

Atome, Kerne & Moleküle Moderne Experimentalphysik 1 '24 Vorlesung #24 18.07.2024

<u>11. Instabile Kerne</u>

- 11.3 β-Zerfall & schwache Wechselwirkung
 - ✤ Klassifikation
 - Fermi & GT Übergänge
 - ✤ Goldene Regel Fermi Theorie
 - β-Energiespektrum
 - Exkurs: Neutrinomassen & KATRIN
 - ✤ Andere Experimente

www.kit.edu

Recap: α - & β -Zerfall von Kernen

α-Zerfall:

- Emission: ⁴₂He²⁺
- Mittelschwere schwere Kerne
- Typische Alphastrahler Uran & Thorium

- $\ \ \, \overset{A}{_Z} M \rightarrow \overset{A-4}{_{Z-2}} T + \ \alpha \\$
 - M: Mutterkern
 - und T: Tochterkern
 - Alphaenergie hängt nur von Massendifferenz ab
 - $E_{\mathrm{kin},\alpha} = \frac{m_{\mathrm{T}}}{m_{\mathrm{M}}} \cdot Q_{\alpha}$
 - \rightarrow monoenergetisch

- β-Zerfall:

 - Q-Wert hängt von X und X' ab sowie der Masse des Elektrons und des Neutrinos

- Zerfallsenergie teilt sich im Dreikörper-Zerfall auf X', Elektron und Neutrino auf
- ► → Kontinuierliches Energiespektrum der Elektronen (Neutrinos)
- Beschrieben durch Fermis Theorie des Betazerfalls
- Kleine Übergangsrate: W-Bosonen

Fermis Theorie des Betazerfalls

Quantenmechanische Störungstheorie

Fermi, E. Versuch einer Theorie der β-Strahlen. I. *Z. Physik* 88, 161–177 (1934). https://doi.org/10.1007/BF01351864

- Benutzung von Fermis Goldener Regel zur Bestimmung der Übergangsrate im
 ß-Zerfall:
 - schwache Wechselwirkung bewirkt als Störoperator den Übergang vom Anfangszustand Ψ_i in den Endzustand Ψ_f

Fermis 4-Fermion Punktwechselwirkung

- Punktwechselwirkung von 4 Fermionen bei niedrigen Energien
- → Stärke der Kopplung bei niedrigen Energien als Fermi-Kopplungskonstante G_F

$$\Gamma = \frac{2\pi}{\hbar} G_F^2 \left| \left\langle f \left| M_{fi} \right| i \right\rangle \right|^2 \cdot \frac{dn}{dE}$$

$$\frac{G_F}{(\hbar c)^3} = 1,16637 \times 10^{-5} \,\text{GeV}^{-2}$$
$$= 8,96 \times 10^{-5} \,\text{MeV fm}^{-3}$$

 G_F bestimmt aus schwachen Zerfällen, z.B. von O-14 und von Myonen

Kernmatrixelement

- Überlapp der Wellenfunktion des Anfangszustand Ψ_i und des Endzustands Ψ_f
 - bei erlaubten Zerfällen ist das Kernmatrixelement M energie-unabhängig

$$\Gamma = \frac{2\pi}{\hbar} \cdot G_F^2 \cdot \left| \left\langle f \left| M_{fi} \right| i \right\rangle \right|^2 \cdot \frac{dn}{dE}$$

Matrixelement des Übergangs

- f: Wellenfunktion des "final state"
 Kern + auslaufendes Leptonenpaar
- i: Wellenfunktion des "initial state"

Klassifizierung von β-Übergängen

- verbotener Übergang: ΔL = 1,2,3,... → Leptonenpaar mit Bahndrehimpuls L ≠ 0
 - um eine Bahndrehimpulseinheit 1 ħ wegzutragen, muss der β-Zerfall in einem Nukleon bei sehr großem Radius r_β stattfinden ⇒ kleine Rate, da Verteilung ρ(r) schnell abfällt

	Тур	ΔL	ΔP	F (ΔS = 0)	GT (ΔS = 1)
rerut	über-erlaubt	. 0	+	0	0
	erlaubt	0	+	0	0, 1
	1-fach	1	-	0, 1	0, 1, 2
	2-fach	2	+	1, 2	1, 2, 3
	3-fach	3	-	2, 3	2, 3, 4
Y					

dn

Endzustandsdichte im Phasenraum

- die Dichte der Endzustände (Elektronen + Neutrinos als Fermionen) legen die Form des
 ß-Energiespektrums fest
 - Phasenraum: 6 dim. Orts-Impuls-Raum: $dx \cdot dy \cdot dz \cdot dp_x \cdot dp_y \cdot dp_y$

Ort

Impuls

- → Fermionen lokalisiert im Impulsraum-Volumen einer
 - dünnen Kugelschale mit

Oberfläche $4\pi p^2$ und Dicke dp

$$dn = \frac{4\pi \cdot p^2 \cdot dp}{(2\pi\hbar)^3} \cdot V = \frac{1}{2\pi^2\hbar^3} \cdot V \cdot p^2 dp$$

 $\Gamma = \frac{2\pi}{\hbar} \cdot G_F^2 \cdot \left| \left\langle f \right| M_f \right|$

gesamter Impulsraum

Endzustandsdichte im Phasenraum

- im ß-Spektrum mit der Übergangsenergie E₀ ergibt sich damit für Elektronen & Neutrinos:
- für das quasi-masselose, ultra-relativistische Neutrino gilt die Energie-Impuls-Relation:

$$\frac{dn}{dE} = \frac{dn_e \cdot dn_v}{dE} = \frac{V^2}{4\pi^4 \hbar^6} \cdot p_e^2 \cdot dp_e \cdot p_v^2 \cdot dp_v$$

$$p_{\nu} = \frac{E_{\nu}}{c} = \frac{E_0 - E_e}{c}$$

Exkurs: Neutrinophysik

Atomphysik - Betazerfall Molekülphysik

Neutrinophysik

8

Neutrino

Physics

CRC Press

Kosmologie

Struktur der Materie → Standardmodell

Standardmodell fasst die wesentlichen Erkenntnisse der Teilchenphysik

Struktur der Materie → Standardmodell

Neutrinoquellen

• Fusionsreaktionen in der Sonne

Reaktor-Neutrinos

• Kernzerfälle in Reaktoren

100.000.000 s⁻¹cm⁻²

Geo-Neutrinos

• Radioaktive Elemente

1.000.000 s⁻¹cm⁻²

"Bio"-Neutrinos

 Zerfall von z.B. ⁴⁰K im Körper

4.000 s⁻¹cm⁻²

Solares Neutrino Problem und die Neutrinomasse

- Neutrinos bewegen sich nahezu ungehindert durch Materie \rightarrow riesige Detektoren notwendig
- Erster Nachweis mit Homestake-Experiment (USA)
- Nur 1/3 der von der Sonne erwarteten Neutrinos werden gemessen! \rightarrow Solares Neutrino Problem
- Es gibt 3 verschiedene Neutrino Sorten (Flavor):

 v_e (Elektron Neutrino), v_{μ} (Myon Neutrino), v_{τ} (Tau Neutrino)

Lösung des solaren Neutrino-Rätsels: Neutrinos können zwischen verschiedenen "Identitäten" wechseln \rightarrow Neutrino-Oszillation

Solares Neutrino Problem und die Neutrinomasse

verschiedenen "Identitäten" wechseln \rightarrow Neutrino-Oszillation

Neutrinomasse - Teilchenphysik

Neutrinos im Standardmodell:

- 12 Elementarteilchen als Bausteine der Materie
- Warum sind die Neutrinos so viel leichter als die anderen?

KATRIN: Das KArlsruhe TRItium Neutrino Experiment

Bestimmung der Neutrinomasse

- Problem: Neutrinos sind mit Abstand die leichtesten Elementarteilchen
- Lösung: Bau der genausten Teilchenwaage der Welt!
- Problem: Wie wiegt man etwas, das man nicht auf eine Waagschale legen kann
- Lösung: Teilchenmasse als Form von Energie betrachten

 $E = mc^2$

→ Neutrinomasse als fehlende Energie beim Betazerfall von Tritium

 $E = (m_M - m_T) \cdot c^2 = m_e c^2 + T_e + m_\nu c^2 + T_\nu$

Tritium-Betazerfall und die Neutrinomasse

- Halbwertzeit von Tritium: 12.3 Jahre
- Zerfallsenergie gesamt: ~18 600 eV
- Endpunkt $E_0 = 18.57 \text{ keV}$

Tritium-Betazerfall und die Neutrinomasse

Präzise Messung der Elektronenenergie gibt Aussage über Neutrinomasse

-m = 1 eV - m = 0.2 eV - m = 0 eV

TIUM NEUTRINO

Erstes KATRIN Limit Mit ~6 Mio. Elektronen im Analysierfenster $m_v < 0.8 \text{ eV}$

Direct neutrino-mass measurement based on 259 days of KATRIN data

Neues Limit mit den ersten 5 Messkampagnen (6 mal mehr Statistik)

m_v < 0.45 eV

Vor wenigen Wochen publiziert

Integrales Betaspektrum der Elektronen durch Verändern des elektrostatischen Gegenpotentials

- Optimierte Messzeit bei verschiedenen Spannungen für die Neutrinomassensignatur
- Später: Mehrere Spektren pro Kampagne aufgrund neuem EM-Felddesign
- Kombinierter Fit mehrerer Spektren mit einem Modell (1609 Datenpunkte) zur Bestimmung von m²_v

Systematische Unsicherheiten

- Zusätzliche Messungen um systematische Unsicherheiten zu minimieren notwendig
- Auch hier klassische Atomphysik relevant
 - Energieverlust der Elektronen durch Streuung an Gasmolekülen (T₂)
 - Anregungszustände
 - Ionen in elektromagnetischen Fallen
 - Hauptspektrometer-Untergrund
 - Angeregte Rydberg-Zustände
 - Emission niederenergetischer Elektronen
 - Tritierte Oberflächen (Rear wall)

Hauptspektrometer-Untergrund (Rydberg-Modell)

- ²¹⁰Pb Kontamination
 - 1 kBq Aktivität in der Oberfläche
 - ²¹⁰Pb mit sehr großer Halbwertszeit $T_{1/2} = 22$ Jahre

Hauptspektrometer-Untergrund (Rydberg-Modell)

- Streuung des Rückstoßions Po
 - → Sputtern von adsorbierten Wasserstoff (H) aber auch anderen Atomen des Stahls
 - v ~ 10⁴ m/s
- Ionisation angeregter Zustände (Rydberg)
 - **Rydberg-Zustand** $n > 7 \rightarrow meV$
- Autoionisation angeregter Mehrelektronen-Systeme (Planetare Atome)
 - Sauerstoffatome aus Passivierungsschicht
 - Monoenergetische Elektronen ~1 eV

Hauptspektrometer-Untergrund (Rydberg-Modell)

- Wechselwirkung von Wasserstoff-Rydberg-Zuständen mit Schwarzkörperstrahlung
 - Induzierte und spontane Übergänge
 - Ionisation
- Hohe Anregung: $\tau \propto n^3$
 - Propagation in das Volumen
- Sehr kleine Bindungsenergie
- \rightarrow Sehr kleine kinetische Energie der Elektronen

Allerdings Beschleunigung zum Detektor da in hohem Potential erzeugt \rightarrow Ununterscheidbar ggü. Betaelektronen

Untergrund durch angeregte Atome

- Rydberg-Atome:
 - In erster N\u00e4herung nur Wasserstoffatome H^{*}
 - $E_n = -13.6 \text{ eV} \cdot n^{-2}$

- Inelastische Stöße des Rückstoßkerns (Pb)
- Angeregte Atome fliegen ungehindert durch EM-Feld
- Ionisation im sensitiven Volumen durch BBR
- Auch H⁻ Ionen beobachtet, die zum Untergrund beitragen können

- Autoionisierende Zustände
 - Zwei-Elektronanregung
 - Gesamtanregungsenergie > Ionisationsenergie
 - Grundsätzlich kurzlebig (< ns)</p>
- Planetare Atome

Sauerstoff

Spontane lonisation

Bei KATRIN vorhanden

- I.C. Percival Planetary atoms (1977)
- Zweifache hohe Anregung auf zirkulare Bahnen (hohes I)
- Außenelektronen wie Planeten um Sonne
- Wechselwirkungswahrscheinlichkeit reduziert, da große Abstände
 - → erhöhte Lebensdauer (bis ms)

Beobachtete Lebensdauern bis ms

Systematische Unsicherheit: Final-state distribution (FSD)

- Moleküle haben Vibrations- und Translationsanregungszustände ~ eV
- Elektronische Anregungen & Ionisation
- Aufwändige Berechnung der Übergangsmatrixelemente in höheren Ordnungen der Störungstheorie

Anfangszustand Ψ_{i} (³H) Endzustand Ψ_{f} (³He)

 Ψ_{f}

dn

dE

 G_F^2

³He

 Ψ_i

3H

Untersuchung systematischer Effekte

- Zu Kalibrationszwecken wird ein alternatives radioaktives Element verwendet
 - ⁸³Rb (Alkalimetall) bzw. dessen Tochter ^{83m}Kr (Edelgas)
- Rb zerfällt über Elektroneneinfang eines Außenelektron in einen angeregten Kr-Zustand (hochgestellt m)
- Zustand zerfällt über zwei Gammaübergänge hoher Konversion
 - D.h. mit hoher Wahrscheinlichkeit wird kein Gamma sondern ein Elektron emittiert

→ Ideal geeignet zur Kalibration, da nahe am Tritium-Endpunkt

Zukunft bei KATRIN

Gestern Start von KNM14

- Betrieb bis Ende 2025 bis finale Statistik gesammelt ist
- Zielsensitivität: m_v < 0.3 eV</p>
- Ab 2026: Detektor-Upgrade (TRISTAN)

- Untersuchung des Tritium Betaspektrum nach der Signatur steriler Neutrinos
- Gesamtes Spektrum wird mit dem Detektor aufgelöst
- Signatur hier übertrieben dargestellt
- Reales Mischungsverhältnis < 10⁻⁶

- Quelle direkt in Absorbermaterial des Detektors
- Final state distribution & Übergangsmatrixelemente schwierig

 10^{-2}

 10^{-1}

 $\Sigma m_i [eV/c^2]$

 10^{0}

mβ

Doppelbetazerfall

- Extrem seltene Zerfallsart: Doppelbetazerfall
 $2\nu\beta\beta$ $(Z,A) \rightarrow (Z+2,A) + e_1^- + e_2^- + \bar{\nu}_{e,1} + \bar{\nu}_{e,2}$
 - Prozess 2. Ordnung
 - Halbwertszeiten ~10¹⁹-10²¹ Jahren

Maria Goeppert-Mayer

- Hypothetischer Sonderfall: 0νββ
 - Doppelbetazerfall ohne Emission von Neutrinos
 - Neutrinos als Majorana Teilchen (Teilchen = Antiteilchen)

$$|m_{\beta\beta}| = \frac{m_{\rm e}^2}{G^{0\nu\beta\beta} \left| \mathcal{M}^{0\nu\beta\beta} \right|^2 T_{1/2}^{0\nu\beta\beta}} = \left| \sum_{i=1}^3 U_{\rm ei}^2 m_i \right|$$

- Zugang zur Neutrinomasse
- Typische Isotope: ⁷⁶Ge, ¹³⁶Xe, ¹⁰⁰Mo
- Experimente (Auswahl): GERDA, KamLAND-Zen, SuperNemo

KCETA Colloquium Is the neutrino identical to its anti-particle – the experimental search for neutrinoless double beta decay Thursday, July 18, 2024 Kleiner Hörsaal A (CS) 15:45 - 17:00 Prof. Dr. Josef Jochum

(University of Tübingen)