

Physikalisches Institut

Prof. Dr. H. v. Löhneysen Dr. V. Fritsch

Übungen zur Physik V: Festkörperphysik ${\rm WS}\ 2007/2008$ Übungsblatt 7

Besprechung am 20. Dezember 2007

Aufgabe 7.1: Dispersion im Dielektrikum

Berechnen, skizzieren und diskutieren Sie die Dispersionsrelation $\omega = \omega(k)$ für die Ausbreitung elektromagnetischer Strahlung der Frequenz ω mit Wellenzahlvektor k in einem Ionenkristall mit der Dielektrizitätskonstanten

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_{\infty} - \epsilon_0}{\omega^2 / \omega_T^2 - 1}$$

Hinweis: Betrachten Sie die Bewegungsgleichung einer zweiatomigen linearen Kette

$$\ddot{w} = \frac{e}{\mu}E^{lok} - \frac{2f}{\mu}$$

mit positiven und negativen Ionen im Limes $k\to 0$ mit $\mu=\frac{mM}{m+M}$, der Federkonstante f, der Auslenkungsdifferenz w der beiden Ionen einer Elementarzelle und und dem lokalen elektrischen Feld E^{lok} , das über eine Elementarzelle konstant ist. Benutzen Sie die Clausius-Mossotti-Gleichung in den Grenzfällen $\omega\ll\frac{2f}{\mu}$ und $\omega\gg\frac{2f}{\mu}$.

Aufgabe 7.2: Drude-Modell

- a) Zeigen Sie mit Hilfe der Drude-Theorie, dass bei einem Strom von Ladungen im elektrischen Feld \vec{E} ein Elektron an das Gitter die Energie $(eE\tau)^2/m$ pro Stoß (gemittelt über mehrere Stöße) abgibt.
- b) Zeigen Sie, dass damit die gesamte Energieabgabe pro Zeit- und Volumeneinheit

$$\left(\frac{ne^2\tau}{m}\right) \cdot E^2 = \sigma \cdot E^2$$

beträgt.

c) Zeigen Sie, dass damit die erzeugte Joulesche Wärme in einem Draht $P = I^2R$ ist. R ist der Widerstand des Drahtes und I die Stromstärke.

Aufgabe 7.3: Dielektrizitätskonstante des freien Elektronengases

- a) Leiten Sie einen Ausdruck für die Frequenzabhängigkeit der Dielektrizitätskonstante des freien Elektronengases aus den Maxwell-Gleichungen her. Diskutieren Sie die Gemeinsamkeiten und Unterschiede.
- b) Berechnen Sie mit Hilfe des Verhältnisses r_s/a_0 (r_s : Radius einer Kugel deren Volumen gleich dem Volumen pro freien Leitungselektrons ist; a_0 : Bohrscher Radius) die Plasmafrequenzen der Erdalkalimetalle.

Element	r_s/a_0
Li	3.25
Na	3.93
K	4.86
Rb	5.20
Cs	6.62

c) Vergleichen Sie das Ergebnis mit der Dielektrizitätskonstanten eines Ionenkristalls (vgl. Aufgabe 7.1).