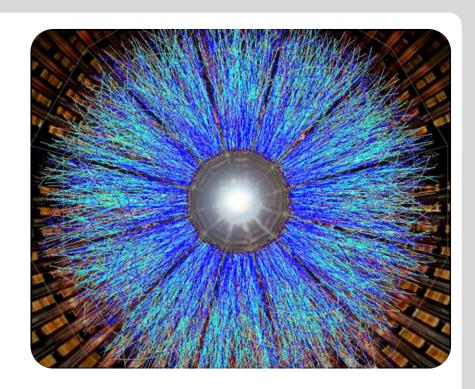


Kerne und Teilchen

Physik VI

Vorlesung # 02 15.4.2010



Guido Drexlin, Institut für Experimentelle Kernphysik

Eigenschaften stabiler Kerne

- Wirkungsquerschnitt: Definition, totaler Wq. σ_{tot}
- differentieller Wq. d σ /d Ω
- Mott-Streuung
- Formfaktor F(q²) &
 Ladungsverteilung ρ(r) von Kernen

Einheiten

Kern- & Teilchenphysik: spezielle Einheiten

natürliche Einheiten ħ = c = 1	
Masse	1 GeV
Länge	$1 \text{ GeV}^{-1} = 0.1975 \text{ fm}$
Zeit	$1 \text{ GeV}^{-1} = 6.59 \cdot 10^{-25} \text{ s}$

Masse: GeV/c² Impuls: GeV/c

$$E^2 = p^2c^2 + m^2c^4$$

Atomphysik

 α : Feinstrukturkonstante = 1/137

m_e: Elektronmasse = 0.511 MeV

 $r_{Atom} \sim 10^{-10} \text{ m}$ $\rho_{Atom} \sim 10^3 \text{ kg/m}^3$

klass. Wechselwirkung unbegrenzter Reichweite: elektromagnet. Feld

Kernphysik

 α_s : starke Kopplungskonstante = 0.2

m_N: Nukleonmasse = 939 MeV

 $r_{Kern} = (2-8) \cdot 10^{-15} \text{ m}$

 $\rho_{Kern} \sim 10^{17} \text{ kg/m}^3$

fm

neue Wechselwirkungen begrenzter Reichweite: starke & schwache Ww.

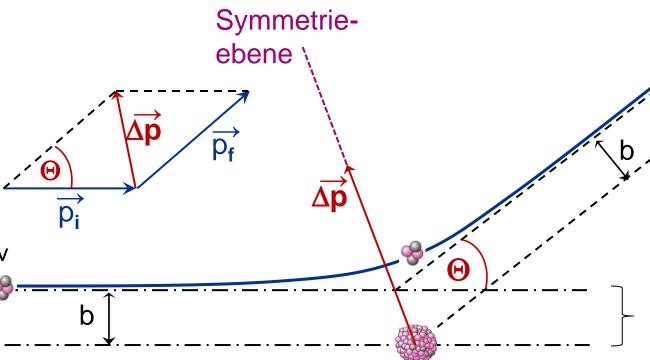
Rutherford-Streuung

Rutherford-Streuung:
 elastische Streuung eines α-Teilchens am Coulomb-Feld eines
 schweren Au-Kerns (keine Rückstoß-Energie) ⇒ Impulsänderung (-transfer) Δp

$$\tan(\frac{\theta}{2}) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{z \cdot Z}{v^2} \cdot \frac{1}{b}$$

Relation zwischen Streuwinkel θ und Streuparameter b

für feste Energie E des α-Teilchens ist der Streu-Winkel θ nur abhängig vom Stoßparameter b



kleiner Stoßparameter:

$$b \rightarrow 0 \Rightarrow \theta \rightarrow \pi$$

großer Stoßparameter:

$$b \rightarrow \infty \Rightarrow \theta \rightarrow 0$$

Stoßparameter b [∞,0]

= asymptotischer Abstand des α 's

Parameter eines Streuexperiments

Rutherford-Experiment ist ein typischer Aufbau eines Streuexperiments:
 ein Teilchenstrahl trifft senkrecht auf ein dünnes Target ('fixed target' Aufbau)

einfallender Teilchenstrahl

mit

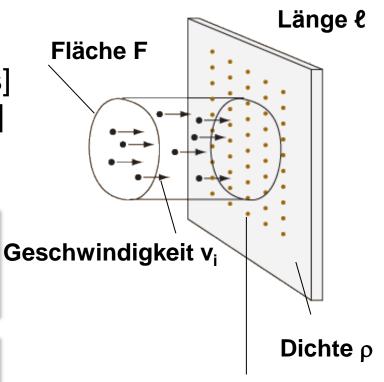
- Querschnitt F [cm²]
- Geschwindigkeit v_i [cm/s]
- Anzahldichte n_{Strahl} [cm⁻³]

Flussdichte [cm⁻² s⁻¹]

$$J = n_{Strahl} \cdot v_i$$

Intensität / Fluss I [s⁻¹]

$$I = J \cdot F = F \cdot n_{Strahl} \cdot v_i$$

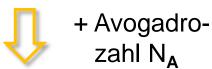


Fläche σ eines Targetkerns: totaler Wirkungsquerschnitt

Targetmaterial

mit

- Länge ℓ [cm]
- Dichte ρ [g/cm³]
- Atommasse M_A[u]



Targetkerne pro Einheitsvolumen [cm⁻³]

 $n_{\text{Target}} = \rho \cdot N_{\text{A}} / M_{\text{A}}$

Targetkerne im Strahl

 $N_{Target} = n_{Target} \cdot F \cdot \ell$

Totaler Wirkungsquerschnitt

Rate W_r an Streuereignissen [s⁻¹] ~ totalem Wirkungsquerschnitt σ_{tot}

$$W_r = J \cdot N_{Target} \cdot \sigma_{tot} = I \cdot n_{Target} \cdot \ell \cdot \sigma_{tot}$$

Strahl: Target: Kerne Strahl:

Target: Targetkerne pro Einheitsvolumen (cm³)

Flussdichte im Strahl Intensität x Targetlänge

(Stromdichte)

$$[s^{-1}] = [cm^{-2} \cdot s^{-1}] \cdot \sigma_{tot}$$

$$[s^{\text{-1}}] = [s^{\text{-1}} \cdot \text{cm}^{\text{-3}} \cdot \text{cm}] \cdot \sigma_{tot}$$

$$\sigma_{tot} = [cm^2]$$

der Wirkungsquerschnitt hat die Dimension einer Fläche

σ_{tot} ist ein Mass für Wahrscheinlichkeit einer (Streu-)Reaktion

$$\sigma_{tot} = \frac{Zahl \ der \ Reaktionen \ pro \ Sekunde \ pro \ Streuzentrum \ (Targetkern)}{Zahl \ einfallender \ Teilchen \ pro \ Sekunde \ pro \ cm2 \ (Fluss-/Stromdichte)$$

Wirkungsquerschnitt als Streufläche

 $R_0 = 1.2 \text{ fm A}^{1/3}$

Einheit des Wirkungsquerschnitts σ_{tot} :

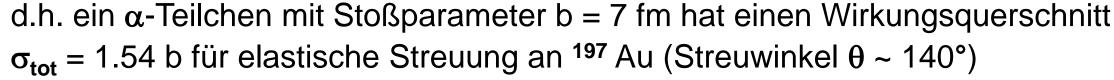
```
1 barn = 1 b = 10^{-24} cm<sup>2</sup> [barn = Scheunentor]
1 mb = 10^{-27} cm<sup>2</sup>, Teilchenphysik: 1 pb = 10^{-36} cm<sup>2</sup>, 1 fb = 10^{-39} cm<sup>2</sup>
```

- σ_{tot} stellt eine effektive Fläche dar für Streuprozesse/Wechselwirkungen geometrischer Streuquerschnitt: $\sigma_{geom} = \pi \cdot (R^2 + r^2)$
- Beispiel für Streuung eines 6 MeV α-Teilchens an 197 Au: R (197 Au) = 7 fm = $7 \cdot 10^{-15}$ m

 $A = \pi r^2 = 154 \text{ fm}^2 = 1.54 \cdot 10^{-28} \text{ m}^2$

geometrischer Streuquerschnitt $\sigma_{tot,geom} = 1.54$ b

$$[1 barn = 100 fm^2]$$

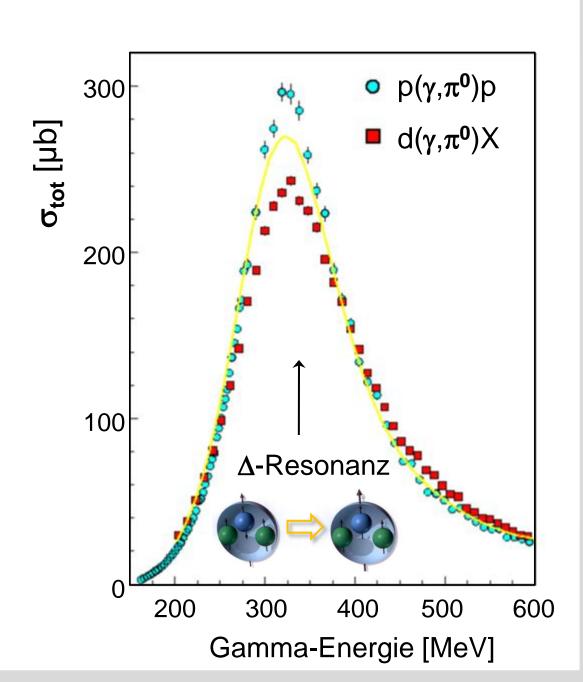


- für Neutronen-Reaktionen wird auch beobachtet: $\sigma_{tot} > \sigma_{geom}$
- für Niederenergie-Neutrino-Reaktionen an Kernen $\sigma_{tot} \sim 10^{-18}$ b ($\sim 10^{-6}$ pb)

15.4.2010

Wirkungsquerschnitt - Beispiele

- **u** zur Messung von σ_{tot} erforderlich:
 - Zahl einlaufender Teilchen/s
 - Messdauer t
 - Detektor-Raumwinkelelement d Ω
 - Streuwinkel θ
 - Zahl gestreuter Teilchen
 - Targetdicke
 - Targetdichte
 - Kernmasse der Targetatome
 - Avogadrozahl
- Energieabhängigkeit von σ_{tot} kann z.B. zum Nachweis neuer Teilchen (Resonanzen) führen, hier bei Reaktion γ + p → π⁰ + p

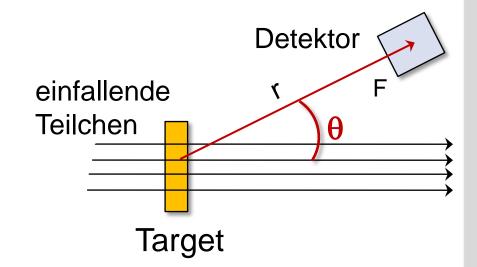


differentieller Wirkungsquerschnitt

differentieller Wirkungsquerschnitt d σ /d Ω

ein Detektor(-element) deckt oft nur einen sehr kleinen Teil des gesamten Raumwinkels ab (d.h. ein Raumwinkel-Element dΩ = F/r² ab): der Detektor misst dann den differentiellen Wirkungsquerschnitt dσ/dΩ:

15.4.2010



 $\frac{d\sigma}{d\Omega} = \frac{\text{Zahl der nach d}\Omega \text{ gestreuten Teilchen pro Sekunde pro Streuzentrum}}{\text{Zahl einfallender Teilchen pro Sekunde pro cm² (Fluss-/Stromdichte)}}$

Einheit des differentiellen Wirkungsquerschnitts: [cm²/sr bzw. b/sr] gesamter Raumwinkel um Target: d Ω = 4 π sr i.a. gilt d σ /d Ω = d σ /d Ω (θ, ϕ), diff. Wq. ist abhängig von Polar- & Azimuthwinkel oft gilt azimutale Symmetrie, d.h. d σ /d Ω = d σ /d Ω (θ)

differentieller Wirkungsquerschnitt

ein paralleler Teilchenstrahl (z.B. α -'s) fliegt in einem dünnen Target durch Kreisring mit der Fläche $d\sigma = 2\pi \cdot b \cdot |db|$ (mit Streuparametern [b, b+db]) werde durch elastische Streuprozesse in den Raumwinkel d Ω gestreut (mit Streuwinkeln [θ , θ -d θ])

wichtig: keine Mehrfachstreuungen, keine Abnahme des Flusses im Target

$$d\sigma = 2\pi \cdot b \cdot |db|$$

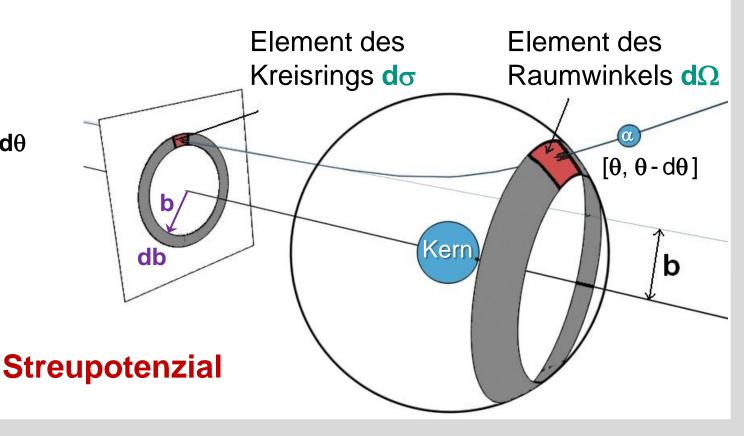
$$d\sigma = \frac{d\sigma}{d\Omega} \cdot d\Omega$$

 $d\Omega = 2\pi \sin \theta d\theta$

$$d\sigma = \frac{d\sigma}{d\Omega} \cdot 2\pi \cdot \sin\theta \ d\theta$$

$$\frac{d\sigma}{d\Omega}(\theta) = (-)\frac{b}{\sin\theta} \cdot \frac{db}{d\theta}$$

θ nimmt zu, wenn b abnimmt



differentieller Wirkungsquerschnitt

differentieller Wirkungsquerschnitt $d\sigma/d\Omega$: beschreibt die Winkelverteilung gestreuter Teilchen in den Raumwinkel d Ω

$$\left(\frac{dW_r}{d\Omega}\right) \cdot d\Omega = I \cdot n_{\text{Target}} \cdot \ell \cdot \frac{d\sigma}{d\Omega} \cdot d\Omega$$

$$\left(\frac{dW_r}{d\Omega}\right) = I \cdot n_{\text{Target}} \cdot \ell \cdot \frac{d\sigma}{d\Omega}$$

Streurate ~ differentieller Wirkungsquerschnitt

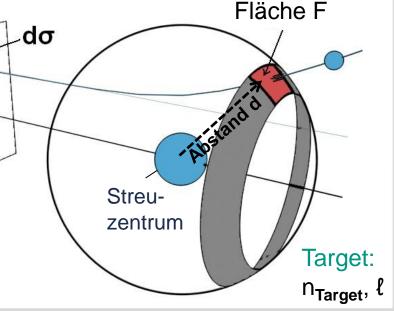
Strahlintensität

Targetkerne pro cm³ x Länge

Rate R gestreuter Teilchen in einem Detektor mit Fläche F im Abstand d:

$$R = I \cdot n_{\text{Target}} \cdot \ell \cdot \frac{d\sigma}{d\Omega} \cdot \frac{F}{d^2}$$

■ diff. Wirkungsquerschnitt dσ/dΩ für eine elastische Streuung am Coulombfeld in den Raumwinkel d Ω ergibt sich aus gemessener Winkelverteilung ($d\cos\theta$) der gestreuten Teilchen



Rutherford-Streuung: $d\sigma/d\Omega$

für die Rutherfordstreuung am konservativen Coulombfeld erhält man:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \left(\frac{1}{4\pi\varepsilon_0} \cdot \frac{z \cdot Z \cdot e^2}{4E_{kin}}\right)^2 \cdot \frac{1}{\sin^4(\Theta/2)} \quad \text{mit } E_{kin} = \frac{1}{2} \text{ m} \cdot \text{v}^2$$

mit den natürlichen Einheiten $\hbar = c = 1$ erhält man:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \left(\frac{z \cdot Z \cdot \alpha}{4E_{kin}}\right)^2 \cdot \frac{1}{\sin^4(\Theta/2)}$$
 mit Feinstrukturkonstante $\alpha = 1/137$

mit dimensionsbehafteten Einheiten [E in MeV] erhält man:

$$\frac{d\sigma}{d\Omega}[b] \approx 1.3 \cdot 10^{-3} \cdot \left(\frac{z \cdot Z}{E_0[MeV]}\right)^2 \cdot \frac{1}{\sin^4(\theta/2)}$$

divergenter Verlauf $d\sigma/d\Omega \rightarrow \infty$ für $\theta \rightarrow 0$: Stoßparameter b wird größer als Elektronenhülle (Screening des Potenzials), bei vollständig ionisiertem Kern: Divergenz ist Effekt der elektromagnet. Ww. mit langreichweitigem V(r) ~ 1/r

Wirkungsquerschnitt σ_{tot} & Luminosität

der totale Wirkungsquerschnitt σ_{tot} ergibt sich aus der Integration von d σ /d Ω :

$$\sigma_{tot} = \int_0^{2\pi} d\Phi \cdot \int_{-1}^1 d\cos\theta \left(\frac{d\sigma(\theta, \phi)}{d\Omega} \right)$$

Φ: Azimutwinkel, θ: Streuwinkel

für Streuungen mit einer azimutalen Symmetrie gilt:

$$\sigma_{tot} = 2\pi \cdot \int_0^{\pi} d\theta \cdot \sin\theta \cdot \left(\frac{d\sigma(\theta)}{d\Omega}\right)$$

■ Teilchenphysik: Zusammenfassung von Strahl- & Target-Eigenschaften: Luminosität

$$L = J \cdot N_{Target}$$

$$W_r = L \cdot \sigma_{tot}$$

$$N = \sigma_{tot} \cdot \int L dt$$

Einheit [cm⁻² s⁻¹]

Rate [s⁻¹]

integrierte Luminosität

bisher: elementare Streuprozesse an punktförmigen Objekten ohne Spin

jetzt: Streuprozesse an ausgedehnten Objekten

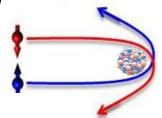
13 15.4.2010 G. Drexlin – VL02 KIT-IEKP

2.2 Kernradien und Formfaktoren

Rutherfordstreuung – elastische, nicht-relativistische Streuung von α -Teilchen (S=0) am Coulombfeld des punktförmigen Kerns

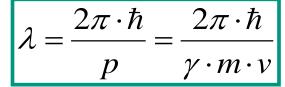
bei höheren Energien E_{kin} bzw. anderen Teilchenarten mit Spin (e, μ, p, ν ...) entstehen Abweichungen durch:

- relativistische Effekte
- Effekte der starken Wechselwirkung (anderes Potenzialverhalten)
- endliche Ausdehnung des Kerns: Ladungsverteilung ρ(r)
- interner Spin des Projektils (Dirac-Gl.)



Mott-Streuung + Formfaktoren

de-Broglie Wellenlänge



Nevill F. Mott (1905–1996)

de Broglie Wellenlänge λ des Projektils $\lambda \sim \text{Kernradius R} (1 \text{ fm}^{-1} = 200 \text{ MeV/c})$

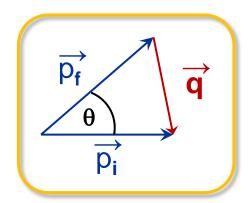
Impulsübertrag q

Definition für den Impulsübertrag q bei einer elastischen Streuung:

$$\vec{q} = \vec{p}_i - \vec{p}_f$$

Betrag des Impulstransfers $q = |\vec{q}|$:

$$q^2 = p_i^2 + p_f^2 - 2 \cdot p_i \cdot p_f \cdot \cos \theta$$



ohne Kernrückstoß gilt $p_i = p_f = p$

$$q^{2} = 2 \cdot p^{2} \cdot (1 - \cos \theta) = 4 \cdot p^{2} \cdot \sin^{2} \frac{\theta}{2}$$
 q = 2 p · sin (\theta/2)

$$q = 2 p \cdot \sin(\theta/2)$$

damit nochmals die nichtrelativistische Rutherfordstreuung:

$$\frac{d\sigma}{d\Omega} = (2 \cdot m_e \cdot Z \cdot \alpha)^2 \cdot \frac{1}{q^4} \qquad \text{mit } \mathsf{E}_{kin} = \mathsf{p^2}/2 \,\mathsf{m_e} \qquad \qquad \mathsf{d}\sigma/\mathsf{d}\Omega \sim 1/\mathsf{q^4}$$

mit
$$E_{kin} = p^2/2 m_e$$

~ (Photonpropagator $1/q^2$)²

Mottstreuung

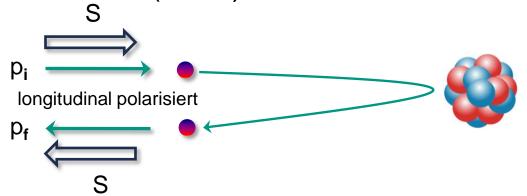
Mott-Streuquerschnitt für relativistische Projektile mit Spin (kein Rückstoß):

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \left(1 - \beta^2 \sin^2 \frac{\theta}{2}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \cos^2 \left(\frac{\theta}{2}\right)$$

für $\mathbb{S} \to 1$

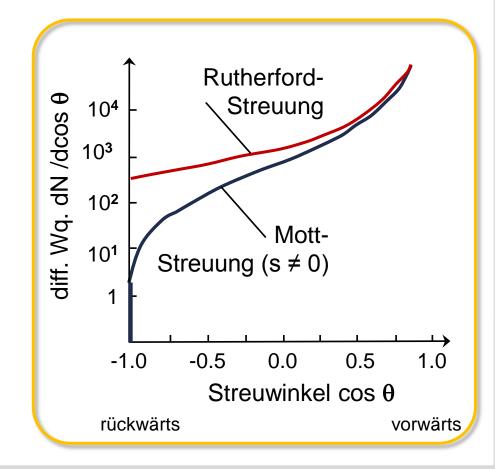
berücksichtigt Spin-Effekte

Beispiel: Rückwärtsstreuung eines e $(s = \frac{1}{2})$ bei zentralem Stoß ($\ell = 0$)



Elektronspin müsste umklappen (Spin-Flip)

→ Rückwärtsstreuung stark unterdrückt



Formfaktor F(q)

 Berücksichtigung der endlichen Kernausdehnung, d.h. der ausgedehnten Ladungsverteilung ρ(r) der Protonen im Kern, durch den Formfaktor F(q)

Born'sche Näherung:

Beugung einer einfallenden ebene Welle an einer Scheibe

φ(r)

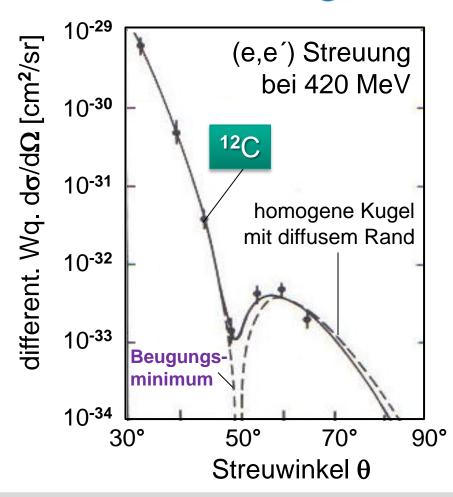
Formfaktor $F(q^2)$ = Fourier-Transformierte der Ladungsverteilung $\rho(r)$

$$F(q^{2}) = \int \rho(r) \cdot e^{i\vec{q} \cdot \vec{r}} d^{3}\vec{r}$$
 für Kerne ist F(q²) eine oszillierende Funktion

$$mit \quad \int \rho(r) \, d^3 \vec{r} = 1$$

Modifikation des differentiellen Mott-Wirkungsquerschnitts

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{exp.}} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left|F(q^2)\right|^2$$



Formfaktor F(q)

KIT-IEKP

Formfaktoren sind wichtig ab einem Impulstransfer q ~ 1/R, d.h. q ~ 200 MeV/c

Beispiele für Ladungsverteilungen $\rho(r)$ & zugehörige Formfaktoren $F(q^2)$

punktförmig $\delta(r)$

$$\rho(r) = \frac{1}{4\pi} \cdot \delta(\vec{r}) \implies F(q^2) = 1$$

weit entfernte Flugbahnen, Kern erscheint punktförmig, keine Beeinflussung

homogene Kugel

18

a = Kernradius

$$\rho(r) = \rho_0 = \frac{3}{4\pi} \cdot \frac{1}{a^3} \implies F(q^2) = \frac{3}{(aq)^3} \cdot [\sin(aq) - aq \cdot \cos(aq)]$$

oszillierender Formfaktor

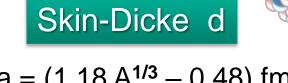
aus den Beugungsminima kann die Größe des Kerns bestimmt werden

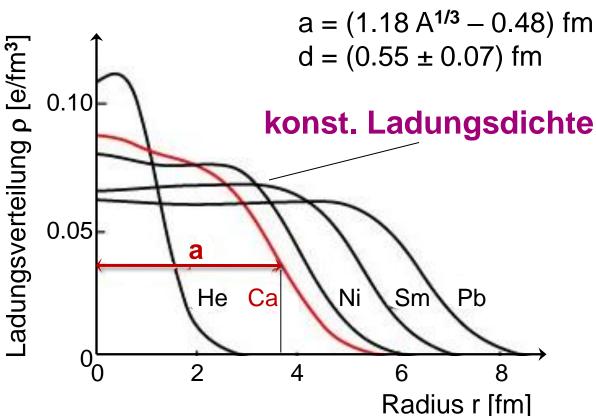
Kernladungsverteilungen

■ Anpassung von $\rho(r)$ an experimentelle Streudaten $(d\sigma/d\Omega)_{exp}$ ergibt die Saxon-Woods Verteilung für ausgedehnte Kerne:

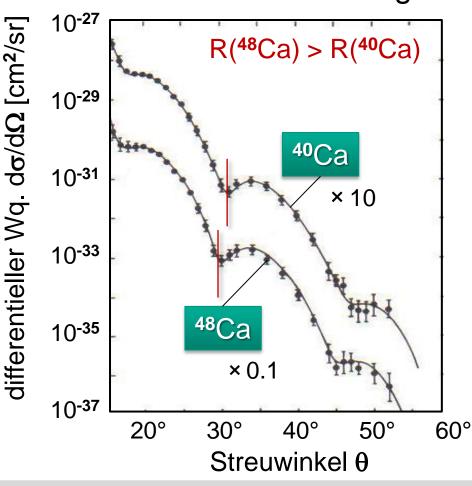
$$\rho(r) = \frac{\rho_0}{1 + e^{(r-a)/d}}$$

Kernradius a





Isotopeneffekt von a in der Elektronstreuung



Ladungsverteilung & Formfaktor

Ladungsverteilung $\rho(r)$

Formfaktor |F(q2)|

punktförmig

$$\rho(\mathbf{r}) = \delta(\mathbf{r})/4\pi$$

exponentiell

 $\rho(r) \sim \exp(-r/a)$

gaußförmig

 $\rho(r) \sim a^{-3} \exp(-r^2/2a^2)$

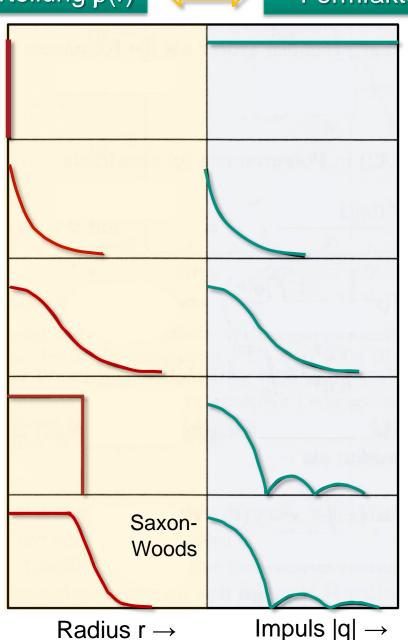
homogene Kugel

$$\rho(r) = \text{const. } r < R$$

 $\rho(r) = 0 \qquad r \ge R$

Kugel mit diffusem Rand

$$\rho(r) = r_0 / (1 + \exp((r-R)/d))$$



konstant

 $F(q^2) = 1$

Elektron

Dipol

 $F(q^2) = 1/(1 + a^2q^2)^2$

Proton

gaußförmig

 $F(q^2) = \exp(-\frac{1}{2} \cdot a^2 q^2)$

Lithium-6

oszillierend

 $F(q^2) \sim [\sin(Rq) - R \cdot q \cos(Rq)]$

verwaschene Oszillation

Kalzium-40