

Moderne Experimentalphysik II Teilchenphysik - Vorlesung 07

Professor Dr. Markus KLUTE (<u>markus.klute@kit.edu</u>) Institut für Experimentelle Teilchenphysik (ETP)

18.01.2024

Saalübungen

Ich nehme an den Saalübungen teil?

- 1) Ja, regelmässig
- 2) Ja, manchmal
- 3) Nein

Halten Sie die Saalübungen zur Besprechung der Hausaufgaben für sinnvoll?

- 1) Ja
- 2) Nein
- 3) Man sollte das Format ändern
- 4) Keine Meinung
- 2 Teilchenphysik

Recap: Streuexperimente & Wirkungsquerschnitte

- Rutherford, Mott & Formfaktoren: auf dem Weg zur Kernstruktur
 - Rutherford: Streuung am Coulom

- Mott: relativistische Streuung mit
- Formfaktor $F(q) \iff$ Ladungsverteilung $\rho(r)$: Fouriertransformierte

hbpotenzial
$$\frac{d\sigma}{d\Omega} = (2 \cdot m_e \cdot Z \cdot \alpha)^2 \cdot \frac{1}{q^4}$$

Spin $\left(\frac{d\sigma}{d\Omega}\right)_M = \left(\frac{d\sigma}{d\Omega}\right)_R \cdot \frac{E}{E} \cdot \cos^2 \frac{d\sigma}{d\Omega}$

Moderne Experimentalphysik II - Part II

- 3. Struktur der Materie
 - 3.1. Rutherford Streuung & Wirkungsquerschnitt
 - 3.2. Mott Streuung & Formfaktoren
 - 3.3. Struktur von Nukleonen

Nukleon-Formfaktoren & innere Struktur

Q = +2/3Q = +2/317 Q = -1/3

Proton: q = +1 S = 1/2

Sneak pre-view: innerer Aufbau des Nukleons aus up, down- Quarks

Nukleon-Formfaktoren & innere Struktur

Proton: q = +1 S = 1/2

Fragestellung: wie verteilen sich die Quark-Ladungen/Ströme radial?

Neutron: q = 0, S = 1/2

Nukleon: Ladungsverteilung

Ladungsverteilung $\rho(r)$ in einem Nukleon

exponentiell abfallende Ladungsverteilung des Nukleons ("<u>kein</u> scharfer Rand!")

Fourier-Transformation
$$G(Q^2) = \left(1 + \frac{Q^2}{0,71 \ (GeV/c)^2}\right)^{-2}$$

Nukleon: Ladungsradien & Stromverteilungen

mittlere quadratische Radien R des Nukleons $\langle r^2 \rangle = \frac{1}{Q} \cdot \int r^2 \cdot \rho(r) \cdot 4\pi \cdot r^2 \cdot dr$ - Definition* rms - Radius R $R=\sqrt{\langle \ r^2 angle}$ Integration über $\rho(r)$ gewichtet quadratisches Mittel Kugelvolumen mit Quadrat von *r*

$$\sqrt{\left\langle r_{E}^{2} \right\rangle_{P}} = 0,8775 \ fm$$

$$\sqrt{\left\langle \boldsymbol{r}_{\boldsymbol{E}}^{2} \right\rangle_{p}} \approx \sqrt{\left\langle \boldsymbol{r}_{\boldsymbol{M}}^{2} \right\rangle_{p}} \approx \sqrt{\left\langle \boldsymbol{r}_{\boldsymbol{M}}^{2} \right\rangle_{n}} \approx 0.8...0.9 \ fm$$

Teilchenphysik 8

mittlerer quadratischer Ladungsradius des **Protons**

mittlere quadratische Radien von Proton, Neutron

ean**-s**quare

EINSCHUB – 'GESCHRUMPFTES' PROTON

Präzisionsmessung des Proton-Radius R_p

- Vergleich von Streuprozessen am Proton mit anderen Methoden

- Resultate von myonischen Atomen* & Elektron-Streuung: 5 σ Diskrepanz

- myonische H-Atome $R_p = 0,84184(67) fm$

Absorptionsspektrum: klass. *H*-Atom*

Emissionsspektrum: exotisches Atom

Präzisionsmessung des Proton-Radius R_p

Februar 2022: Reanalyse der Elektron-Streudaten am Proton

- myonische H-Atome $R_p = 0,84184(67) fm$

- Resultate von myonischen Atomen & Streudaten stimmen nun überein

Inelastische Streuprozesse: Resonanzen

• Elektronen-Energien E > 2 GeV: inelastische Streuung am Nukleon

- bisher: moderate Elektron-Energien, nur elastische Streuung
- nun: höhere Energien I Anregung innerer Freiheitsgrade des Nukleons

Beobachtung von Resonanzen

Delta-Resonanz: ein Spin $S = \frac{3}{2}$ Zustand

• die 'berühmte' Δ^+ Resonanz: der 1. angeregte Nukleon-Zustand $\Delta^+(1232): M = 1232 MeV$

- Resonanzen (mit extrem kurzen Lebensdauern) mit charakteristischem **Breit-Wigner Profil**
- Parameter von Δ^+ : $\Gamma \approx 100 MeV$

 $^{2}\sigma/(d\Omega \ dE)$

1.5

0,5

Q: Povh

EINSCHUB – RESONANZEN

Eigenschaften von Resonanzen

Resonanzen charakterisiert durch intrinsische Breit-Wigner Verteilung

- Wahrscheinlichkeitsdichte **P**(**E**) einer **Breit-Wigner**-Verteilung

$$P(E) = \frac{1}{2\pi} \cdot \frac{\Gamma}{(E-M)^2 + \frac{\Gamma^2}{4}}$$

Eigenschaften von Resonanzen

- Kurze Lebensdauer rerzeugt große Zerfallsbreite r
- Breite r einer Resonanz durch Heisenberg'sche Unschärfe-Relation

Delta-Resonanz: ein Spin $S = \frac{3}{2}$ Zustand

Spin in der Teilchenphysik

Spin S: eine sehr wichtige Eigenschaft von Elementarteilchen

sehr großer Einfluss auf Masse, Lebensdauer ($p, n \iff \Delta^+$)

 Δ^+ – Resonanz m = 1232 MeV $\tau = (5, 63 \pm 0, 14) \bullet 10^{-24}$ Zerfall: $\varDelta^+ \rightarrow N + \pi$

Proton m = 938, 27 MeV $\tau > 3,6 \cdot 10^{29} s$ hypothetische Zerfallsmoden

Relativistische Kinematik & Resonanzen

Kinematische Variable: Elektron & Proton, Resonanz

- einlaufendes Elektron mit 4 er Impuls p
- auslaufendes Elektron mit 4 er Impuls p'
- "einlaufendes" (ruhendes) Proton mit 4 er Impuls P = (M, 0)
- auslaufende Resonanz mit 4 er Impuls P
- Energieverlust v des e^- : $\mathbf{v} = \mathbf{E} - \mathbf{E}'$

Resonanz mit invarianter Masse *W*

invariante Masse W der Resonanz

$$W^{2} = |P'|^{2} = (P+q)^{2} = N$$

$$W^{2} = M^{2} + 2 M \cdot v - Q^{2}$$

$$W': \text{ invariante} \qquad v: \text{ Energie-} \qquad Ubertrag$$

$$M: \text{ Masse} \qquad Proton$$

$M^2 + 2 P \cdot q + q^2 = M^2 + 2 M \cdot v - Q^2$

Fall 1 : keine innere Anregung

Elastischer Stoß – keine innere Anregung

- elastische Streuprozesse ohne Anregung des Nukleons

1 freier Parameter

Fall 2 : Resonanz mit innerer Anregung

Inelastischer Stoß – innere Anregung: Erzeugung einer Resonanz

- inelastische Streuprozesse *mit* Anregung des Nukleons
- zur Beschreibung der Dynamik einer inelastischen Reaktion sind immer 2 unabhängige Parameter (Strukturfunktionen) erforderlich: (Q^2, v) Oder (E', θ)

$$2 M \cdot v - Q^2 > 0$$

Von Resonanzen zu...tiefinelastischer Streuung

Auf dem Weg zu Partonen

- bei sehr hohen Elektron-Energien (hohes Q^2) 1,5 nimmt $d\sigma/d\Omega$ ab für die Erzeugung von 1,0 Resonanzen
- wir benötigen eine kinematische Größe die uns angibt, wie stark inelastisch die Reaktion ist

nb/(GeV sr)] $^{2}\sigma/(d\Omega \ dE)$ 0,5

Q: Povh

Von Resonanzen zu...tiefinelastischer Streuung

Auf dem Weg zu Partonen

- elastische Streuprozesse ohne innere Anregung des Nukleons

$$Q^2 = 2 M \cdot v$$

- inelastische Prozesse *<u>mit</u>* innerer Anregung des Nukleons

$$Q^2 < 2 M \cdot v$$

Q: Povh

1,5

1,0

0,5

[nb/(GeVsr)]

 $2^{2}\sigma/(d\Omega \ dE)$

Kinematische Größe: Bjorken Skalenvariable x

Eigenschaften: dimensionslose Größe x als Mass der Inelastizität

- Definition:

$$x = \frac{Q^2}{2M \cdot v}$$

- Grenzfall: elastische Streuung $Q^2 = 2M \bullet v \iff x = 1 \text{ mit } W = M$

Q: Am

x = Impulsanteil des Partons

Kinematische Größe: Bjorken Skalenvariable x

Eigenschaften: dimensionslose Größe x als Mass der Inelastizität

- Definition:

$$x = \frac{Q^2}{2M \cdot v}$$

- inelastische Streuung $Q^2 < 2M \cdot v \iff 0 < x < 1 \text{ mit } W > M$

An

Partonmodell des Nukleons

x = Impulsanteil des Partons

Tiefinelastische Streuung am Parton

Streuprozess an individuellem Parton innerhalb des Nukleons

- konstanter Formfaktor ⇒ punktförmigen Konstituenten ('Partonen')

Tiefinelastische Prozesse: Strukturfunktionen

• Streuung an punktförmigen Partonen im Nukleon bei W > 3 GeV

- nur sehr schwache Abhängigkeit von $d^2\sigma/(d\Omega \ dE')$ vom 4 – er Impuls Q^2
- analog: konstanter Formfaktor wie bei Rutherford (punktförmiges Atom)*, jetzt: Streuung an punktförmigen Quarks (Partonen)

Radius $r \rightarrow$ Impuls $|q| \rightarrow$

punktförmig

Tiefinelastische Prozesse: Strukturfunktionen

- Streuung an punktförmigen Partonen im Nukleon bei w > 3 GeV
 - aus Bedingung $\Delta E \cdot \Delta t < \hbar/2$ ergibt sich sehr kurze Stoßzeit Δt : → Parton-Bewegung im Nukleon ist *'eingefroren'* (*⇒* ultrakurze 'Belichtungszeit' durch Photon)
 - Nukleon ist für e^- ein Ensemble von 'quasi-freien' Partonen
 - Elektron mit hohem v und Q^2 streut inkohärent an individuellen Partonen

Tiefinelastische Prozesse: Strukturfunktionen

- Streuung an punktförmigen Partonen im Nukleon bei w > 3 GeV
 - Partonen können aus Nukleon nicht einzeln herausgeschlagen werden! Bildung hadronischer Jets

Tiefinelastische Prozesse: höchste Energien

- SLAC: 3,2 km langer Linearbeschleuniger für Elektronen bis E = 50 GeV
- 1969...72: Messungen bei 4 21 GeV: Beobachtung von Elektronen unter großen Streuwinkeln (Streuung an inneren 'harten' Objekten des Protons)

NATIONAL ACCELERATOR LABORATORY

SLAC: Experimente zur tiefinelastischen Elektron-Streuung am Nukleon

Beschleuniger in Stanford

Tiefinelastische Prozesse: Nobelpreis 1990

SLAC: Auszeichnung f ür J. Friedman / H.W. Kendall / R.E. Taylor

archive. Henry W. Kendall Prize share: 1/3

"for their pioneering investigations concerning **deep** inelastic scattering of electrons on protons & bound neutrons, which have been of essential importance for the development of the quark model in particle physics"

Institute of Experimental Particle Physics (ETP)

nobekprize.org

Tiefinelastische Prozesse: RECAP der Schritte

Aufdeckung der Substruktur der Materie durch Streuexperimente

Kern

Rutherford: 4 MeV

harte Rückstreuung

34

Teilchenphysik

9

Atom

 $\sim 10^{-10} m$

Hofstadter: 600 MeV Kernformfaktoren Woods-Saxon

Frage: Bjorken

- Bjorken x ist wie folgt definiert:
- Im Quark Modell und bei inelastischer Streuung können wir x als ...
 - 1) Energietransferanteil im Nukleon Ruhesystem
 - 2) Impulsübertrag vom Elektron an das Quark
 - 3) Impulsanteil der Quarks (oder Gluonen) am Nukleon Implus
 - ... verstehen.

Urlaubskatze auf Kreta

Moderne Experimentalphysik II - Part II

- 4. Symmetrien und Erhaltungssätze
 - 4.1 Erhaltungszahlen
 - 4.2 Diskrete Symmetrien
 - 4.3 Schlüsselexperimente
 - 4.4 Supersymmetrie

Überblick

- Symmetrieprinzipien und Erhaltungssätze sind zentrales Element von modernen physikalischen Theorien
 - klassische Physik:
 - Quantenmechanik:
 - Festkörperphysik:
 - Teilchenphysik:

- Hamilton-Formalismus
- Phase und Parität der Wellenfunktion Ψ
- Symmetrie von Kristallen
- Eichsymmetrien, z.B. Farb-SU(3)
- Verallgemeinerung bekannter Konzepte aus der klassischen Physik & Quantenmechanik \Box
- innere Symmetrien von Teilchen: Parität P, C, CP...
- **neue Quantenzahlen:** Flavours von Quarks: u, d, ...

Klassische kontinuierliche Symmetrien

Noether-Theorem (Emmy Noether, 1918):

"zu jeder kontinuierlichen Symmetrie eines physikalischen Systems gehört eine Erhaltungsgröße" → klassische Raum-Zeit-Symmetrien

Symmetrieoperation	unbeobachtbare Größe	Erhaltungsgröße
Translation im Raum	absoluter Ort	Impuls
Drehung im Raum	absolutes Koordinatensystem	Drehimpuls
Translation in der Zeit	absolute Zeit	Energie

- Homogenität & Isotropie des Raumes: Erhaltung von p, J

- Translationsinvarianz der Zeit : Erhaltung von E

Emmy Noether

Klassische kontinuierliche Symmetrien

Noether-Theorem (Emmy Noether, 1918):

"zu jeder kontinuierlichen Symmetrie eines physikalischen Systems gehört eine Erhaltungsgröße" → klassische Raum-Zeit-Symmetrien

Stated simply, Noether's theorem shows that symmetries in nature are intrinsically linked to conservation laws. This profound insight has guided every branch of modern physics.

Perimeter Institute (Ontario): März/April 2022 the all-time greatest equation in physics ...

Noether's Theorem!

Emmy Noether

Gleichungen in der Physik

Welche Gleichung ist (neben Noether's Theorem) die Eleganteste, f ür mich?

 $-\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t)$ **Î**

Schrödinger equation

The bread and butter of quantum mechanics, the Schrödinger equation describes the wave function of any quantum system and therefore tracks the system's observable properties over time.

Energy–momentum relation

This relation simplifies to the famous E=mc2 for objects at rest, illustrating that mass and energy are two sides of the same coin and can be converted from one form to another.

Stefan–Boltzmann law

Star light, star bright, the first star you see tonight ... can be described by this equation, which relates a star's luminosity to its temperature and radius.

Physics Frenzy: Battle of the Equations - Inside The Perimeter

41 Teilchenphysik

$= (pc)^2 + (mc^2)^2$

Dirac equation

If quantum physics describes the tiniest particles, and special relativity describes the fastest things, what of tiny, fast-moving particles? Enter the Dirac equation, which also predicted the existence of antimatter.

Institute of Experimental Particle Physics (ETP)

olo	gy		
-			
ŝ			
-			

Perim

Ö

Globale und lokale Symmetrien

- globale Symmetrie: identische Symmetrieoperation an jedem Raum-Zeit Punkt x
 - globale Phase α : identische Physik bei $\Psi(x) \rightarrow \Psi(x) \cdot e^{i\alpha}$
- **Iokale Symmetrie**: Symmetrieoperation ist Funktion von $x = (\vec{r}, t)$
 - lokale Phase α : identische Physik bei $\Psi(x) \rightarrow \Psi(x) \cdot e^{i\alpha(x)}$
- Symmetrie wird auf ein System angewandt: System bleibt invariant, d.h. transformierter Zustand kann nicht vom untransformierten **Zustand unterschieden werden**

Standardmodell & Eichsymmetrien

 $SU(2)_I \times U(1)_Y$ elektroschwacher Bereich I: Isospin Y: Hyperladung Invarianz bei lokaler Eichsymmetrie:

Einführung von neuen Feldern / Wechselwirkungen

- starker Bereich
- C: Colour (Farbe)

Vektorbosonen

Gluonen

Additive & multiplikative Quantenzahlen

- Additive Quantenzahlen (ladungsartig)
 - Summe der Quantenzahlen in einem Prozess ist erhalten kontinuierliche Symmetrien: elektrische Ladung Q, Hyperladung YLeptonenzahl L, Baryonenzahl B,...
- Multiplikative Quantenzahlen
 - **Produkt** π der Quantenzahlen in einem Prozess ist erhalten: diskrete Symmetrien: Parität *P* Ladungskonjugation *c*

Institute of Experimental Particle Physics (ETP)

Q: wikipedia

Intrinsische Quantenzahlen: Baryonenzahl *B*

- Hadronen (Quarks) & Leptonen: intrinsische Quantenzahlen
 - Ladung Q, Farbladung, Flavour, schwache Hyperladung Y,...
- Baryonenzahl **B**
 - **B** ist eine erhaltene (additive) Quantenzahl im Standardmodell
 - Definition

$$\boldsymbol{B} = \frac{1}{3} \bullet \left[N(q) - N(\bar{q}) \right]$$

$N(q), N(\bar{q})$ Anzahl der Quarks, Antiquarks

Beispiel: Nukleon B = 1, Quark B = $\frac{1}{3}$, Antiquark B = $-\frac{1}{3}$

SM: exakte Erhaltung der Baryonenzahl B

Proton als leichtestes Baryon im Standardmodell ist stabil

Masse (p) = 938,272 MeV

- bisher *keine* Baryonenzahlverletzenden Prozesse beobachtet!

Meson: gebundenes System aus Quark & Antiquark Bsp: Pion, Kaon,...

Q: wikipedia

46 Teilchenphysik

EINSCHUB – VERLETZUNG DER BARYONENZAHL

Institute of Experimental Particle Physics (ETP)

Q: symmetry magazine, ESO

Erhaltung der Baryonenzahl & Kosmologie*

Universum zeigt Baryon-Asymmetrie

- beobachtete Baryon-Asymmetrie $\eta = (6, 14 \pm 0, 24) \cdot 10^{-10}$

Verletzung der Baryonenzahl

Annihilation $p\bar{p}$

*VL im Master: Kosmologie

Teilchenphysik 48

$n_B - n_{ar{B}}$ n_{γ}

Wasserstoff

Anti-Wasserstoff

Institute of Experimental Particle Physics (ETP)

symmetry magazine С S Ш Ö

Sacharov-Kriterien für Baryon-Asymmetrie

- Universum zeigt Baryon-Asymmetrie: nur Materie, keine Antimaterie
 - drei Sacharov-Kriterien für eine erfolgreiche Baryogenese:

- 1. Verletzung der **Baryonenzahlerhaltung**
- 2. Verletzung der CP-Invarianz*
- 3. kein thermodynamisches Gleichgewicht

Andrej Dmitrijewisch Sacharov (1921-1989) 1967: Baryon-Asymmetrie

*kommt später! Institute of Experimental Particle Physics (ETP)

GUTs: Baryonenzahlverletzende Prozesse!

Proton-Zerfall in GUT-Szenarios

<u>hypothetischer Zerfall</u> eines Protons in ein Positron & neutrales Pion erwartet in **GUT** = **G**rand **U**nified Theory* über ein superschweres sog. **X-Boson** (erzeugt Kopplung Quark-Lepton)

S. Glashow

H. Georgi

*GUTs beinhalten hypothetisches X-Boson

Institute of Experimental Particle Physics (ETP)

Q: wikipedia, welt der physik

Motivation für GUTs: das SM ist 'unvollkommen'

GUT-Szenarios: keine "Große Vereinheitlichung" im Standardmodell

- Entwicklung der Stärke der Kopplungskonstanten als Funktion der Energie: kein gemeinsamer Schnittpunkt 🟵

W. De Boer (KIT) U. Amaldi

Q: wikipedia, KIT

Teilchen & Kräfte im SM

SUSY: mit starkem Karlsruher Bezug

- GUT-Szenarios: "Große Vereinheitlichung" in der Supersymmetrie
 - Supersymmetrie (SUSY)*: alle Kräfte treffen sich bei einer Energieskala 🙂
 - erste SUSY Theorie durch J. Wess & B. Zumino (1974)

J. Wess (KIT) W. De Boer (KIT) U. Amaldi

Teilchen & Kräfte mit SUSY

Zerfall des Protons in Positron e^+ & Pion π^0

- heutige untere Grenze für Lebensdauer $t_{1/2} > 1,67 \cdot 10^{34}$ a

Protonmasse definiert die Energieskala E ~ 1 GeV bei Suche nach Zerfall

Institute of Experimental Particle Physics (ETP)

ysics.stackexchange.com, wikipedia 0 ...

Erwartete Zerfalls-Signatur in Super-Kamiokande

- - Super-Kamiokande: Simulation eines Protonen-Zerfalls mit 3 Cherenkov-Ringen

Protonenzerfalls-Experimente: große H₂O-Cherenkov-Detektoren*

*s. VL6

Hyper-Kamiokande: 'ultimative' Sensitivität

Protonenzerfalls-Experimente: Hyper-Kamiokande in Japan (ab 2027)

- ein neues Observatorium für - Neutrino-Oszillationen
 - Suche nach Protonzerfall

~1035 Jahre

ENDE EINSCHUB

Institute of Experimental Particle Physics (ETP)

CHIPP per-Kamiokande, Ö

Standardmodell: Erhaltung der Leptonenzahl L

- Leptonenzahl L für geladene ($_{e}, \mu, \tau$) & neutrale ($_{v_e}, v_{\mu}, v_{\tau}$) Leptonen
 - Definition:

$$\boldsymbol{L} = N(\boldsymbol{\ell}) - N(\bar{\boldsymbol{\ell}})$$

- > = Antilepton
- Elektron als leichtestes (geladenes) Lepton im Standardmodell mit L = +1 ist stabil

e- Lebensdauer* $t_{\frac{1}{2}} > 6,6 \cdot 10^{28} a$

*Limit vom **Borexino-Detektor**

Institute of Experimental Particle Physics (ETP)

Physics World, Spektrum, O

Standardmodell: Erhaltung von Familien- L_i

- - Beispiele: $L_e = +1$ für (e^-, v_e) $L_e = -1 \text{ für } \left(e^+, \bar{v}_e \right)$ $L_{\mu} = +1 \text{ für } (\mu^{-}, \nu_{\mu})$ $L_{\mu} = -1 \text{ für } \left(\mu^+, \bar{\nu}_{\mu}\right)$
- Leptonenzahl $L = L_e + L_\mu + L_\tau$
- Erhaltung von L_e , L_μ und L_τ verletzt durch masse-behaftete Neutrinos (v-Mischung)

• jede der drei Leptonenfamilien $i = (e, \mu, \tau)$ besitzt separate Quantenzahl

Q: Spektrum, symmetry magazine

Experiment: Erhaltung von L_i ist verletzt!

- keine Erhaltung von Leptonen-Familienzahl *i* = (e, μ , τ) !
 - Beobachtung* von v-Oszillationen, z.B. von $v_e \leftrightarrow v_{\mu}$ (Neutrinos aus der Sonne) von $v_{\mu} \leftrightarrow v_{\tau}$ (Neutrinos aus der Atmosphäre)
 - Implikation: Neutrinos haben Masse!
 - erste Physik jenseits des Standardmodells!!

2014: Takaaki Kajita im kl. HS A

© Nobel Media AB. Photo: A. Mahmoud Takaaki Kajita Prize share: 1/2

© Nobel Media AB. Photo: A. Mahmoud Arthur B. McDonald Prize share: 1/2

atmosphärische v's

*Master-VL Astroteilchenphysik

Institute of Experimental Particle Physics (ETP)

2: nobelprize, ca-ce-passe-la-haut.fr

Leptonenzahl: Verletzung von L jenseits des SM

- Leptonenzahl I : kann genau wie Baryonenzahl B in erweiterten Theorien verletzt sein
 - ist das Konzept von *i* bei Neutrinos sinnvoll?
- Suche nach Verletzung der Leptonenzahl-**Erhaltung** in seltenem Zerfallsprozess*: "neutrinoloser Doppel-Betazerfall"
 - zwei Neutronen in einem Kern zerfallen simultan ohne Emission von Neutrinos
 - 0vßß-Ereignisse mit $\Delta L = 2$

GERDA Experiment am LNGS**

** & Master-VL Astroteilchenphysik

Institute of Experimental Particle Physics (ETP)

MPIK Spektrum LBN

Verletzung von *B* und *L*

Erhaltung der Baryonenzahl und Leptonenzahl im SM & bei GUTs

- 1) Erhaltung von B und L im SM wohlbegründet durch eine intrinsische Symmetrie der Raumzeit (Noether-Theorem)
- 2) Erhaltung von B und L ist eine empirische Beobachtung, bisher keine Verletzungen dieser Quantenzahlen experimentell nachgewiesen
- 3) Bin mir nicht sicher

Steven Weinberg

