

Moderne Experimentalphysik II Teilchenphysik - Vorlesung 07

Professor Dr. Markus KLUTE (markus.klute@kit.edu) Institut für Experimentelle Teilchenphysik (ETP)

Saalübungen

- Ich nehme an den Saalübungen teil?
 - 1) Ja, regelmässig
 - 2) Ja, manchmal
 - 3) Nein

- Halten Sie die Saalübungen zur Besprechung der Hausaufgaben für sinnvoll?
 - **1**) Ja
 - 2) Nein
 - 3) Man sollte das Format ändern
 - 4) Keine Meinung

Recap: Streuexperimente & Wirkungsquerschnitte

Rutherford, Mott & Formfaktoren: auf dem Weg zur Kernstruktur

- Rutherford: Streuung am Coulombpotenzial $\frac{d\sigma}{dQ} = (2 \cdot m_e \cdot Z \cdot \alpha)^2 \cdot \frac{1}{\sigma^4}$

- Mott: relativistische Streuung mit Spin

$$\left(\frac{d\sigma}{d\Omega}\right)_{M} = \left(\frac{d\sigma}{d\Omega}\right)_{R} \cdot \frac{E'}{E} \cdot \cos^{2}\frac{\theta}{2}$$

- Formfaktor $F(q) \iff$ Ladungsverteilung $\rho(r)$: Fouriertransformierte

Moderne Experimentalphysik II - Part II

- 3. Struktur der Materie
 - 3.1. Rutherford Streuung & Wirkungsquerschnitt
 - 3.2. Mott Streuung & Formfaktoren
 - 3.3. Struktur von Nukleonen

Nukleon-Formfaktoren & innere Struktur

■ Sneak pre-view: innerer Aufbau des Nukleons aus up, down- Quarks

Proton: q = +1 S = 1/2

Neutron: q = 0, S = 1/2

Nukleon-Formfaktoren & innere Struktur

Fragestellung: wie verteilen sich die Quark-Ladungen/Ströme radial?

Proton: q = +1 S = 1/2

Neutron: q = 0, S = 1/2

Nukleon: Ladungsverteilung

Ladungsverteilung $\rho(r)$ in einem Nukleon

$$\rho(r) = \rho_0 \cdot e^{-Q_0/r}$$

exponentiell abfallende Ladungsverteilung des Nukleons ("<u>kein</u> scharfer Rand!")

$$G(Q^2) = \left(1 + \frac{Q^2}{0.71 (GeV/c)^2}\right)^{-2}$$

Nukleon: Ladungsradien & Stromverteilungen

■ mittlere quadratische Radien R des Nukleons

- Definition* rms — Radius R $R = \sqrt{\langle \ r^2
angle}$

$$\langle r^2 \rangle = \frac{1}{Q} \cdot \int r^2 \cdot \rho(r) \cdot 4\pi \cdot r^2 \cdot dr$$

quadratisches Mittel

$$\rho(r)$$
 gewichtet Integmit Quadrat von r Kug

Integration über Kugelvolumen

$$\sqrt{\left\langle r_E^2 \right\rangle_P} = 0,8775 \ fm$$

mittlerer quadratischer Ladungsradius des **Protons**

$$\sqrt{\left\langle r_E^2 \right\rangle_p} \approx \sqrt{\left\langle r_M^2 \right\rangle_p} \approx \sqrt{\left\langle r_M^2 \right\rangle_n} \approx 0.8...0.9 \ fm$$

mittlere quadratische Radien von Proton, Neutron

EINSCHUB - 'GESCHRUMPFTES' PROTON

Präzisionsmessung des Proton-Radius R_p

- Vergleich von Streuprozessen am Proton mit anderen Methoden
 - Resultate von myonischen Atomen* & Elektron-Streuung: $5~\sigma$ Diskrepanz
 - myonische H-Atome $R_p=0,84184(67)\,fm$ \longleftrightarrow Streuung von e^{-1} $R_p=0,8775\,fm$

Absorptionsspektrum: klass. H-Atom*

Emissionsspektrum: exotisches Atom

Präzisionsmessung des Proton-Radius ${\cal R}_p$

- Februar 2022: Reanalyse der Elektron-Streudaten am Proton
 - Resultate von myonischen Atomen & Streudaten stimmen nun überein
 - myonische H-Atome $R_p=0,84184(67)\,fm$ Streuung von e^- : $R_p=0,840\,fm$

Inelastische Streuprozesse: Resonanzen

- ullet Elektronen-Energien E>2 GeV: inelastische Streuung am Nukleon
 - bisher: moderate Elektron-Energien, nur elastische Streuung
 - nun: höhere Energien ⇒ Anregung innerer Freiheitsgrade des Nukleons

Inelastische Streuprozesse: Resonanzen

ullet Elektronenergien $E > 2 \ GeV$: inelastische Streuung am Nukleon

- Resonanzen in $d\sigma/d\Omega$ als Funktion der auslaufenden Energie E'

Delta-Resonanz: ein Spin $S = \frac{3}{2}$ Zustand

ullet die 'berühmte' Δ^+ Resonanz: der 1. angeregte Nukleon-Zustand

 Resonanzen (mit extrem kurzen Lebensdauern)
 mit charakteristischem
 Breit-Wigner Profil

- Parameter von Δ^+ : $\Gamma \approx 100~MeV$

EINSCHUB - RESONANZEN

Eigenschaften von Resonanzen

Resonanzen charakterisiert durch intrinsische Breit-Wigner Verteilung

 Wahrscheinlichkeitsdichte
 P(E) einer Breit-Wigner-Verteilung

$$P(E) = \frac{1}{2\pi} \cdot \frac{\Gamma}{(E - M)^2 + \frac{\Gamma^2}{4}}$$

Gregory **Breit**

Eugene Wigner

Eigenschaften von Resonanzen

Kurze Lebensdauer rerzeugt große Zerfallsbreite Γ

- Breite r einer Resonanz durch Heisenberg'sche Unschärfe-Relation

Breite $\Gamma(eV)$

Delta-Resonanz: ein Spin $S = \frac{3}{2}$ Zustand

■ die 'berühmte' 🛕 Resonanz: der 1. angeregte Nukleon-Zustand

 $\frac{d^2\sigma/(d\Omega dE')}{[nb/(GeVsr)]}$

Nukleon

$$S=\frac{1}{2}$$

Spin-Flip

 Δ^+ Resonanz

Q: Povh

0,5

Energie E'(GeV)

Spin in der Teilchenphysik

Spin S: eine sehr wichtige Eigenschaft von Elementarteilchen

sehr großer Einfluss auf Masse, Lebensdauer $(p, n \iff \Delta^+)$

$$\Delta^+$$
- Resonanz
 $m=1232~MeV$
 $au=(5,63\pm0,14)\cdot10^{-24}~s$
Zerfall: $\Delta^+ \to N+\pi$

Proton

$$m = 938, 27 \, MeV$$

 $\tau > 3.6 \cdot 10^{29} \, s$
hypothetische Zerfallsmoden

Relativistische Kinematik & Resonanzen

Kinematische Variable: Elektron & Proton, Resonanz

- einlaufendes Elektron mit 4 er Impuls p
- auslaufendes Elektron mit 4 er Impuls p'
- "einlaufendes" (ruhendes) Proton mit 4-er Impuls $I\!\!P=(M,0)$
- auslaufende Resonanz mit 4-er Impuls P

 $p' = (E', \overrightarrow{p}')$

- Energieverlust ν des e^- :

$$V = E - E'$$

$$p = (E, \overrightarrow{p})$$

$$P = (M, 0)$$

Resonanz mit invarianter Masse W

■ invariante Masse W der Resonanz

$$W^2 = |P'|^2 = (P+q)^2 = M^2 + 2 P \cdot q + q^2 = M^2 + 2 M \cdot v - Q^2$$

Q²: 4-er Impuls-Übertrag

Fall 1: keine innere Anregung

- Elastischer Stoß keine innere Anregung
 - elastische Streuprozesse ohne Anregung des Nukleons

1 freier Parameter

$$W^2 = M^2 + 2 M \cdot v - Q^2$$

$$= 0$$

$$2 M \cdot \nu - Q^2 = 0$$

Fall 2: Resonanz mit innerer Anregung

- Inelastischer Stoß innere Anregung: Erzeugung einer Resonanz
 - inelastische Streuprozesse *mit* Anregung des Nukleons
 - zur Beschreibung der Dynamik einer inelastischen Reaktion sind immer 2 unabhängige Parameter (Strukturfunktionen) erforderlich:

$$(Q^2, v)$$
 Oder (E', θ)

$$2 M \cdot \nu - Q^2 > 0$$

Von Resonanzen zu…tiefinelastischer Streuung

Auf dem Weg zu Partonen

- bei sehr hohen Elektron-Energien (hohes Q^2) nimmt $d\sigma/d\Omega$ ab für die Erzeugung von Resonanzen
- wir benötigen eine kinematische Größe die uns angibt, wie stark inelastisch die Reaktion ist

Von Resonanzen zu…tiefinelastischer Streuung

Auf dem Weg zu Partonen

elastische Streuprozesse
 ohne innere Anregung
 des Nukleons

$$Q^2 = 2 M \cdot \nu$$

inelastische Prozesse
 <u>mit</u> innerer Anregung
 des Nukleons

$$Q^2 < 2 M \cdot v$$

Kinematische Größe: Bjorken Skalenvariable x

■ Eigenschaften: dimensionslose Größe x als Mass der Inelastizität

- Definition:

$$x = \frac{Q^2}{2M \cdot v}$$

$$x = 0...1$$

- Grenzfall: elastische Streuung

$$Q^2 = 2M \cdot v \iff x = 1 \text{ mit } W = M$$

Partonmodell des Nukleons

x = Impulsanteil des Partons

Kinematische Größe: Bjorken Skalenvariable x

inelastische

■ Eigenschaften: dimensionslose Größe x als Mass der Inelastizität

- Definition:

$$x = \frac{Q^2}{2M \cdot v}$$

$$x = 0...1$$

- inelastische Streuung

$$Q^2 < 2M \cdot \nu \iff 0 < x < 1 \text{ mit } W > M$$

Tiefinelastische Streuung am Parton

Streuprozess an individuellem Parton innerhalb des Nukleons

konstanter Formfaktor ⇒ Streuung an punktförmigen Konstituenten ('Partonen')

Tiefinelastische Prozesse: Strukturfunktionen

- Streuung an punktförmigen Partonen im Nukleon bei $W>3\ GeV$

- nur sehr schwache Abhängigkeit von $d^2\sigma/(d\Omega dE')$ vom 4-er Impuls Q^2
- analog: konstanter Formfaktor wie bei Rutherford (punktförmiges Atom)*, jetzt: Streuung an punktförmigen Quarks (Partonen)

Tiefinelastische Prozesse: Strukturfunktionen

- Streuung an punktförmigen Partonen im Nukleon bei $w > 3 \, GeV$

- aus Bedingung $\Delta E \cdot \Delta t < \hbar/2$ ergibt sich sehr kurze Stoßzeit Δt :
 - ⇒ Parton-Bewegung im Nukleon ist
 ′eingefroren´ (⇒ ultrakurze
 ′Belichtungszeit´ durch Photon)
- Nukleon ist für e^- ein Ensemble von 'quasi-freien' Partonen
- Elektron mit hohem ν und Q^2 streut inkohärent an individuellen Partonen

Tiefinelastische Prozesse: Strukturfunktionen

- Streuung an punktförmigen Partonen im Nukleon bei $w > 3 \, GeV$

- Partonen können aus Nukleon nicht einzeln herausgeschlagen werden! Bildung hadronischer Jets

Tiefinelastische Prozesse: höchste Energien

- SLAC: Experimente zur tiefinelastischen Elektron-Streuung am Nukleon
 - SLAC: 3,2~km langer Linearbeschleuniger für Elektronen bis E~=~50~GeV
 - 1969...72: Messungen bei 4 21 GeV: Beobachtung von Elektronen unter großen Streuwinkeln (Streuung an inneren 'harten' Objekten des Protons)

Beschleuniger in Stanford

3. SLAC, nobeknrize ord

Tiefinelastische Prozesse: Nobelpreis 1990

SLAC: Auszeichnung für J. Friedman I H.W. Kendall I R.E. Taylor

Photo from the Nobel Foundationarchive.

Jerome I. Friedman

Photo from the Nobel Foundation archive.

Henry W. Kendall

Photo: T. Nakashima
Richard E. Taylor
Prize share: 1/3

"for their pioneering investigations concerning deep inelastic scattering of electrons on protons & bound neutrons, which have been of essential importance for the development of the quark model in particle physics"

Tiefinelastische Prozesse: RECAP der Schritte

Aufdeckung der Substruktur der Materie durch Streuexperimente

Frage: Bjorken

- Bjorken x ist wie folgt definiert:
- Im Quark Modell und bei inelastischer Streuung können wir x als ...

 $x = \frac{Q^2}{2M \cdot v}$

- 1) Energietransferanteil im Nukleon Ruhesystem
- 2) Impulsübertrag vom Elektron an das Quark
- 3) Impulsanteil der Quarks (oder Gluonen) am Nukleon Implus

... verstehen.

Katzen

Urlaubskatze auf Kreta

Moderne Experimentalphysik II - Part II

- 4. Symmetrien und Erhaltungssätze
 - 4.1 Erhaltungszahlen
 - 4.2 Diskrete Symmetrien
 - 4.3 Schlüsselexperimente
 - 4.4 Supersymmetrie

Überblick

 Symmetrieprinzipien und Erhaltungssätze sind zentrales Element von modernen physikalischen Theorien

- klassische Physik: Hamilton-Formalismus

- Quantenmechanik: Phase und Parität der Wellenfunktion \Psi

- Festkörperphysik: Symmetrie von Kristallen

- Teilchenphysik: Verallgemeinerung bekannter Konzepte aus der

klassischen Physik & Quantenmechanik

⇒ Eichsymmetrien, z.B. Farb-SU(3)

innere Symmetrien von Teilchen: Parität P, C, CP....

neue Quantenzahlen: Flavours von Quarks: u, d, ...

J. wikipedia, ESO

Klassische kontinuierliche Symmetrien

Noether-Theorem (Emmy Noether, 1918):

"zu jeder kontinuierlichen Symmetrie eines physikalischen Systems gehört eine Erhaltungsgröße" → klassische Raum-Zeit-Symmetrien

Symmetrieoperation	unbeobachtbare Größe	Erhaltungsgröße
Translation im Raum	absoluter Ort	Impuls
Drehung im Raum	absolutes Koordinatensystem	Drehimpuls
Translation in der Zeit	absolute Zeit	Energie

Emmy Noether

- Homogenität & Isotropie des Raumes: Erhaltung von p, J
- Translationsinvarianz der Zeit : Erhaltung von E

: wikipedia. Perimeter Institeu

Klassische kontinuierliche Symmetrien

Noether-Theorem (Emmy Noether, 1918):

"zu jeder kontinuierlichen Symmetrie eines physikalischen Systems gehört eine Erhaltungsgröße" → klassische Raum-Zeit-Symmetrien

Perimeter Institute (Ontario): März/April 2022

the all-time greatest equation in physics ...

Noether's Theorem!

Emmy Noether

Q: Perimeter Institute

Gleichungen in der Physik

Welche Gleichung ist (neben Noether's Theorem) die Eleganteste, für mich?

Globale und lokale Symmetrien

globale Symmetrie: identische Symmetrieoperation an jedem Raum-Zeit Punkt x

globale Phase α : identische Physik bei $\Psi(x) \rightarrow \Psi(x) \cdot e^{i\alpha}$

■ lokale Symmetrie: Symmetrieoperation ist Funktion von $x = (\vec{r}, t)$

lokale Phase α : identische Physik bei $\Psi(x) \rightarrow \Psi(x) \cdot e^{i\alpha(x)}$

stärkere Anforderung!

 $\alpha(x)$

 $\alpha(x')$

Symmetrie wird auf ein System angewandt:

System bleibt invariant, d.h. transformierter Zustand kann nicht vom untransformierten Zustand unterschieden werden

globale Transformation Transformation

lokale

Q: Spektrum

Standardmodell & Eichsymmetrien

I: Isospin Y: Hyperladung

Standardmodell beruht auf lokalen Eichsymmetrien

zwei Eichgruppen

Invarianz bei lokaler Eichsymmetrie: Einführung von neuen Feldern / Wechselwirkungen

C: Colour (Farbe)

Vektorbosonen

Gluonen

a: wikipedia

Additive & multiplikative Quantenzahlen

- Additive Quantenzahlen (ladungsartig)
 - Summe der Quantenzahlen in einem Prozess ist erhalten

kontinuierliche Symmetrien: elektrische Ladung Q, Hyperladung Y Leptonenzahl L, Baryonenzahl B,...

- Multiplikative Quantenzahlen
 - Produkt π der Quantenzahlen in einem Prozess ist erhalten:

diskrete Symmetrien:

Parität P

Ladungskonjugation c

Intrinsische Quantenzahlen: Baryonenzahl **B**

- Hadronen (Quarks) & Leptonen: intrinsische Quantenzahlen
 - Ladung Q, Farbladung, Flavour, schwache Hyperladung Y,...
- Baryonenzahl B
 - B ist eine erhaltene (additive) Quantenzahl im Standardmodell
 - Definition

$$\boldsymbol{B} = \frac{1}{3} \cdot \left[N(q) - N(\bar{q}) \right]$$

$$N(q), N(\bar{q})$$
 Anzahl der Quarks, Antiquarks

Beispiel: Nukleon B = 1, Quark B = $\frac{1}{3}$, Antiquark B = $-\frac{1}{3}$

SM: exakte Erhaltung der Baryonenzahl \boldsymbol{B}

Proton als leichtestes Baryon im Standardmodell ist stabil

Masse (p) =
$$938,272 \text{ MeV}$$

- bisher *keine* Baryonenzahlverletzenden Prozesse beobachtet!

Meson: gebundenes System aus Quark & Antiquark Bsp: Pion, Kaon,...

Q: wikipedia

EINSCHUB – VERLETZUNG DER BARYONENZAHL

Erhaltung der Baryonenzahl & Kosmologie*

- Universum zeigt Baryon-Asymmetrie
 - beobachtete Baryon-Asymmetrie $\eta = (6,14 \pm 0,24) \cdot 10^{-10}$

kosm. Mikrowellenhintergrund (n_v)

Wasserstoff

Verletzung der Baryonenzahl

Anti-Wasserstoff

Q: spektrum, wikimedia

Sacharov-Kriterien für Baryon-Asymmetrie

- Universum zeigt Baryon-Asymmetrie: nur Materie, keine Antimaterie
 - drei Sacharov-Kriterien für eine erfolgreiche Baryogenese:

- 1. Verletzung der Baryonenzahlerhaltung
- 2. Verletzung der CP-Invarianz*
- 3. kein thermodynamisches Gleichgewicht

Andrej Dmitrijewisch Sacharov (1921-1989)

1967: Baryon-Asymmetrie

Q: wikipedia, welt der physik

GUTs: Baryonenzahlverletzende Prozesse!

Proton-Zerfall in GUT-Szenarios

hypothetischer Zerfall
eines Protons in ein
Positron & neutrales Pion
erwartet in GUT = Grand Unified Theory*
über ein superschweres sog. X-Boson
(erzeugt Kopplung Quark-Lepton)

S. Glashow

H. Georgi

*GUTs beinhalten hypothetisches X-Boson

Motivation für GUTs: das SM ist 'unvollkommen'

GUT-Szenarios: keine "Große Vereinheitlichung" im Standardmodell

 Entwicklung der Stärke der Kopplungskonstanten als Funktion der Energie: kein gemeinsamer
 Schnittpunkt ③

W. De Boer (KIT) U. Amaldi

Teilchen & Kräfte im SM

Q: wikipedia, KIT

SUSY: mit starkem Karlsruher Bezug

GUT-Szenarios: "Große Vereinheitlichung" in der Supersymmetrie

- Supersymmetrie (SUSY)*: alle Kräfte treffen sich bei einer Energieskala ©
- erste SUSY Theorie durch J. Wess & B. Zumino (1974)

W. De Boer (KIT) U. Amaldi

J. Wess (KIT)

Teilchen & Kräfte mit SUSY

Energie

Zerfall des Protons in Positron e^+ & Pion π^0

- Protonmasse definiert die Energieskala E ~ 1 GeV bei Suche nach Zerfall
 - heutige untere Grenze für Lebensdauer t_{1/2} > 1,67 · 10³⁴ a

Erwartete Zerfalls-Signatur in Super-Kamiokande

- Protonenzerfalls-Experimente: große H₂O-Cherenkov-Detektoren*
 - Super-Kamiokande: Simulation eines Protonen-Zerfalls mit 3 Cherenkov-Ringen

: Hyper-Kamiokande, CHIPP

Hyper-Kamiokande: 'ultimative' Sensitivität

Protonenzerfalls-Experimente: Hyper-Kamiokande in Japan (ab 2027)

- ein neues Observatorium für
 - Neutrino-Oszillationen
 - Suche nach Protonzerfall

~10³⁵ Jahre

: Physics World, Spektrum,

Standardmodell: Erhaltung der Leptonenzahl $oldsymbol{L}$

Leptonenzahl L für geladene (e, μ , τ) & neutrale (v_e , v_μ , v_τ) Leptonen

- Definition:

$$L = N(\mathcal{E}) - N(\bar{\mathcal{E}})$$

■ Antilepton

Elektron als leichtestes (geladenes) Lepton im Standardmodell mit L = +1 ist **stabil**

e- Lebensdauer*

$$t_{\frac{1}{2}} > 6.6 \cdot 10^{28} \text{ a}$$

*Limit vom Borexino-Detektor

A: Spektrum, symmetry magazine

Standardmodell: Erhaltung von Familien- L_i

• jede der drei Leptonenfamilien $i = (e, \mu, \tau)$ besitzt separate Quantenzahl

- Beispiele: $L_e=+1$ für $\left(e^-, v_e\right)$ $L_e=-1$ für $\left(e^+, \bar{v}_e\right)$ $L_\mu=+1$ für $\left(\mu^-, v_\mu\right)$ $L_\mu=-1$ für $\left(\mu^+, \bar{v}_\mu\right)$
- **Leptonenzahl** $L = L_e + L_{\mu} + L_{\tau}$

Erhaltung von L_e, L_μ und L_τ
 verletzt durch masse-behaftete
 Neutrinos (ν-Mischung)

3: nobelprize, ca-ce-passe-la-haut.fr

Experiment: Erhaltung von L_i ist verletzt!

• keine Erhaltung von Leptonen-Familienzahl $i = (e, \mu, \tau)$!

- Beobachtung* von ν -Oszillationen, z.B. von $\nu_e \leftrightarrow \nu_\mu$ (Neutrinos aus der Sonne) von $\nu_\mu \leftrightarrow \nu_\tau$ (Neutrinos aus der Atmosphäre)
- Implikation: Neutrinos haben Masse!
- erste Physik jenseits des Standardmodells!!

2014: Takaaki Kajita im kl. HS A

© Nobel Media AB. Photo: A. Mahmoud

Takaaki Kajita

Prize share: 1/2

© Nobel Media AB. Photo: A. Mahmoud

Arthur B. McDonald

Prize share: 1/2

atmosphärische v's solare v's

Leptonenzahl: Verletzung von $oldsymbol{L}$ jenseits des SM

- Leptonenzahl L: kann genau wie Baryonenzahl B in erweiterten Theorien verletzt sein
 - ist das Konzept von L bei Neutrinos sinnvoll?
- Suche nach Verletzung der Leptonenzahl-Erhaltung in seltenem Zerfallsprozess*: "neutrinoloser Doppel-Betazerfall"
 - zwei Neutronen in einem Kern zerfallen simultan ohne Emission von Neutrinos
 - 0vBB-Ereignisse mit $\Delta L = 2$

GERDA Experiment am LNGS**

$$\Lambda L = 2$$

** & Master-VL Astroteilchenphysik

Verletzung von B und L

- Erhaltung der Baryonenzahl und Leptonenzahl im SM & bei GUTs
 - 1) Erhaltung von B und L im SM wohlbegründet durch eine intrinsische Symmetrie der Raumzeit (Noether-Theorem)
 - 2) Erhaltung von B und L ist eine empirische Beobachtung, bisher keine Verletzungen dieser Quantenzahlen experimentell nachgewiesen
 - 3) Bin mir nicht sicher

Steven Weinberg

60