

Atome, Kerne & Moleküle

Sommersemester 2024 Vorlesung # 22, 11.07.24

Thomas Müller, Institut für Experimentelle Teilchenphysik, Fakultät für Physik

11. Instabile Kerne

- 11.1 Radioaktive Zerfallsprozesse
- 11.2 α-Zerfall

Wh.: Kernspaltung

Dynamische Instabilität bei Kern-Spaltprozess ($\Delta E \sim 200 \text{ MeV}$)

- Wechselspiel von Coulomb-Abstoßung & Oberflächenenergie
- Spaltbarriere ~ 6 MeV bei Deformation des Kerns (hier: U-236*) wird durchtunnelt

Wh.: Kernfusion

Gamow-Fenster: Faltung von therm. Spektrum mit Tunnel-Rate

 $^{4}H \rightarrow ^{4}He + 2 e^{+} + 2 v_{e}$ $\Delta E = +26,2 \text{ MeV}$

 $T = 15 \cdot 10^{6} K$

11. Instabile Kerne

Radioaktiver Zerfall - Nuklidkarten

- Inur wenige Kerne sind stabil gegen Zerfall (α -, ß-, γ Zerfall und Spaltung)
- Karlsruher Nuklidkarte: Auflistung aller stabilen & instabilen Kerne

11.1 Radioaktive Zerfallsprozesse

In einem Ensemble (Quelle) mit einer großen Anzahl N instabiler Teilchen bzw. radioaktiver Kerne führen radioaktive Zerfälle in Zeitintervall dt zu einer Abnahme dN der Ensemble-/Kern-Anzahl

$$dN = -\lambda \cdot N \cdot dt$$

Zerfallskonstante λ

neg. Vorzeichen, da Teilchenabnahme

- Zerfallskonstante λ : statistische Wahrscheinlichkeit des Kerns (Objekts), im Zeitintervall dt = 1 s zu zerfallen

$$\lambda = \frac{-(dN/dt)}{N} \qquad (\lambda > 0)$$

Beispiel: α -Zerfall von ²²⁶Ra [τ = 2309 Jahre]

Radioaktiver Zerfall - Zerfallskonstante

Zerfallskonstanten λ sind spezifisch f
ür jedes Isotop (λ = 1 / Lebensdauer τ)

Beispiel: ß-Zerfall von ²²⁹Ra [τ = 346 s]

 $\lambda = 2.9 \cdot 10^{-3} / s$

Radioaktiver Zerfall - Radium

Radiumpräparate kurz nach der Entdeckung von Ra-226 & Thorium

Exponentielles Zerfallsgesetz

in einem Ensemble N(t), das zum Zeitpunkt t = 0 aus einer Anzahl N(0) Kernen besteht, beobachtet man eine exponentielle Abnahme der Kernanzahl

Halbwertszeit t_{1/2}

bei exponentiellen Zerfällen mit der Zerfallskonstanten λ lassen sich 2 charakteristische Zeiten (t_{1/2}, τ) definieren:

Mittlere Lebensdauer τ

bei exponentiellen Zerfällen mit der Zerfallskonstanten λ lassen sich 2 charakteristische Zeiten (t_{1/2}, τ) definieren:

Halbwertszeit & mittlere Lebensdauer

exponentielles Zerfallsgesetz

Relation zwischen Zerfallskonstante λ und $t_{\frac{1}{2}}$ sowie τ

 $t_{1/2} = \ln 2/\lambda = 0,693/\lambda$

 $au = rac{1}{\lambda}$

Zerfallsgesetz – Beispiel Astrophysik

bei Supernova (SN) - Explosionen werden große Mengen an

radioaktivem Ni-56 erzeugt

Zerfallsgesetz – Beispiel Astrophysik

die Zerfallsprozesse von Ni-56 und Co-56 führen zur Erzeugung von Gammaquanten, die das Material um die SN aufheizen & dadurch sichtbares Licht erzeugen

Zerfall – Mutter- & Tochter- Isotop

Häufigkeiten beim exponentiellen Zerfall eines Mutter-Isotops in das Tochterisotop

Aktivität – Definition & Einheiten

α

Aktivität A(t) = dN/dt

- beschreibt die Zahl dN der Zerfälle pro Zeiteinheit dt
- ist keine konstante Größe, da die Ensemblezahl N durch die Zerfälle abnimmt, damit nimmt auch A ab
- Aktivität A ~ λ (Zerfallskonstante)

$$A = \frac{dN}{dt} = -\lambda \cdot N \qquad A(t) = A(0) \cdot e^{-\lambda \cdot t}$$

aufgrund der Relation A(t) ~ λ · N(t) gilt: die Aktivität einer Quelle nimmt exponentiell ab

1 Becquerel = 1 Zerfall/s

1 Bq = 2,70 · 10⁻¹¹ Ci (nach Henri Becquerel)

1 Curie = 3,7 · 10¹⁰ Zerfälle/s

1 Ci = Aktivität von 1 g Radium (²²⁶Ra) (nach Pierre Curie)

Quellaktivität – Beispiele

abgeleitete Größen:

- spezifische Aktivität [Bq/kg]: Aktivität pro Masse
- Aktivitätskonzentration [Bq/m³]: Aktivität pro Volumen
- Beispiele für spezifische Aktivitäten:

 $^{3}H = 3,6 \cdot 10^{14} \text{ Bq/g}$

Künstliche Quellen - Stärken

- Eichquellen für
 Flüssigszintillatoren
 A ~ MCi
- Laborquellen/Praktikum:
 A < mCi
- Ionisations-Rauchmelder:
 A ~ 1 μCi an Am-241

 $\label{eq:approx_state$

Th. Müller, Moderne Physik I, Sommersemester 2024, Vorlesung 22

Zerfallsarten – Übersicht

ein instabiler Kern (Mutternuklid) kann sich über verschiedene Zerfallsarten in das Tochternuklid umwandeln:

Zerfallsarten – Übersicht

ein instabiler Kern (Mutternuklid) kann sich über verschiedene Zerfallsarten in das Tochternuklid umwandeln:

Nachweis von Zerfällen

Zerfallsarten – γ -Wechselwirkungen

Gammastrahlung wird nur exponentiell abgeschwächt, besonders hohes Durchdringungsvermögen im Bereich von einigen MeV

Radioaktiver Zerfall – in Bananen

Bananen enthalten viel Kalium natürlicher Anteil des radioaktiven Isotops K-40 liegt bei ε = 0,012 %

E (MeV)

Radioaktiver Zerfall – an der Erdoberfläche

Gestein der Erdkruste enthält viel Kalium – natürlicher Anteil des radioaktiven Isotops K-40 liegt bei ε = 0,012 %

$$_{1/2}^{40}$$
K T_{1/2} = 1,28 · 10⁹ Jahre

0,934% Anteil von Ar-40 an der Erdatmosphäre (aus Zerfall K-40)

Radioaktiver Zerfall – in der Erde

Gestein der Erdkruste & im Erdmantel enthält viele instabile Isotope

 $P_{exp} \sim 47 \text{ TW}$

- Wärmefluss der Erde
- Berechnung Nuklide P_{theo} ~ 10...30 TW (dabei ²³⁸U, ²³²Th: jeweils 8 TW, ⁴⁰K: 4 TW)

Nachweis von Radioaktivität – Nebelkammer SKIT

- Prinzip der Wilsonschen Nebelkammer:
 - übersättigtes Luft-Alkohol Gemisch (Ethanol/Isopropanol)
 - Temperaturgradient da Kühlung unten: Alkohol kühlt und fällt
 - Wechselwirkung von Teilchen erzeugt Ionen entlang der Spur
 - Ionen wirken als Kondensationskeime →
 Tröpfchenbildung (Fotografie der Spur)

Teilchenspuren in einer Nebelkammer:

Nebelkammer

Alpha-Teilchen: stark ionisierend ⇒ kurze Reichweite ß-Elektronen: schwach ionisierend ⇒ große Reichweite

28

Uranerz in einer Wilson'schen Nebelkammer:

Alpha-Teilchen

Nebelkammer

Präparat	Tochter	t _{1/2}	Art & Energien E ₀ (ß´s: E _{max})
Am-241	Np-237*	432,2 a	α : 5,486 MeV (γ : keV)
Sr-90	Y-90 (Zr-90)	28 a (64 h)	<mark>ß-</mark> : 546 keV (2,2 MeV)
Co-60	Ni-60*	5,27 a	<mark>β-</mark> : 318 keV γ: 1,1/1,3 MeV
Na-22	Ne-22*	2,6 a	<mark>ß+</mark> : 545 keV γ: 0,511/1,27 MeV
Cs-137	Ba-137*	32 a	<mark>β-</mark> : 514 keV, γ: 661,6 keV

Nachweis von Teilchen – Blasenkammer

32

Nachweis von Teilchen – Blasenkammer

■ 1952: Blasenkammer

- Scanning der Fotos von Teilchenspuren aus einem Neutrinostrahl am CERN in einer Blasenkammer mit Wasserstoff

**0.23

Nachweis von Teilchen – Blasenkammer

- erster Nachweis spezieller Neutrino-Wechselwirkungen

Experimentierkasten für den Nachwuchs

Produces awe-inspiring sights! Enables you to actually SEE the paths of electrons and alpha particles traveling at speeds of more than 10,000 miles per SECOND! Electrons racing at fantastic velocities produce delicate, intricate paths of electrical condensation - beautiful to watch. Viewing Cloud Chamber action is closest man has come to watching the Atom

11.2 Alpha – Zerfall

schwere Kerne mit A > 150 (Sm) können durch \alpha-Emission zerfallen:

- Bedingung: der Q-Wert des α -Zerfalls muss > 0 sein

Alpha – Zerfall : Halbwertszeiten

schwere Kerne mit A > 150 (Sm) können durch \alpha-Emission zerfallen:

- Q-Wert $Q_{\alpha} = E_{kin}(\alpha)$ entscheidend für die Halbwertszeit $t_{\frac{1}{2}}$ des Isotops:
 - langsamster α -Zerfall:

²³²Th → ²²⁸Ra + α
$$t_{\frac{1}{2}} = 1,4 \cdot 10^{10}$$
 a
- schnellster α-Zerfall:
 $^{212}Po \rightarrow ^{208}Pb + α$ $t_{\frac{1}{2}} = 3,0 \cdot 10^{-7}$ s

Alpha – Zerfall: Eigenschaften von α 's

α-Teilchen sind mono-energetisch

- typischer Wert: Ekin ~ einige MeV
- Visualisierung der α-Energie in Nebelkammer-Aufnahmen: alle α's weisen die gleiche Reichweite auf

α-Teilchen sind stark ionisierend

- α's haben eine hohe Ionisationsrate & geringe Reichweite
- α -Emitter:
 - ♥ radiologische Konsequenzen
 - Verwendung als langlebige Radionuklidbatterien

²³⁸Pu Pellet (glühend)

Alpha – Zerfall: kinetische Energien

Energiebetrachtung beim α -Zerfall mit Q-Wert Q_a:

- vor dem α -Zerfall: ruhender Mutterkern E_{kin}(MK) = 0
- nach dem α -Zerfall: kinetische Energie α -Teilchen E_{kin}(α)

Rückstoß-Energie des Tochterkerns E_{kin}(TK)

 $E_{kin}(MK) = 0$

mit Massen- $\frac{M_{\alpha}}{M_{TK}} \cong \frac{4}{A-4}$ Verhältnis: M_{TK}

- es ergeben sich folgende kinetische Energien:

$$E_{kin}(TK) \cong \frac{4}{A} \cdot Q_{\alpha}$$
 $E_{kin}(\alpha) \cong \frac{A-4}{A} \cdot Q_{\alpha}$

$$E_{kin}(\alpha) >> E_{kin}(TK)$$

Alpha-Zerfall: Tunneleffekt

Image: 1929 - G. Gamow & E. Condon: Emission eines α-Teilchens aus Kern beruht auf dem quantenmechanischen Tunneleffekt

α-Zerfall von Po-212 - Lebensdauer

- Berechnung der Lebensdauer von **Po-212** gegen α-Zerfall
 - Nach der Bildung eines α-Teilchens im Kernvolumen Bestimmung der Transmissionswahrscheinlichkeit T durch die 17,9 fm breite Coulomb-Barriere:

 $T \sim 2, 1 \cdot 10^{-15}$

- 2. Berechnung der Frequenz f mit der ein α -Teilchen der Energie E(α) = 8,78 MeV an die Wand der Coulomb-Barriere stößt: f = v / 2R_{Po} ~ 1,1 · 10²¹ / s
- 3. Berechnung der Zerfallskonstant λ : $\lambda = f \cdot T = 2.3 \cdot 10^6$ / s

τ = 1 / λ = 0,43 µs $t_{1/2} = In2 · τ = 0,30 µs$

