
Übungen zur Modernen Experimentalphysik II Festkörperphysik WS 2015/2016

Übungsblatt 6 · Besprechung am 3. Dezember 2015

http://www.phi.kit.edu/exphys2.php

Aufgabe 17

Eine lineare Kette mit einer Basis s aus zwei identischen Atomen der Masse M habe eine Gitterkonstante a. Der Gleichgewichtsabstand b der beiden Basisatome sei kleiner als die halbe Gitterkonstante, b < a/2. Zwischen den Basisatomen wirke eine Federkraft mit Kraftkonstante D_1 und zwischen nebeneinander liegenden Atomen benachbarter Basen eine Federkraft mit Kraftkonstante D_2 . Das linke Atom der Basis s habe die Auslenkung u_s aus der Ruhelage, das rechte Atom die Auslenkung v_s .

Stellen Sie die Bewegungsgleichungen für die beiden Atome der Basis s auf und bestimmen Sie mit Hilfe eines Lösungsansatzes zweier propagierender Wellen die Dispersionsrelation $\omega(k)$ der longitudinalen akustischen und optischen Phononen. Skizzieren Sie die resultierenden Dispersionszweige in der 1. Brillouinzone für $D_1/M=50s^{-2}$ und $D_2/M=25s^{-2}$. (5 Punkte)

Aufgabe 18

Zeigen Sie anhand von Symmetriegründen, dass die zwei transversalen Moden im fcc-Gitter die gleiche Frequenz haben, also entartet sind, wenn der Wellenvektor \vec{k} parallel zur [100]- oder zur [111]-Richtung ist. (2.5 Punkte)

Aufgabe 19

Zeigen Sie, dass sich für große Wellenlängen $(\lambda \gg a)$ die Bewegungsgleichung der einatomigen linearen Kette

$$m\ddot{u}_n = -D(2u_n - u_{n-1} - u_{n+1})$$

zur Wellengleichung des elastischen Kontinuums vereinfachen lässt:

$$\partial^2 u/\partial t^2 = c_{Schall}^2 \cdot \partial^2 u/\partial x^2.$$

Hinweis: Benutzen Sie eine Taylorentwicklung um u_n . (2.5 Punkte)