

Moderne Experimentalphysik II Teilchenphysik - Vorlesung 14

Prof. Dr. Markus KLUTE (<u>markus.klute@kit.edu</u>), Dr. Roger Wolf (<u>roger.wolf@kit.edu</u>) Institut für Experimentelle Teilchenphysik (ETP)

13.02.2024

Moderne Experimentalphysik II - Part II

6. Neutrinophysik

- 6.1 Nachweis von Neutrinos
- 6.2 Neutrino Oszillation
- 6.3 Neutrino Massenmessung

Projekt Poltergeist: erster Nachweis des Neutrinos

Fred Reines gelingt der lange ersehnter experimenteller Durchbruch

"for the detection of the *neutrino*"

Herr Auge

Fred Reines 1918-1998

3 Teilchenphysik

- Projekt Poltergeist: der erste definitive Nachweis durch Koinzidenztechnik
 - Hanford 1954: erster Neutrinodetektor 'Herr Auge' **300 & Flüssigszintillator mit 90 PMTs!**

Neutrinos: Nachweisprozesse auf MeV-Skala

Institute of Experimental Participles (EPP)

Neutrinos: Nachweisprozesse auf MeV-Skala

die 'klassische' inverse ß-Zerfallsreaktion

 $\bar{v}_e + p \rightarrow n + e^+ \sigma \sim 10^{-41} cm^2$ im MeV-Bereich

Nachweis der 2. Neutrino-Generation v_{μ} am AGS

Lederman, Schwartz & Steinberger auf der Spur des Flavourzustands v_{μ}

- Entwicklung der noch heute verwendeten Technik zur Erzeugung von Neutrinobeams v_{μ}
- p- Strahl trifft auf Target: Zerfall $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- Beobachtung: im v-Strahl werden nur μ^- erzeugt!

"for the neutrino beam and the demonstration of the doublet structure of the leptons through the **discovery of the muon neutrino**"

Leon Lederman, Mel Schwartz, Jack Steinberger

*Alternating Gradient Synchrotronnstitute of Experimental Particle Physics (ETP)

Nachweis der 3. Neutrino-Generation am Fermilab

- Direkter Nachweis des v_r durch das DONUT* Experiment
 - Mesonen mit Charm c- Quarks (D_s)

- **Fermilab**: hochenergetischer (50 GeV) Strahl von v_{τ} aus Zerfällen von

*Direct Observation of NU Tau Institute of Experimental Particle Physics (ETP)

Nachweis der 3. Neutrino-Generation am Fermilab

- **Direkter Nachweis des** v_{τ} **durch das DONUT* Experiment**
 - Nachweis der v_{τ} in 'Sandwich'-Struktur aus Kernemulsion / Edelstahl
 - wichtig: weiteres Detektor-System aus Szintillatoren & Spurdetektoren zum Nachweis der Spuren geladener Teilchen
 - Spursystem identifiziert 'interessante' Ereignisse -- Entwicklung der Emulsion
 - 1997: 4 Signalereignisse aus v_{τ} mit $N_{bg} = (0,35 \pm 0,05), \text{ d.h. } 3,5 \sigma$

 $V_{ au}$

Beschleuniger-Neutrinos

10 Teilchenphysik

Neutrinos aus dem Labor und dem Kosmos

ein breites Energiespektrum von µeV bis zu EeV

- v's als Messengers: Information aus den "verborgenen" **Regionen im Kosmos**
- v's als Messengers: Information über ihre "verborgenen" inneren Eigenschaften – neue Physik jenseits \Box des Standardmodells

Teilchenphysik 11

Neutrinos aus dem Kosmos

- ein breites Energiespektrum von µeV bis zu EeV
- v's als Messengers: Information aus den "verborgenen" Regionen im Kosmos
- v's als Messengers: Information über ihre "verborgenen" inneren Eigenschaften – neue Physik jenseits des Standardmodells

solare Neutrinos

Institute of Experimental Particle Physics (ETP)

 v_e

KAPITEL 6.2 : NEUTRINO OSZILLATIONEN

12 Teilchenphysik

Masseneigenzustände $(v_1, v_2) \neq$ Flavour-Eigenzustände (v_e, v_μ)

2-Flavour-Mischung:

enge Analogie zur CKM Mischung der linkshändigen Quarks

Bruno Pontecorvo

Masseneigenzustände $(v_1, v_2) \neq$ Flavour-Eigenzustände (v_e, v_μ)

Überlagerung von (v_1, v_2) :

Masseneigenzustände $(v_1, v_2) \neq$ Flavour-Eigenzustände (v_e, v_μ)

2-Flavour-Mischung bei Propagation:

Periodische Variation der v_µ Intensität, da Flavour-Oszillationen $v_u \leftrightarrow v_e$

Zeit t

Masseneigenzustände $(v_1, v_2) \neq$ Flavour-Eigenzustände (v_e, v_μ)

Oszillationswahrscheinlichkeit *P*:

- Mischungswinkel *θ*
- Massenparameter $\Delta m^2 = \left| m_1^2 m_2^2 \right|$ mit den beiden Massen

Flugweg L_v

Neutrino-Oszillation: 3-Flavour-Mischungseffekte

Zusammensetzung des Strahls abhängig von L

Leptonische Mischungsmatrix

Matrix 'entkoppelt' wie bei den Quarks in 3 separate Mischungsterme

Mischung 2. & 3.	Mis
v-Generation	\mathbf{v}
ν_{μ} und ν_{τ}	ν

schung 1. & 3. v_e und v_{τ} ve und v_{μ}

Mischung 1. & 2. -Generation v-Generation

Neutrino-Oszillation: solare & atmosphärische v's

große Mischungseffekte bei den solaren v's*

Teilchenphysik 19

*s. Master-VL Astroteilchenphysik-II Teilchen & Sterne

- viele Jahrzehnte: 'solares Neutrinoproblem', d.h. deutliches Defizit an v_e

~ $\frac{1}{3} v_{e}$, ~ $\frac{1}{3} v_{\mu}$, ~ $\frac{1}{3} v_{\tau}$ $E_{\nu} \sim MeV$

Neutrino-Oszillation: solare & atmosphärische v's

maximale Mischungseffekte bei den atmosphärischen v's* - viele Jahrzehnte: 'atmosphärisches Neutrinoproblem', d.h. Flavouranomalie

*s. Master-VL Astroteilchenphysik-II Teilchen & Sternfexperimental Particle Physics (ETP)

v-Oszillationen: Nobelpreis 2015

Implikation – Teil II: erste Physik jenseits des Standardmodells

2015 NOBEL PRIZE IN PHYSICS

Takaaki Kajita and Arthur B. McDonald

Institute of Experimental Analitic lengthysics EEPP)

- direkte, modellunabhängige Messung der Masse des Neutrinos
 - ein 70 m langer Experimentieraufbau am Campus Nord

3 2020 NEUTRINOMASSE Spektrometer WILEY-VCH

- direkte, modellunabhängige Messung der Masse des Neutrinos
 - ein 70 m langer Experimentieraufbau am Campus Nord

Masse des Neutrinos: sehr kleine spektrale Modifikation am Endpunkt E_0

aktuelle Obergrenze, publiziert in Nature Physics: m(v) < 0.8 eV (90%CL)

- basiert auf 7% der erwarteten gesamten Datenmenge - kontinuierliche Verbesserung Signal rel. zu Untergrund

weitere Messungen zu Neutrinos aus dem Big Bang, sterile Neutrinos...

