Z)^2 / A \pm \delta(Z,A)$$

Lebensdauern τ

Instabile Nuklide

- außerhalb des Stabilitätstals: β – Zerfälle α – Zerfälle oder Spaltung bzw. Emission von p, n

 τ variiert um mehr als 30 Größenordnungen!

Lebensdauern τ

Instabile Nuklide: **Untergrund!**

Fermigas-Modell

Grundlegende Eigenschaften des Kernmodells

- Kern-Eigenschaften können auch beschrieben werden durch Modell, in dem sich Nukleonen in einem mittleren Potenzial frei bewegen
- zwei unabhängige Fermionen Systeme:
 Neutronen, Protonen

Enrico Fermi

7 4.7.2024 G. Drexlin – Atome und Kerne - VL #20

Fermigas–Modell

Grundlegende Eigenschaften des Kernmodells

- Definition eines **mittleren Kernpotenzials** aus der **Überlagerung** der einzelnen kurzreichweitigen Nukleon-Nukleon-Wechselwirkungen (Unterschiede im Potenzial für p, n) Protonen-Potenzial
- Nukleonen bewegen sich unter Beachtung des Pauli–Prinzips (da Spin S = ½ Teilchen) im Kern wechselwirkungsfrei (keine freien Zustände)

Grundlegende Eigenschaften des Kernmodells

- Protonen *p* und Neutronen *n* besitzen verschiedene Potenziale (Coulombkraft)
- Neutronen n: reines Kastenpotenzial

$$V(r) = \begin{cases} -V_0 & 0 \le r \le R \\ 0 & r > R \end{cases}$$

- Protonen *p*: Kastenpotenzial + Coulombkraft

$$\Rightarrow$$
 geringere Potenzialtiefe V_0

Fermigas–Modell

Fermigas-Modell

Grundzustand und Quantenstatistik

- Grundzustand: Protonen *p* und Neutronen *n* sind wechselwirkungsfrei
- alle Nukleon–Zustände bis zur maximalen Energie E_F (Fermi– Energie) sind besetzt: keine Stroßprozesse möglich bei T = 0

Fermigas-Modell: ein Einteilchenmodell

Grundzustand und Quantenstatistik

- Protonen *p* und Neutronen *n* bilden ein
 wechselwirkungsfreies Fermigas,
 d.h. ein statistisches Ensemble
- Pauli–Prinzip:

jeder p – oder n – Zustand besetzt mit 2 Teilchen (Spin ①录)

- quasi-identische Fermi-Energie E_F für p und n(ansonsten Zerfälle $n \rightarrow p$)

Fermigas-Modell: ein Einteilchenmodell

Nukleonen bewegen sich mit Fermi–Impuls p_F

 Protonen *p* und Neutronen *n* bewegen sich mit nicht vernachlässigbaren Impulsen (Impulsspektrum)

Fermigas-Modell: Quantenmechanik rules!

- **Nukleonen bewegen sich mit Fermi–Impuls** p_F
 - Impulse der Protonen p und Neutronen n resultieren aus der fundamentalen Heisenberg schen Unschärferelation

$$dx \cdot dp_x \ge \hbar/2$$

dx: Kerndimension (einige fm)

 dp_x : Fermi–Impuls ~250 MeV/c

Fermigas-Modell: Quantenmechanik rules!

- Nukleonen bewegen sich im 6 dimensionalen Phasenraum
 - Protonen p & Neutronen n: Ortsraum $dx \cdot dy \cdot dz$

Fermigas-Modell: Quantenmechanik rules!

Nukleonenzustände k: Betrachtung im Phasenraum

- wir möchten die *Gesamtzahl k* möglicher Nukleonen–Zustände im Kern hoch bis zur Fermi–Energie E_F bestimmen!

- Pauli: jede Phasenraumzelle ($\sim h^3$) ist mit 2 Zuständen (1, besetzbar

Fermigas–Modell: Quantenmechanik rules!

- wir möchten die *Gesamtzahl k* möglicher Nukleonen–Zustände im Kern hoch bis zur Fermi–Energie E_F bestimmen!
- im **Impulsraum** $dp_x \cdot dp_y \cdot dp_z$ betrachten wir zunächst das Impuls-Intervall [p, p + dp]
- Kugel mit Oberfläche $4\pi \cdot p^2$ und Kugelschalendicke dp

Fermigas–Modell: Quantenmechanik rules!

Gesamtzahl der Nukleonenzustände: integrieren hoch bis Fermi–Impuls p_F

- Multiplikation von Ortsraum und Impulsraum

Fermigas–Modell: Quantenmechanik rules!

Nukleonenzustände hoch bis zum Fermi–Impuls p_F

- wir integrieren separat für p und n

Anzahl N an Neutronen:

$$N = \frac{V \cdot p_F^3(n)}{3 \cdot \pi^2 \cdot \hbar^3}$$

Anzahl Z an Protronen:

$$Z = rac{V \cdot p_F^3(p)}{3 \cdot \pi^2 \cdot \hbar^3}$$

Fermigas–Modell: Bestimmung von p_F

Abschätzung des Fermi–Impulses p_F <u>allein</u> aus *V* bzw. aus $R_0 = 1,21 fm$

- für Kerne mit $N = Z = \frac{A}{2}$

$$N = \frac{V \cdot p_F^3(n)}{3 \cdot \pi^2 \cdot \hbar^3} \quad Z = \frac{V \cdot p_F^3(p)}{3 \cdot \pi^2 \cdot \hbar^3}$$

ergibt sich für p_F

$$p_F = \left(\frac{9\pi}{8}\right)^{1/3} \cdot \frac{\hbar}{1,21\,fm}$$

 $p_F \approx 250 \, MeV/c$

Radius $R = 1, 21 fm \cdot A^{1/3}$

Kernvolumen V:

$$V = \frac{4}{3} \cdot \pi \cdot (1, 21 \, fm)^3 \cdot A$$

Fermigas–Modell: Bestimmung von p_F

Abschätzung des Fermi–Impulses p_F <u>allein</u> aus *V* bzw. aus $R_0 = 1,21 fm$

- Nukleonen bewegen sich stossfrei mit nicht vernachlässigbarem Fermi-Impuls p_F im Kern
- Fermi–Impuls *p_F* im Kern ist rein
 quantenmechanisch bedingt und kann
 aus Kenntnis von Radius *R* und der
 Nukleonenzahl *A* abgeschätzt werden

 $p_F \approx 250 \, MeV/c$

Fermigas–Modell: Bestimmung von *E_F*

Abschätzung des Fermi-Energie E_F

 nicht-relativistische Energie-Impuls Relation ergibt:

$$E_F \approx rac{p_F^2}{2 \cdot M_{Nukl.}} = 33 \; MeV$$

- Tiefe des Kernpotenzials (p) $V_0 > E_F$

$$V_0 = E_F + E_B/A$$

= 33 MeV + 7MeV = 40 MeV

Fermigas–Modelle: Kerne vs. Festkörper

Analogie der Modelle: freies Nukleonengas & freies Elektronengas (z.B. Cu)

Fermi-Energie: $E_F = 33 MeV$ Austrittsarbeit: $W \sim 7 MeV$ Potenzialtiefe: $V_0 = 40 MeV$

RECAP: Tröpfchenmodell

Empirisches Modell und Daten

- Tröpfchenmodell beschreibt nur den generellen Verlauf

Zahlen

Z oder N = 20, 28, 50, 82, 126

aber: magische

Schalenstruktur der Kerne

Nuklide mit den 'doppelt-magischen' Zahlen: Nickel – 78 ist entsprechend des Schalenmodells besonders...

24

Schalenmodell: Nuklide mit magischen Zahlen

Nuklide mit den 'magischen' Zahlen zeigen eine

- hohe **Bindungsenergie** / Separationsenergie
- hohe Anregungsenergie des ersten angeregten Zustands
- große Anzahl an Isotopen (Isotonen) bei gleichem Z(N)
- kleine Einfangquerschnitte für (thermische) Neutronen
- große relative Häufigkeit

Magische Zahlen: experimentelle Befunde

Karlsruhe Institute of Technology

Bindungsenergie: Abweichung gegenüber Tröpfchenmodell

hohe Bindung bei magischen Zahlen

Schalen & magische Zahlen: Atome vs. Kerne

Analogien und Unterschiede

Atomphysik

- magische Zahlen:
 2, 10, 18, 36, 54, 86
- erzeugendes Potenzial: langreichweitiges Coulombfeld $V(r) \sim -Z \cdot e^2/r$

gleiche Notationen: *n*, ℓ, **j**

Kernphysik

- magische Zahlen:
 2, 8, 20, 28, 50, 82, 126
- erzeugendes Potenzial: kurzreichweitige Kernkraft $V(r) \sim ?$
 - \Rightarrow Kastenpotenzial ?
 - ⇒ harmonischer Oszillator ?
 - ⇒ Woods–Saxon Potenzial !

Anpassung bis Zahlen alle korrekt

Schalenmodell: Beispiel-Kern Tellur – 125

Visualisierung unseres Ziels: ein Potenzial f
ür alle Nukleon–Schalen

Zustände von **52** Protonen...

Ansatz Kastenpotenzial

Fallstudie #1: Nukleonen im Kasten

- Nukleonen in einem **Kastenpotenzial** mit Tiefe $V_0 = 40 MeV$ (s. Fermigas)

> $V(r) = -V_0$ für r < RV(r) = 0 für r > R

für $\ell = 0$ (Zentrifugalterm für $\ell \neq 0$)

- Schalenabschlüsse stimmen für schwere Kerne nicht mehr mit magischen Zahlen überein
 - **= 2, 8, 20, 28, 50, 82, 126**

Ansatz harmonischer Oszillator

- Fallstudie #2: Nukleonen im harmonischen Oszillatorpotenzial
 - Nukleonen im **Oszillatorpotenzial** mit Tiefe $V_0 = 40 MeV$ (s. Fermigas)

$$V(r) = -V_0 + \frac{1}{2} \cdot M_N \cdot \omega^2 \cdot r^2$$

mit $\hbar \omega$ – Schale: $2 \cdot (n - 1) + \ell$

- Schalenabschlüsse stimmen für schwere Kerne nicht mehr mit magischen Zahlen überein
 - = 2, 8, 20, 28, 50, 82, 126

• ħw		ħ ω
1/2)	1 <i>i</i> 2 <i>g</i> 3 <i>d</i> 4 <i>s</i> 168	6
$rac{l}{l}$	1h 2f 3p 112	5
+ u	$1g 2d 3s \qquad 70$	4
	1f 2p 40	3
+	1d 2s 20	2
- V,	1 <i>p</i> 8	1
II	1 <i>s</i> 2	0
$E_{n\ell}$	Nullpunktsenergie	\rightarrow

Ansatz harmonischer Oszillator

Fallstudie #2: Nukleonen im harmonischen Oszillatorpotenzial

- Summe Zustände im Oszillatorpotenzial bis zu einzelnen Schalen

$$\sum 2 \cdot (2\ell + 1)$$

ħ ω	n	ł	Zustand	$\Sigma 2 \cdot (2\ell + 1)$
3	2 1	1 3	2p 1f	40
2	2 1	0 2	2s 1d	20
1	1	1	1 <i>p</i>	8
0	1	0	1 <i>s</i>	2

wų.		ħω
1/2)	1 <i>i</i> 2 <i>g</i> 3 <i>d</i> 4 <i>s</i> 168	6
$\ell +$	1h 2f 3p 112	5
+ u	$\begin{array}{ c c c } 1g \ 2d \ 3s & 70 \end{array}$	4
(2 ·	$1f 2p \qquad 40$	3
0 + 0	1d 2s 20	2
- V,	1 <i>p</i> 8	1
	<u>1s</u> 2	0
$E_{n\ell}$	Nullpunktsenergie	→

Ansatz Woods–Saxon Potenzial

Fallstudie #3: Nukleonen in Potenzial, welches die beobachtete Ladungsverteilung $\rho(r)$ von Kernen nachbildet

- Woods–Saxon Potenzial V_{WS}

liegt zwischen einem harmonischen Oszillator V_{osc} und dem Kasten–Potenzial V_K

$$V_{WS}(r) = \frac{V_0}{1 + e^{(r-a)/d}}$$

a: Kernradius *d*: Skindicke

Ansatz Woods–Saxon Potenzial

Fallstudie #3: Nukleonen in Potenzial, welches die beobachtete Ladungsverteilung ρ(r) von Kernen nachbildet

- Woods–Saxon Potenzial V_{WS}

liegt zwischen einem harmonischen Oszillator V_{osc} und dem Kasten–Potenzial V_K

$$V_{WS}(r) = \frac{V_0}{1 + e^{(r-a)/d}}$$

a: Kernradius *d*: Skindicke

Ansatz Woods–Saxon Potenzial

- Fallstudie #3: Nukleonen in Potenzial, welches die beobachtete Ladungsverteilung ρ(r) von Kernen nachbildet
- Woods–Saxon Potenzial V_{WS} liegt zwischen einem harmonischen Oszillator V_{osc} und dem Kasten–Potenzial V_K
- magische Zahlen 2, 8, 20 werden korrekt vorhergesagt
- magische Zahlen ab 28 werden nicht korrekt abgebildet

Ansatz Woods–Saxon Potenzial & Pionen

- anziehende Kernkräfte mit mittlerem
 Potenzial (Verlauf nicht identisch mit dem N N Potenzial)
- mikroskopisches Bild:
 anziehende Kraft vermittelt
 durch Austausch massebehafteter
 Pionen

3 Pionenzustände: $(\pi^+ \pi^0 \pi^-)$

Pionen und die starke Kernkraft

Pionen vermitteln eine kurzreichweitige, anziehende Kernkraft

- Feynman–Diagramme zum **Pionaustausch**: Reichweite ~ 1 *fm*

Pionen und die starke Kernkraft

- Pionen $(\pi^+ \pi^0 \pi^-)$ sind kurzlebige Quark–Antiquark–Systeme
- Hideki Yukawa sagt die Existenz von Pionen als Träger der starken Kraft voraus (1935), er erhält 1938 sein *PhD* auf Basis seiner theoret. Arbeiten zu Pionen

Nobelpreis **1949**

"for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces"

Pionen und die starke Kernkraft

- Pionen $(\pi^+ \pi^0 \pi^-)$ sind kurzlebige Quark–Antiquark–Systeme
- Pionen sind virtuelle Austauschteilchen und unterliegen der Heisenberg'schen Unschärferelation

$$\Delta E \Delta t \ge \frac{\hbar}{2}$$

140 MeV/c^2 Weg $c \cdot \Delta t \sim 1 fm$

QUIZ: Pionen als Austauschteilchen

Schalenmodell: erweitertes Potenzial

Lösungsansatz: nicht nur radial abhängiges Potenzial, vgl. mit Beobachtungen in der Atomphysik (LS – Kopplung)

- RECAP:

Atomphysik: Spin-Bahn-Kopplung erzeugt Feinstruktur-Aufspaltung mit neuer Quantenzahl Gesamtdrehimpuls J (s. Kap. 6.5)

Schalenmodell: erweitertes Potenzial

- Lösungsansatz: nicht nur radial abhängiges Potenzial, vgl. mit Beobachtungen in der Atomphysik (LS – Kopplung)
 - Kernphysik: Spin–Bahn–Kopplung erzeugt deutliche Aufspaltung mit korrekt vorhergesagten magischen Zahlen
 2, 8, 20, 28, 50, 82, 126

Nobelpreis **1963**

for her discoveries concerning the nuclear shell structure ´

Maria Goeppert-Mayer

Experimentelle Überprüfung der LS – Kopplung bei Kernen

- Spin-Bahn-Kopplung bei der starken Kernkraft tritt auf bei Streuung von Protonen an polarisierten Protonen-Targets (polarisierter atomarer Wasserstoff)
- man beobachtet eine
 links-rechts Asymmetrie
 in den Streuraten durch
 LS Kopplung

Lösungsansatz: radial abhängiges Woods-Saxon Potenzial mit einem Zusatzterm zur Beschreibung der LS – Kopplung bei Kernen

- Kernphysik: Spin–Bahn–Kopplung bei der starken Kernkraft führt zu wesentlich größeren Niveau–Aufspaltungen

Spin \vec{S} und Bahn-Drehimpuls \vec{L} eines Nukleons koppeln

neuer Zusatzterm:

$$+ V_{LS}(r) \cdot \left(\vec{L} \cdot \vec{S} \right)$$

Maria Goeppert-Mayer

Betrachtung der LS – Kopplung von Nukleonen im Kern

- Testnukleon $(\vec{L}_0 \ \vec{S}_0)$ wechselwirkt mit anderen Nukleonen im Kern via LS – Kopplung:

Nukleon im Kerninnern

- Nukleon am Kernrand
- Wechselwirkung ist abhängig von $\vec{L} = \vec{L}_0 + \vec{L}_i$, $\vec{S} = \vec{S}_0 + \vec{S}_i$: parallel $\hat{T}\hat{T}: + \vec{L}\cdot\vec{S}$ anti-parallel $\hat{T}\hat{T}: - \vec{L}\cdot\vec{S}$

- Betrachtung der LS Kopplung von Nukleonen im Kern
- Wechselwirkungen 'mitteln' sich \Rightarrow Reduktion auf Einteilchen-Zustand mit Quantenzahl Bahndrehimpuls \vec{L}_i , Spin \vec{S}_i
- wir erhalten ein radialabhängiges
 LS Potenzial mit der Form
 (wichtig: im Innern mittelt sich alles)

$$V_{LS}(r) \sim \frac{1}{r} \cdot \frac{d\rho}{dr}$$

