

Moderne Experimentalphysik II Teilchenphysik - Vorlesung 09

Professor Dr. Markus KLUTE (<u>markus.klute@kit.edu</u>) Institut für Experimentelle Teilchenphysik (ETP)

25.01.2024

Moderne Experimentalphysik II - Part II

- 4. Symmetrien und Erhaltungssätze
 - 4.1 Erhaltungszahlen
 - 4.2 Diskrete Symmetrien
 - 4.3 Schlüsselexperimente
 - 4.4 Supersymmetrie

Recap / Ausblick: Verletzung von *P*

- Maximale Verletzung der Parität P: Wu & Lederman
 - Wu-Experiment: Messung eines Pseudoskalars aus $\vec{J}_{Kern} \cdot \vec{p}_{a}$
 - Vorzugsrichtung \vec{p}_{e} | \vec{J}_{Kern} bei *mK*-Temperaturen (Kontrolle: E2- γ 's)
 - Helizität *h* masseloser Neutrinos: $\bar{v} = RH$, v = LH, gibt es sterile Neutrinos?
 - Lederman: Rate von $\pi^+ \rightarrow \mu^+ + \nu$ stark bevorzugt gegen $\pi^+ \rightarrow e^+ + \nu$

Helizitätszustände eines Fermions mit $S = \frac{1}{2}$

Helizität: linkshändig/rechtshändig, Teilchen bzw. Antiteilchen

Helizitätszustände von Neutrinos (Goldhaber)

Helizität: linkshändige Neutrinos und rechtshändige Antineutrinos

5 Teilchenphysik

Paritätsverletzung: nur LH Neutrinos im SM

• Neutrinos: rein linkshändige Teilchen $v = v_L$

- SM: linkshändige Neutrinos rechtshändige Antineutrinos $\bar{v} = \bar{v}_R$
- linkshändige \bar{v}_L bzw. rechtshändige v_R existieren nicht im Standardmodell
- Schwache Wechselwirkung besitzt eine Händigkeit:
 - sie unterscheidet ob Teilchen linkshändig oder rechtshändig sind

 $v = v_L$

rechtshändiges Antineutrino \bar{v}_R

Wu-Experiment: Ablauf

Z

Phasen beim Experimentieren

- polarisiere Co-60 mit starkem externen B-Feld
- überprüfe, dass Co-60 Kerne polarisiert sind
- messe die Richtung der Elektronen aus ß-Zerfall
- bestimme ob Vorzugsrichtung

Wu-Experiment: Bedeutung für Helizität von $e^{-1} \bar{v}_{e}$

Spins beim Co-60 Zerfall (polarisiert)

Q: LANI

$${}^{60}Co(5^+) \rightarrow {}^{60}Ni^*(4^+) + e^- + \bar{\nu}$$

- RH - Impulse von e^- und \bar{v}_e antiparallel da ß-Zerfall in Ruhe ($\Sigma \overrightarrow{p}_i = 0$) LH
 - Spins von e^- und \bar{v}_e parallel da Kernspins $J_z = 5 \rightarrow J_z = 4$
 - ein Teilchen muss daher RH & ein Teilchen muss LH sein

Wu-Experiment: Bedeutung für Helizität von $e^{-1} v_{\rho}$

Spins beim Co-60 Zerfall (polarisiert)

Q: LANI

Helicity of Neutrinos (aps.org)

 ${}^{60}Co(5^+) \rightarrow {}^{60}Ni^*(4^+) + e^- + \overline{v_e}$

RH - Händigkeit des \bar{v}_e : Bestimmung in unabhängigem Experiment* durch M. Goldhaber: LH Helizität (\bar{v}_e) = RH

Wu-Experiment: Result

- B-Elektron wird bevorzugt antiparallel zum Kernspin von Co-60 emittiert
 - Nachweis eines endlichen **Erwartungswertes** eines **Pseudoskalars**

DIE PARITÄT BEIM ß-**ZERFALL IST MAXIMAL** (ZU 100%!!) VERLETZT

verletzung!

Arbeiten von Lee und Yang & Madame Wu

15.1.1957: Madame Wu & ihr Team reichen die Resultate ihrer Weihnachtmessungen bei *Phys. Rev. Letters* ein (publiziert am 15.2.57)

Experimental Test of Parity Conservation in Beta Decay*

C. S. WU, Columbia University, New York, New York

AND

E. AMBLER, R. W. HAYWARD, D. D. HOPPES, AND R. P. HUDSON, National Bureau of Standards, Washington, D. C. (Received January 15, 1957)

I N a recent paper¹ on the question of parity in weak interactions, Lee and Yang critically surveyed the experimental information concerning this question and reached the conclusion that there is no existing evidence either to support or to refute parity conservation in weak interactions. They proposed a number of experiments on beta decays and hyperon and meson decays which would

Experimental Test of Parity Conservation in Beta Decay (aps.org)

Arbeiten von Lee und Yang & Madame Wu

1956: Lee & Yang erhalten den Nobelpreis nur wenige Monate später, Beweise der Paritätsverletzung wurden beim Nobelpreis leider ignoriert - Madame Wu leider nicht vom Nobelpreiskomitee berücksichtigt...

"for their penetrating investigation of the so-called parity laws which has led to important discoveries regarding the elementary particles"

Tsung-Dao Lee Chen Ning Yang

Madame Wu – späte Ehrung

Madame Wu – 2021 Ehrung via US Postal Stamp

Feb. 1, 2021

Nuclear Physicist Chien-Shiung Wu to be Honored on a U.S. Postal Service **Commemorative Forever Stamp**

"The First Lady of Physics"

Institute of Experimental Particle Physics (ETP)

pionteres Q: USP

Suche nach 'sterilen' Neutrinos mit KATRIN

KATRIN sucht nach neuartigen v-Zuständen (sterile v's) im Massenbereich von eV bis keV (Dunkle Materie?)

Paritätsverletzung: Pion-Zerfall – in μ^+ bzw. e^+

- pseudoskalares Pion π^+ mit $J^{P} = 0^{-}$
- Zerfallsmoden Pion π^+ :

$$\pi^+
ightarrow \mu^+ + \nu$$

 $\pi^+
ightarrow e^+ + \nu$

- Neutrino v = LH& ultra-relativistisch, d.h. mit festgelegter **Helizität** $h \cong -1$

Lederman: Verhältnis der Zerfälle in µ⁺ bzw. e⁺ gibt Aufschluss über Parität

Q: LANL, American IoP

- pseudoskalares Pion π^+

mit $J^P = 0^-$

- geladenes Lepton: muss die 'falsche' Helizität h = -1annehmen (Recap: für μ^+ bzw.

e⁺ erwartet man jedoch den Wert $h \approx +1$!)

Paritätsverletzung: Pion-Zerfall – in μ^+ bzw. e^+

Iltra-relativistisches Neutrino gibt die Helizität des geladenen Leptons vor

Q: LANL, American IoP

Paritätsverletzung: Pion-Zerfall – in μ^+ bzw. e^+

Helizität des geladenen Leptons: keine Lorentz-invariante Größe

Raten

- massebehaftete Teilchen: Helizität $h = \pm v/c$ d.h. abhängig von v (kinet. Energie)
 - Leptonen (e^{-}, μ^{-}) Helizität h = -v/c
 - **Antileptonen** (e^+, μ^+) Helizität h = + v/c
- Raten in μ^+ bzw. e^+ ?

Q: LANL, American IoP

Paritätsverletzung: Pion-Zerfall in Ruhe – in μ^+

- Ausgangszustand $J^{P} = 0^{-}$, im $\pi^{+} Ruhesytem$ muss gelten: $\Sigma \overrightarrow{p}_{i} = 0$ $\Sigma \overrightarrow{s}_{i} = 0$
 - Zerfall in schweres Myon mit $m(\mu^{+}) = 105 \text{ MeV}$
 - 'masseloses' Neutrino: $p_{v} = E_{v} = 29,8 \ MeV$ **LH** Zustand
 - schweres μ^+ : v/c klein

 $p_{\mu} = p_{\nu} = 29,8 \ MeV$

 $rightarrow E_{\mu} = 4 MeV$

- großer Anteil von µ+mit "falscher" (LH) Helizität

Paritätsverletzung: Pion-Zerfall in Ruhe – in e^+

- - Zerfall in **leichtes** Positron mit $m(_{e^+}) = 0.5 \text{ MeV}$
 - 'masseloses' Neutrino:

 $p_{v} = E_{v} \approx 70 \ MeV$ **LH** Zustand

- leichtes e+: v/c groß

 $p_e = p_v \approx 70 \ MeV$

 $rightarrow E_{o} \approx 70 \ MeV$

- kleiner Anteil von e⁺ mit "falscher" (LH) Helizität

• Ausgangszustand $J^{P} = 0^{-}$, im $\pi^{+} - Ruhesytem$ muss gelten: $\Sigma \overrightarrow{p}_{i} = 0$ $\Sigma \overrightarrow{s}_{i} = 0$

Paritätsverletzung beim Pion-Zerfall

des Zerfallskanals $\pi^+ \rightarrow \mu^+ + \nu$ gegenüber $\pi^+ \rightarrow e^+ + \nu$

$$R_{theo} = \frac{\Gamma(\pi^+ \to e^+ + \nu_e)}{\Gamma(\pi^+ \to \mu^+ + \nu_\mu)} = \frac{m_e^2}{m_\mu^2} \cdot \left(\frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2}\right)^2 = 1,275 \cdot 10^{-4}$$

$$R_{\rm exp} = (1,267 \pm 0,023) \cdot 10^{-4}$$

Pionzerfall in Ruhe: maximale Paritätsverletzung

- gute Übereinstimmung von Theorie & Experimente
- Neutrinos ausschließlich LH, Antineutrinos ausschließlich RH

Pionzerfall in Ruhe: man beobachtet und erwartet eine starke Bevorzugung

Paritätsverletzung

• Was passiert mit *P* beim nachfolgenden μ^+ - Zerfall?

- A) die Parität ist nur beim 2-Körper-Zerfall des Pions verletzt, beim 3-Körper Zerfall des Myons jedoch nicht, da andere Kinematik!
- B) die Parität beim Zerfall des μ^+ nur zu einem kleineren Teil verletzt, da die Zerfallsenergie (105 MeV) kleiner ist als beim Zerfall des π^+
- C) die Parität beim Zerfall des μ^+ ist wiederum maximal verletzt, genauso wie beim Zerfall des π^+ (schwache Wechselwirkung)

Leon Lederman & Team

Paritätsverletzung: Zirkularpolarisation Gammas

Team 3: Test der Paritäts-Verletzung über zirkular polarisierte Gammas

VOLUME 104, NUMBER 1

Question of Parity Conservation in Weak Interactions*

T. D. LEE, Columbia University, New York, New York

*erster Leiter des ETP in Karlsruhe später: CERN Generaldirektor ** im März am KIT zum 100 Geburtstag

$\Theta^{+-}\tau^{+}$ Puzzle

Teilchenphysik 22

Circular polarization of gamma rays: Further proof for parity failure in ß-decay, *Phil.Mag.2:17, 710 (1957)*

Herwig Schopper* & Team

...wir messen die Zirkular-**Polarisation von Gammas!**

März 1957

Institut für Experimentelle Teilchenphysik

Paritätsverletzung: Zirkularpolarisation Gammas

Team '22: Test der Paritäts-Verletzung über zirkular polarisierte Gammas

- von longitudinal polarisierten Elektronen zu zirkular polarisierten Gammas*
- Original-Herwig-Schopper-Apparatur nur hier im F- Praktikum

- Paritätsverletzung selber nachmessen!

*eines der von Lee & Yang diskutierten Experimente, das damals als <u>undurchführbar</u> angesehen wurde

CP-VERLETZUNG: SELTSAME KAONEN

Institute of Experimental Particle Physics (ETP)

Q: symmetry CERN Courier

Sacharov-Kriterien für Baryon-Asymmetrie, Teil-II

- Universum zeigt Baryon-Asymmetrie: nur Materie, keine Antimaterie
 - drei Sacharov-Kriterien für eine erfolgreiche Baryogenese:

- 1. Verletzung der **Baryonenzahlerhaltung***
- 2. Verletzung der CP-Invarianz
- 3. kein thermodynamisches Gleichgewicht

Andrej Dmitrijewisch Sacharov (1921-1989) 1967: Baryon-Asymmetrie

Landau: CP – eine Symmetrie der Natur?

Lev Landau postuliert zunächst, dass die CP Symmetrie erhalten ist!

- Landau: Physik invariant, wenn Kombination von P-Operation (Spiegelbild) & Ladungskonjugation C (Teilchen-Antiteilchen) erfolgt: CP-Symmetrie
- Cronin und Fitch (1964): CP-Symmetrie ist verletzt im System der neutralen Kaonen durch die schwache Wechselwirkung!

Seltsame Kaonen: Mischungseffekte

Grundbeobachtung: Teilchen mit identischen Quantenzahlen können

bei der Propagation mischen! Zustände der starken bzw. schwachen Ww.

Zerfall

schwache Wechselwirkung

Neutrale Kaonen: Grundlagen

- - neutrale Kaonen als qq Systeme mit Strangeness

ein sehr wichtiges System in der Teilchenphysik, nicht nur wegen CP!

$K^0 | d\bar{s} \rangle$ Teilchen Antiteilchen $\bar{K}^0 | ds \rangle$

- Masse: 497,6 MeV, instabil mit Lebensdauer τ : ~10⁻¹⁰ s (κ_s), ~ 5[.] 10⁻⁸ s (κ_L)

- Erzeugung über starke Wechselwirkung (Erhaltung der Strangeness)

- Zerfall über schwache Wechselwirkung (Verletzung der Strangeness)

Neutrale Kaonen: Erzeugung

Erzeugung nur über starke Wechselwirkung: Paare mit S = +1 S = -1

- Beispiel: Wechselwirkung eines energetischen Pions mit Proton

Strangeness-erhaltend

$\rightarrow |uds\rangle$ Strangeness S = -1

 $|d\bar{s}\rangle$

Strangeness *S* = +1

Neutrale Kaonen: Zerfall

Zerfall nur über schwache Wechselwirkung: Strangeness $\Delta S = \pm 1$

- Beispiel: Zerfall eines Kaons in 2 Pionen

Strangeness-verletzend

$$\rightarrow | u\bar{d} \rangle \quad \text{Strangeness } s = 0$$

$$\bar{u}d \rangle \quad \text{Strangeness } s = 0$$

Neutrale Kaonen: Zerfall

Zerfall nur über schwache Wechselwirkung: Strangeness $\Delta S = \pm 1$

- Beispiel: Zerfall eines Kaons in 2 Pionen

Neutrale Kaonen: Zerfallseigenschaften

- **Zerfall nur über schwache Wechselwirkung: Strangeness** $\Delta S = \pm 1$
 - Kaonen können (kinematisch) in 2 Pionen oder 3 Pionen zerfallen
 - relativ lange Zerfallszeiten ($\tau \sim 10^{-8}...10^{-10}s$): **Propagationseffekte** wichtig!
 - Strangeness-ändernde Zerfälle $\Delta S = \pm 1$ (Übergänge $s \rightarrow u$ bzw. $\bar{s} \rightarrow \bar{u}$)
- System der neutralen Kaonen besonders interessant
 - ein "ideales Labor" zum Studium der Eigenschaften der schwachen Ww.
 - zentrale Frage: ist die CP-Symmetrie im System neutraler Kaonen erhalten?

Neutrale Kaonen: Mesonen mit Strangeness

- Neutrale Kaonen und P, C und CP-Eigenwerte
 - interne Parität *P*

$$P\left|K^{0}\right\rangle = -\left|K^{0}\right\rangle$$

- Ladungskonjugation C $C(q\bar{q}) = -1^{\ell+s} \min \ell = s = 0$

$$C\left|K^{0}\right\rangle = -\left|\overline{K}^{0}\right\rangle$$

- Parität & Ladungskonjugation CP

$$CP\left|K^{0}\right\rangle = \left|\overline{K}^{0}\right\rangle$$

 $P(q\bar{q}) = -1^{\ell+1} \text{ mit } \ell = 0$

$$P\left|\overline{K}^{0}\right\rangle = -\left|\overline{K}^{0}\right\rangle$$

$$C\left|\overline{K}^{0}\right\rangle = -\left|K^{0}\right\rangle$$

 $K^{0} = \left| d\overline{s} \right\rangle \ \overline{K}^{0} = \left| \overline{ds} \right\rangle$

$K^0 \bar{K}^0$ sind keine c-Eigenzustände

$$CP\left|\overline{K}^{0}\right\rangle = \left|K^{0}\right\rangle$$

 $K^0 \bar{K}^0$ Sind keine cp-Eigenzustände

Neutrale Kaonen: CP-Eigenzustände

- (zunächst rein) formale Definition von CP-Eigenzuständen K₁ K₂
 - bilde Linearkombinationen K₁ K₂ mit definierten CP Eigenwerten

$$\left|K_{1}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle + \left|\overline{K}^{0}\right\rangle\right)$$

- $\kappa_1 \kappa_2$ sind Mischungen von $\kappa^0 \bar{\kappa}^0$, die *cP* – **Eigenzustände** darstellen

$$CP|K_1\rangle = +|K_1\rangle$$
 $CP|K_2\rangle = -|K_2\rangle$ Eigenwerte =+1,

- $\kappa_1 \kappa_2$ sind keine Eigenzustände der starken Wechselwirkung & besitzen auch keine exakt definierten Massen!

$$\left|K_{2}\right\rangle \equiv \frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle - \left|\overline{K}^{0}\right\rangle\right)$$

Mischung von
$$K^0 \overline{K}^0$$

Institute of Experimental Particle Physics (ETP)

Neutrale Kaonen: starke & CP-Eigenzustände

• Kaon-Zustände: K^0 und \bar{K}^0 sind orthogonale Superpositionen von K_1 und K_2

$$\left| K^{0} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| K_{1} \right\rangle + \left| K_{2} \right\rangle \right)$$

- Zustände *k*⁰ und *k*⁰ sind Eigenzustände der starken Wechselwirkung mit wohldefinierten, identischen Massen (CPT-Theorem)
- Zustände κ_1 und κ_2 entstehen bei der **Propagation** von Kaonen durch schwache Wechselwirkung über die Mischung von
 - Zustände mit unterschiedlicher Masse
 - Zustände mit unterschiedlicher Lebensdauer

$$\left|\overline{K}^{0}\right\rangle \equiv \frac{1}{\sqrt{2}}\left(\left|K_{1}\right\rangle - \left|K_{2}\right\rangle\right)$$

Neutrale Kaonen: Mischung bei Propagation

durch schwache Ww. oszilliert

durch starke Ww. erzeugt

gleicher Prozess, anderes Feynman-Diagramm

- schwache Wechselwirkung ("Boxdiagramm") führt zum Phänomen der **Kaon-Oszillationen** $K^0 \Leftrightarrow K^0$

Neutrale Kaonen: Mischung bei Propagation

Neutrale Kaonen: Strangeness-Oszillation bei der Ausbreitung

- schwache Wechselwirkung ("Boxdiagramm") führt zum Phänomen der Kaon-Oszillationen K⁰ \Leftrightarrow K⁰

Neutrale Kaonen: Zerfallsprozesse in Pionen

- - nach einer bestimmten Wegstrecke werden Kaonen durch Prozesse der schwachen Wechselwirkung zerfallen
 - System κ_1 und κ_2 mit definierten **CP-Eigenwerten** kann in ein System aus Pionen zerfallen ($_{2\pi}$ oder $_{3\pi}$ Zerfälle): durch Zerfallskinematik erwartet man 2 unterschiedliche Zerfallszeiten des Kaons
 - Kaonzerfall (M = 497,6 MeV), z.B. in $_{2\pi^{0}}$ (M = $_{2\times 135} MeV$): großer **Phasenraum*** für die Pion-Impulse: \Rightarrow kurzes τ (~ 10⁻¹⁰ s)
 - Kaonzerfall (M = 497,6 MeV), z.B. in $_{3\pi^{0}}$ (M = $_{3\times 135}$ MeV): **langes** _τ (~ 5 × 10⁻⁸ s) kleiner **Phasenraum*** für die Pion-Impulse:

System der oszillierenden Kaonen: wir betrachten nun Zerfallsprozesse

Neutrale Kaonen: Zerfallsprozesse in 2 Pionen

• *CP*– Zustände von 2 Pionen $(\pi^+,$

Parität *P* & *c*-Parität & *cP* eines Systems aus 2 Pionen:

$$P\left|\pi^{+}\pi^{-}\right\rangle = \left(-1\right)^{\ell}\left|\pi^{+}\pi^{-}\right\rangle$$

$$CP \left| \pi^+ \pi^- \right\rangle = +1 \left| \pi^+ \pi^- \right\rangle$$

$$, \pi^{-}) \operatorname{oder} (\pi^{0}, \pi^{0}) : CP = +1$$

$$C\left|\pi^{+}\pi^{-}\right\rangle = \left(-1\right)^{\ell+s}\left|\pi^{+}\pi^{-}\right\rangle$$

$$CP\left|\pi^{0}\pi^{0}\right\rangle = +1\left|\pi^{0}\pi^{0}\right\rangle$$

Neutrale Kaonen: Zerfallsprozesse in 2 Pionen

- - Parität *P* & *c*-Parität & *cP* eines Systems aus **3 Pionen**:

$$CP \left| \pi^{0} \pi^{+} \pi^{-} \right\rangle = -1^{\ell+1} \left| \pi^{0} \pi^{+} \pi^{-} \right\rangle \qquad CP \left| \pi^{0} \pi^{0} \pi^{0} \right\rangle = -1$$

$$CP = 3\pi$$

Teilchenphysik 41

• *CP*- Zustände von 3 Pionen (π^+, π^-, π^0) oder (π^0, π^0, π^0) : *CP* = -1

- folgt aus einer detaillierten Betrachtung zur Zerfallskinematik in 3 Pionen

$$CP\left|\pi^{0}\pi^{0}\pi^{0}\right\rangle = -1\left|\pi^{0}\pi^{0}\pi^{0}\right\rangle$$

Kaonzustände und *CP*

42 Teilchenphysik

Mischung: schwache Wechselwirkung

Strangeness-Oszillationen $\Delta S = 2$ zwei Boxdiagramme

CP- Symmetrie: Eigenzustände von CP CP = +1CP-Invarianz

Kaon-Zerfälle: der Nachweis der CP-Verletzung

- Cronin & Fitch weisen cp-Verletzung im System der neutralen Kaonen nach am AGS*-Beschleuniger des Brookhaven National Laboratory (1964)
- Beobachtung: dominanter Zerfallsmodus $K_I \rightarrow 3 \pi$

Val Fitch

 K_L

*Alternating Gradient Synchrotron

CP– Verletzung bei neutralen Kaonen, nachgefragt

Wieso haben wir den K_{I} Strahl in eine He-Kammer mit geringer Dichte geleitet?

James Cronin

nobelprize

Val Fitch

- A) weil Kaonen $\mathbf{K}_{\mathbf{L}}$ in Materie regenerieren, d.h. über die starke Wechselwirkungen wieder \mathbf{K}^0 und $\mathbf{\bar{K}}^0$ erzeugt werden
- B) weil Kaonen \mathbf{K}_{L} in Materie über Stöße abgelenkt werden und so die komplexe **Rekonstruktion erschweren**
- C) weil die Pionen aus den Zerfällen der Kaonen _K in Materie eingefangen werden

CP– Verletzung bei den Zerfällen von K_I

- Beobachtung: ein kleiner Anteil (~1/500) der K-long mit CP = -1 zerfällt nach langem Flugweg (d ~ 20 m) in 2π mit CP = +1 d.h. CP-Symmetrie ist verletzt

Trennung von kurzlebigen und langlebigen Kaonen f ür die Flugzeit bzw. die mittlere Flugstrecke – nach 20 m gibt es nur noch K-long Zustände

CP – Verletzung im System der neutralen Kaonen

cp-Verletzung bei den Kaonen ist ein sehr kleiner Effekt: kann nicht die beobachtete Baryonen-Asymmetrie im Universum erklären

"for the discovery of violations of fundamental symmetry principles in the decay of neutral K-mesons."

James Cronin

Val Fitch

Katzen

zwei Arten von *CP*– Verletzung: indirekt...

- Indirekte *CP*-Verletzung über die Mischung von K_1 und K_2
 - *CP*-Verletzung bei $K_{L} \rightarrow 2 \pi$ ist "indirekt"
 - da sie entsteht durch kleine Beimischung von K_1 zu K_2 : $\epsilon = 2,23 \times 10^{-3}$

$$\left|K_{L}\right\rangle = \frac{1}{\sqrt{1+\left|\varepsilon\right|^{2}}} \left(\varepsilon \cdot \left|K_{1}\right\rangle + \left|K_{2}\right\rangle\right)$$

$$\left|K_{S}\right\rangle \equiv \frac{1}{\sqrt{1+\left|\varepsilon\right|^{2}}}\left(\left|K_{1}\right\rangle + \varepsilon \cdot \left|K_{2}\right\rangle\right)$$

zwei Arten von *CP*– Verletzung: ... und direkt

- direkte CP- Verletzung am Zerfalls-Vertex
 - die CP Verletzung erfolgt in diesem Falle direkt am Zerfallsvertex $K_2 \rightarrow 2 \pi$
 - die direkte CP-Verletzung ist nochmals wesentlich schwächer (~10⁻⁶) als die indirekte CP-Verletzung (~10⁻³) durch die Oszillationen der neutralen Kaonen

"elektroschwacher Pinguin" von John Ellis (CERN)*

*Master- VL Flavour-Physik

Oszillation von B^0 – Mesonen

- Beobachtung im System der neutralen B⁰ Mesonen
 - an sog. **B-Fabriken** am SLAC

- die gleichen Effekte wie im <u>k</u>-System beobachtet man auch im <u>b</u>-System

Oszillation von B^0 – Mesonen*

Beobachtung im System der neutralen B⁰ – Mesonen

an sog. **B-Fabriken** am Super-KEKB

- die gleichen Effekte wie im <u>k</u>-System beobachtet man auch im <u>B</u>-System

CPT– Theorem

- kombinierten CPT- Transformation

 - *CPT*-Theorem Grundlage der Quantenfeldtheorien
 - Voraussetzungen für *CPT* Invarianz:

Wolfgang Pauli

- Gültigkeit der Lorentz-Invarianz
- Kausalität & Lokalität
- Existenz eines quantenmechanischen Vakuums

Invarianz von *CPT*: physikalische Gesetze bleiben unverändert bei einer

- aufgestellt 1954/55 von Wolfgang Pauli, Gerhart Lüders (& John Bell)

CPT-Invarianz

Moderne Experimentalphysik II - Part II

- 4. Symmetrien und Erhaltungssätze
 - 4.1 Erhaltungszahlen
 - 4.2 Diskrete Symmetrien
 - 4.3 Schlüsselexperimente
 - 4.4 Supersymmetrie

KAPITEL 4.4: SUPERSYMMETRIE

Institute of Experimental Particle Physics (ETP)

Q: welt der Physik, CERN, KIT

Supersymmetrie

Theorie jenseits des Standardmodells (SM): Umwandlung / Symmetrie von Fermionen Bosonen ⇔

Bosonen

symmetrisch

q: SUSY-Operator

55 Teilchenphysik

Spin-Statistik Theorem antisymmetrisch bei Austausch von 2 Teilchen

q: SUSY-Operator

Supersymmetrie: Teilchenspektrum

SUSY: Aufstellung der ersten supersymmetrischen Quantenfeldtheorie durch J. Wess (KIT) & B. Zumino (1973)

- Teilchen im SM erhalten (schwere) supersymmetrische "Superpartner"
- Supersymmetrie wird (auf einer unbekannten Energieskala) gebrochen

Institute of Experimental Particle Physics (ETP)

Q: welt der physik

Supersymmetrie: riesiger Parameterraum

SUSY: alle Wechselwirkungen "treffen" sich bei einer Energieskala* (Grand Unified Theories, GUTs)

- aber: minimales SUSY-Modell mit 105 neuen (unbekannten) physikalischen Parametern!

physik welt der \bigcirc

Supersymmetrie & Dunkle Materie

hypothetische Theorie jenseits des Standardmodells (SM): eine mögliche Erklärung für die kalte Dunkle Materie im Universum* - SUSY liefert eine "natürliche" Erklärung für die Produktion der sog. "kalten" Dunklen Materie

Gauginos

Institute of Experimental Particle Physics (ETP)

Q: welt

Supersymmetrie: experimentelle Tests

SUSY: Teilchen der kalten Dunkle Materie im Universum werden auf der TeV-Massenskala vermutet - intensive experimentelle Suchen nach supersymmetrischen "Superpartnern"*

Suche nach SUSY am LHC

Institute of Experimental Particle Physics (ETP)

. Cham Q: CERN, J

Supersymmetrie: experimentelle Tests

SUSY: Teilchen der kalten Dunkle Materie im Universum werden auf der TeV-Massenskala vermutet - intensive experimentelle Suchen nach supersymmetrischen "Superpartnern"*

Dunkle Materie - Suche (XENON)

Teilchenphysik 60

Institute of Experimental Particle Physics (ETP)

Cham Collab. Q: XENON