Physik IV – Atome und Moleküle; Sommer 2010

Prof. Wim de Boer & Dr. Frank Hartmann, KIT

Lösung 12

- 1. Flugweite virtueller Teilchen
 - (a) Nach der Unschärferelation darf der Energiersatz innerhalb einer Zeit Δt um ΔW "überzogen" werden, falls $\Delta W \cdot \Delta t \leq \hbar$. Erzeugung eines Elektronenaares kostet mindestens $\Delta W = 2m_0c^2$. Das Paar kann also höchstens eine Zeit $\Delta t \approx \frac{\hbar}{2m_0c^2}$ existieren. Selbst mit Lichtgeschwindigkeit kämen diese Teilchen in dieser Zeit bestenfalls bis $r \approx c\Delta t \approx \frac{\hbar}{2m_0c^2}c$, d.h. um eine Compton-Wellenlänge des Elektrons $\lambda_e = r_e = \frac{\hbar}{m_0c}$ weit.
 - (b) Die Energie $\Delta W=2mc^2=\frac{2m_0c^2}{\sqrt{1-\frac{v^2}{c^2}}}$ ergibt eine Existenz-Höchstdauer von $\Delta t=\frac{\hbar}{\Delta W}$ und eine Höchstflugstrecke $r=v\Delta t=\frac{1}{2}r_evc^{-1}\sqrt{1-\frac{v^2}{c^2}}$ Diese Funktion von v hat ihr Maximum bei $v=\frac{c}{\sqrt{2}}$, und zwar bei $r=\frac{r_e}{4}=0,25r_e$
- 2. Warum bilden zwei Heliumatome nicht ein Helium-Molekül He_2 ? L: die vier Elektronen besetzen die 2 untere Niveaus (σ_g und σ_u^*), d.h. es gibt genau so viel bindende wie nichtbindende Elektronen, wodurch keine Bindung entsteht.
- 3. Erklären sie kurz was die sp^3 , sp^2 und sp-Hybridisierung beim C-Atom bedeutet und geben sie ein Beispiel für jede Hybridisierung! L: sp^3 : Hybridisierung aller 4 Elektronen in s, p_x , p_y und p_z Orbitalen, Beispiel CH_4 sp^2 : Hybridisierung der Elektronen in s, p_x und p_y Orbitalen, Beispiel H2-C=C-H2 sp: Hybridisierung der Elektronen in s und p_z Orbitalen, Beispiel HC=-CH (dreifache Kohlenstoffbindung)