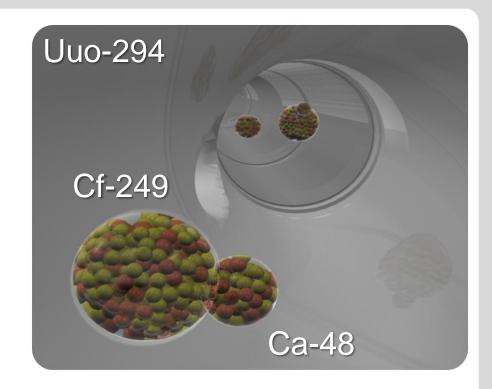


Kerne und Teilchen

Physik VI

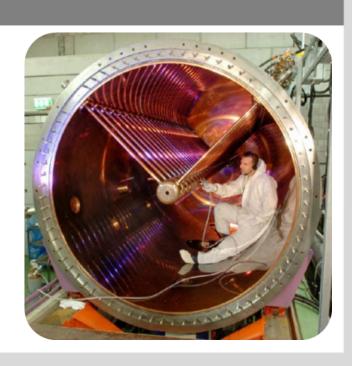
Vorlesung # 03 20.4.2010



Guido Drexlin, Institut für Experimentelle Kernphysik

Eigenschaften stabiler Kerne

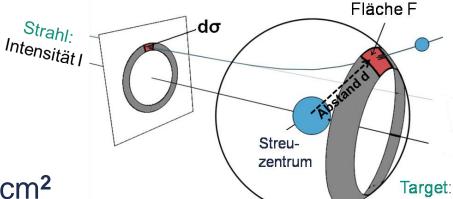
- Kernmodelle: Überblick
- Kernmassen & Bindungsenergien/Nukleon
- Tröpfchenmodell
- Stabilitätstal & Massenparabeln
- superschwere Kerne
- Fermigasmodell



totaler & differenzieller Wirkungsquerschnitt

σ_{tot} ist ein Mass für Wahrscheinlichkeit einer (Streu-)Reaktion

$$\sigma_{tot} = \frac{W_r}{J \cdot N_{Target}}$$
 Strahl: Target: Kerne N_{Target} im Strahl (Stromdichte)



Einheit des Wirkungsquerschnitts σ_{tot} :

1 barn =
$$1 b = 10^{-24} cm^2$$

1 mb = 10^{-27} cm², 1 pb = 10^{-36} cm², 1 fb = 10^{-39} cm²

 $d\sigma/d\Omega$ ist ein Mass für die Wahrscheinlichkeit einer (Streu-)Reaktion in den Raumwinkel d Ω

$$\frac{d\sigma}{d\Omega} = \frac{dW_r/d\Omega}{I \cdot n_{\text{Target}} \cdot \ell}$$

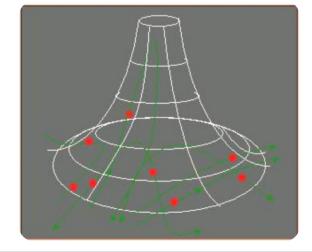
Strahl: Target: Kerne pro

Strahl: raigett Rome,
Intensität I Einheitsvolumen x Länge

$$\sigma_{tot} = 2\pi \cdot \int_0^{\pi} d\theta \cdot \sin\theta \cdot \left(\frac{d\sigma(\theta)}{d\Omega}\right)$$

für azimutale Symmetrie

felderzeugendes Coulomb-Potenzial



n_{Target}, {

Mott-Streuquerschnitt & Formfaktor F(q)

■ bei der Streuung von Teilchen mit Spin ($S = \frac{1}{2}$ wie z.B. Elektronen, Protonen, Neutrinos) ergibt sich beim Mott-Streuquerschnitt eine Unterdrückung der Rückwärtsstreuung bei $\theta = 180^{\circ}$ (cos $\theta = -1$)

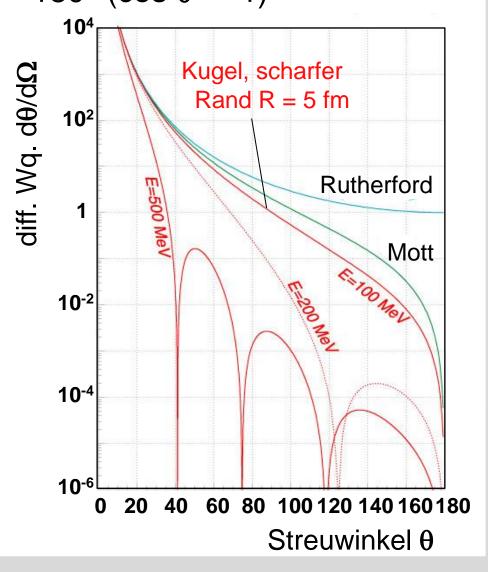
$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \cos^2\left(\frac{\theta}{2}\right)$$

bei der Streuung an ausgedehnten Kernen ergeben sich Beugungseffekte, parametrisiert durch Formfaktor F(q²)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{exp.}} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left|F(q^2)\right|^2$$

$$F(q^2) = \int \rho(r) \cdot e^{i\vec{q}\cdot\vec{r}} d^3\vec{r}$$

Formfaktor $F(q^2)$ = Fourier-Transformierte der Ladungsverteilung $\rho(r)$ des Kerns



Kernladungsverteilungen

■ Anpassung von $\rho(r)$ an experimentelle Streudaten $(d\sigma/d\Omega)_{exp}$ ergibt Saxon-Woods Verteilung für ausgedehnte Kerne

$$\rho(r) = \frac{\rho_0}{1 + e^{(r-a)/d}}$$

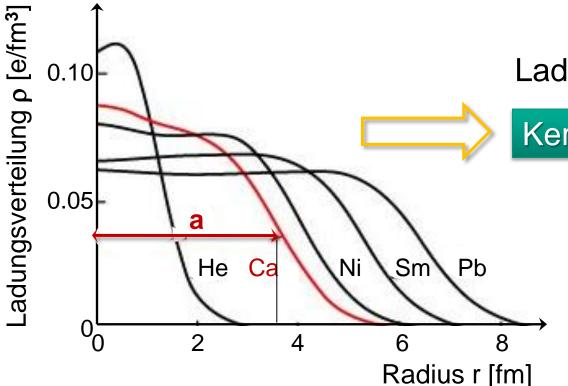
Kernradius a

Skin-Dicke d

$$a = (1.18 A^{1/3} - 0.48) \text{ fm}$$

$$d = (0.55 \pm 0.07) \text{ fm}$$

$$\rho_0 = (0.06 - 0.08) \text{ e/fm}^3$$



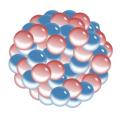
Ladungsverteilung bei kleinem r ~ konstant

Kernmaterie ist inkompressibel

Dichte der Nukleonen

 $\rho_{\text{Nukl}} \approx 0.17 \text{ Nukleonen/fm}^3$

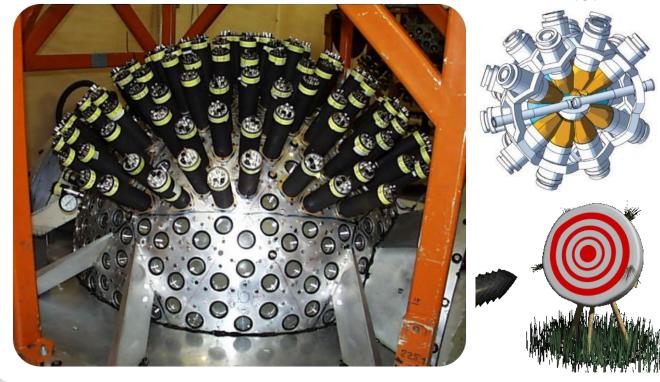
Dichte von Kernmaterie $\rho_{Kern} \approx 10^{17} \text{ kg/m}^3$



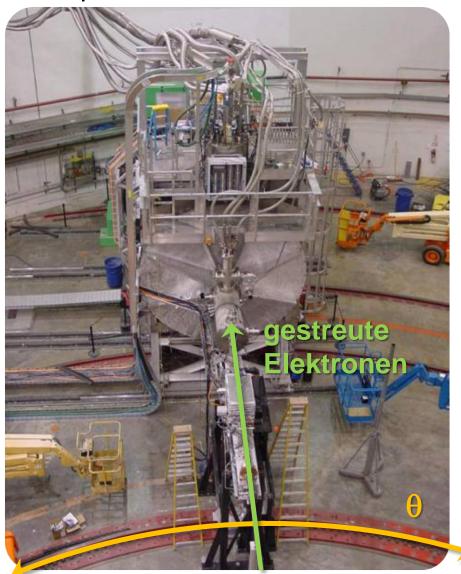
Experimente zur Messung von σ_{tot} & $d\sigma/d\Omega$

die Geometrie einer experimentellen Anordnung wird entsprechend ihrer physikalischen Aufgabe optimiert: 4 π Geometrie: Target wird praktisch vollständig vom Detektor umschlossen

 4π Gamma-Detektoren zur Messung von σ_{tot}



verfahrbahres Elektronspektrometer für d σ /d Ω



Target

2.3 Kernmodelle

Kerne sind komplexe Vielteilchensysteme von wechselwirkenden Nukleonen: eine universell gültige Theorie (z.B. auf der Basis einer Quantentheorie wie der QCD), die alle Kerneigenschaften beschreibt, existiert bisher nicht
 Entwicklung phänomenologischer Modelle für bestimmte Eigenschaften

Tröpfchenmodell

Kern in enger Analogie zu geladenem Flüssigkeitstropfen (quasi-klassisch), Nukleonen bewegen sich stark korreliert in inkompressibler Flüssigkeit

Fermigasmodell

Nukleonen bewegen sich unabhängig voneinander in einem resultierenden Kernpotenzial, Potenzialtiefe aus der Quantenstatistik eines Fermigases

Schalenmodell

Nukleonen bewegen sich voll quantenmechanisch (Schrödinger-Gleichung), Potenzial mit starkem Spin-Bahn-Term, \$\omega\$ magische Zahlen, Spin, Parität

20.4.2010 G. Drexlin – VL03 KIT-IEKP

Kernmodelle und Kerneigenschaften

Kernmodelle sollten eine Vielzahl von Kerneigenschaften beschreiben

Kernradien

Kernmaterie - konstante Dichte $\rho = 10^{17} \text{ kg/m}^3$, R = 1.2 fm • A^{1/3}

Kernmasse & Bindungsenergien

kontante Bindungsenergie pro Nukleon B/A ~ 8 MeV, gesättigte Kernkräfte

Stabilitätsverhalten

stabile Kerne- für kleines A: N = Z, für großes A: N > Z, Spaltung, α , β , γ -Zerfall

Spin und Parität

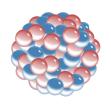
Kernniveaus mit definiertem Spin & Parität JP= (0+, 2+, 4+, 0-, 1-, ...), Mischung

Kernanregung und Kerndeformation

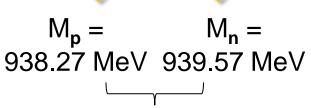
Lage von angeregten Zustände, kollektive Anregungen & Kerndeformation

Kernmassen

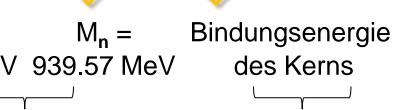
Kernmasse
$$M(Z,A) = Z \cdot M_p + N \cdot M_n - B(Z,A)$$



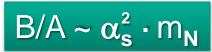
$$\hat{\mathbf{U}}$$
 $\hat{\mathbf{U}}$



nahezu identisch



klein, ~ 1% der **Nukleonenmasse**



~ 5 MeV

 α_s : Kopplung der starken Wechselwirkung (= 0.15)

Kerne mit gleicher Protonenzahl

Z, $124,126,128,129,130,131,132,134,136 \times e$

Kerne mit gleicher Neutronenzahl

N, ${}^{36}S_{20}$, ${}^{37}CI_{20}$, ${}^{38}Ar_{20}$, ${}^{39}K_{20}$

Isobare

Kerne mit gleicher Nukleonenzahl A, ¹³⁸₅₆Ba, ¹³⁸₅₇La, ¹³⁸₅₈Ce

Atommasse $\mathcal{M}(Z,A) = M(Z,A) + Z \cdot m_e - B_e$ $m_e = 0.511$ MeV, $B_e = e^-$ Bindungsenergie

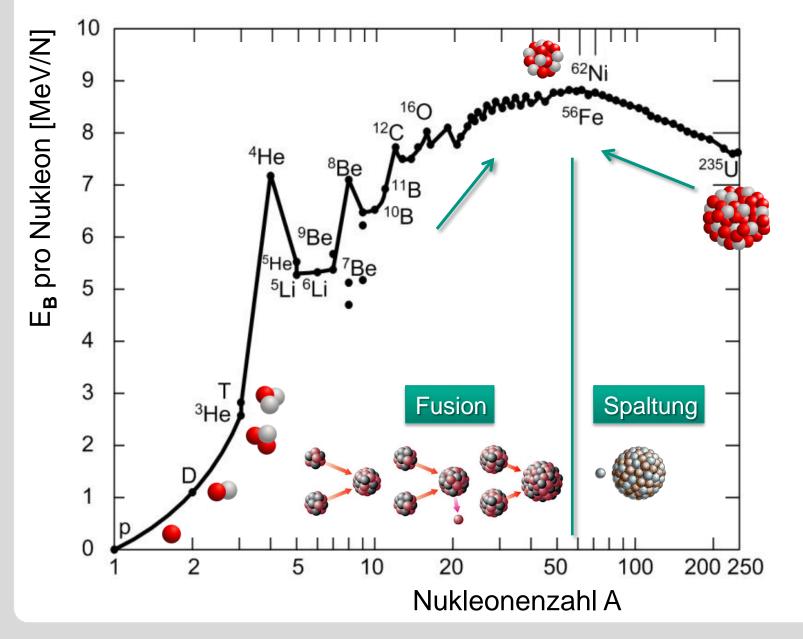
Massendefekt

atomare Masseneinheit $1u = 1/12 \cdot \mathcal{M}(^{12}C) = 931.494 \text{ MeV}$

 $\Delta = \mathcal{M}(Z,A) - A \cdot 1/12 \cdot \mathcal{M}(^{12}C) = B(^{12}C) - B(Z,A)$

Bindungsenergie pro Nukleon

Bindungsenergie pro Nukleon: B/A ~ 8 MeV, näherungsweise konstant für A > 20



<B/A> ~ 7 − 8 MeV

Kernwechselwirkung nur mit dem nächsten Nachbarnukleon!

kurzreichweitige Kernkräfte

Reichweite ~ 1 fm

which maximales B/A bei

A = 56-58 (56Fe, 56Ni)

A < 56 : **Kernfusion**

A > 56 : **Spaltung**

1935: C.F. von Weizsäcker stellt ein semi-empirisches Kernmodell auf -Kerneigenschaften (inkompressible Materie, kurzreichweitige Kräfte) in Analogie zu den Eigenschaften eines Wassertröpfchens (Kondensation, Waals Kräfte, latente Wärme, Oberflächenspannung)

> semiempirische Massenformel mit Anpassung der Parameter durch experimentelle Untersuchungen

Volumenenergie

Oberflächenenergie

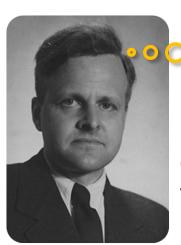
Coulombterm

klassisch

Asymmetrieterm

Paarungsterm

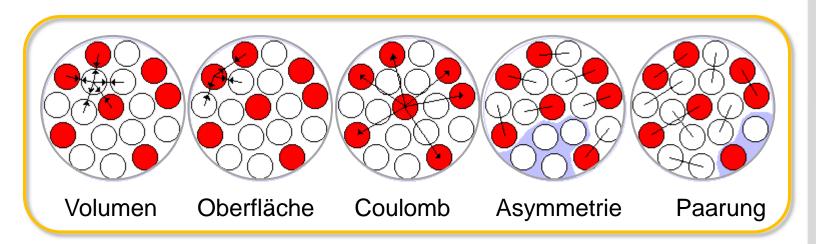
quantenmechanisch



20.4.2010

10

Carl Friedrich von Weizsäcker (1912-2007)



G. Drexlin – VL03

Volumenenergie

$$B(Z,A) \sim a_V \cdot A$$

wichtigster Term, entsteht durch kurzreichweitige Kernkräfte: Nukleon 'fühlt' nur die unmittelbaren Nachbarn – Kernkräfte sind gesättigt (Radius $R_0 \sim A^{1/3}$)

Oberflächenenergie

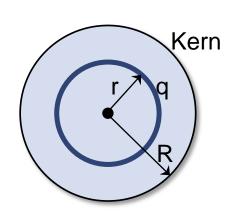
$$B(Z,A) \sim -a_{s} \cdot A^{2/3}$$

Nukleonen an der Oberfläche haben weniger Partnernukleonen, schwächere Bindung, ist proportional zur Oberfläche A^{2/3} (Tropfen: Oberflächenspannung)

Coulombterm

$$B(Z,A) \sim -a_{c} \cdot Z^{2} \cdot A^{-1/3}$$

Protonen erzeugen eine abstoßende Coulombkraft, Modell einer homogen geladenen Kugel mit Radius R und konstanter Ladungsdichte $\rho = (Z \cdot e) / (4/3 \cdot \pi \cdot R^3)$ Berechnung der potenziellen Energie dE, um Ring mit Ladung q wird aus $R = \infty$ bis zu Radius r zu bringen Integration ergibt $E \sim (Z \cdot e)^2 / R$



11

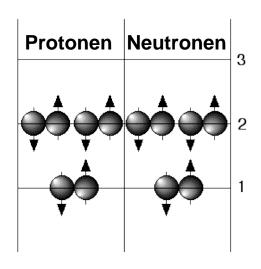
Asymmetrieterm

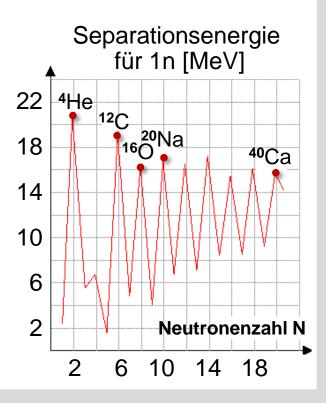
$$B(Z,A) \sim -a_{A} \cdot (N-Z)^{2}/A$$

Kerne bevorzugen **Konfiguration Z = N**, keine stabilen Kerne mit starkem Protonen- bzw. Neutronenüberschuss (vgl. Fermigas), Pauli-Prinzip: wird bei Z = N ein Proton gegen ein Neutron ausgetauscht, verringert sich B(Z,A), da dieses Neutron dann in ein höheres Niveau müsste

Paarungsterm

Bohr & Mottelson (1969) führen Paarungsterm ein: Befund: Kerne mit gerader Neutronenzahl sind ~2 MeV stärker gebunden gepaarte Nukleonen mit antiparallelem Spin gg (gerade-gerade) Kerne stärker gebunden als uu (ungerade-ungerade) Kerne



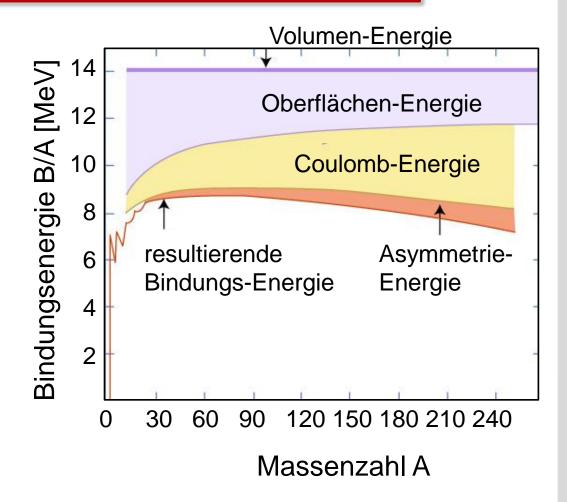


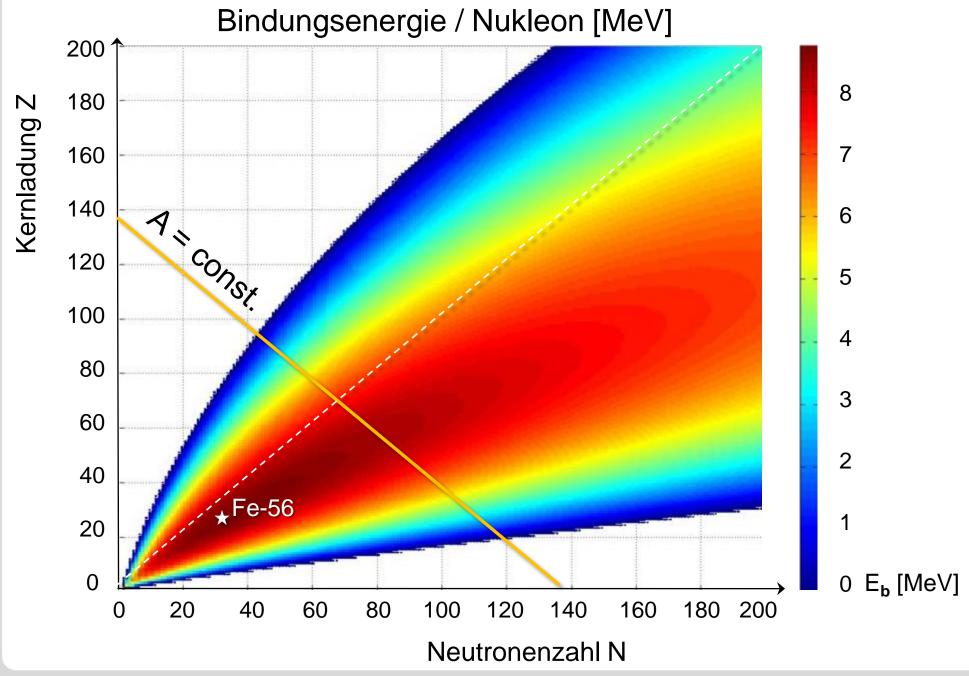
Zusammenfassung aller Terme zur (semi-)empirischen Massenformel:

$$B(Z,A) = a_{V} \cdot A - a_{S} \cdot A^{2/3} - a_{C} \cdot Z^{2} \cdot A^{1/3} - a_{A} \cdot (N - Z)^{2} / A + \delta(Z,A)$$

Beitrag	Faktor a	Größe [MeV]
Volumenterm	a _v	15.58
Oberflächenterm	a_s	16.91
Coulombterm	a _c	0.71
Asymmetrieterm	a_A	23.21
Paarungsterm	a _P	11.46

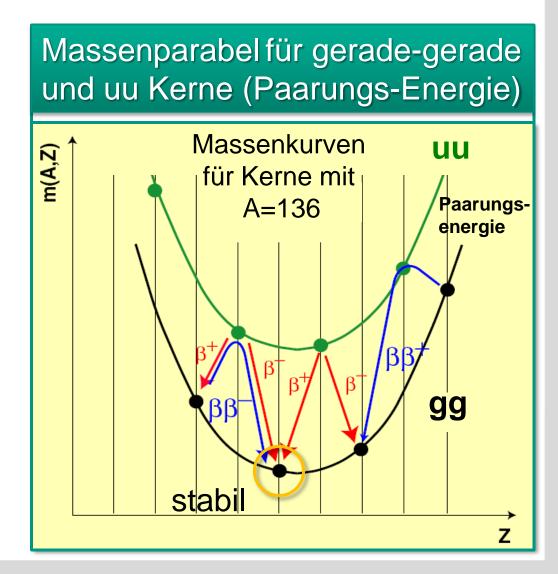
Anpassung an zahlreiche experimentell bekannte Kernmassen für A > 40: ~ 10% Genauigkeit



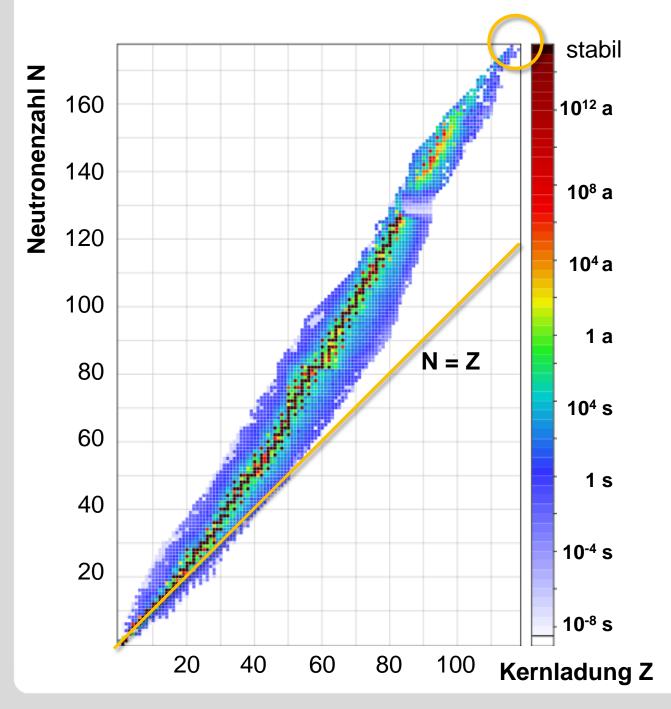


Tröpfchenmodell - Massenparabeln

- für Kerne mit konstanter Massenzahl A ergeben sich "Massenparabeln": B (A = const., Z) = const. $a_1 \cdot Z^2 a_2 \cdot (N Z)^2$
- A = gerade es existieren 2 Massenparabeln: gg Kerne sind stärker gebunden uu Kerne sind schwächer gebunden (wichtig z.B. für die Suche nach dem neutrinolosen Doppelbetazerfall, s. Kap. 10.3)
 - A = ungerade es existiert nur 1 Massenparabel (ug)
- für jede Kernmasse A = const. erhält man das stabilste Isotop mit maximaler Bindungsnergie (Stabilitätsline) durch Bildung der Ableitung ∂B(A = const.,Z) / ∂Z = 0



Stabilitätstal der Kerne



die Kerne mit der maximalen Bindungsenergie bilden das Tal der Stabilität

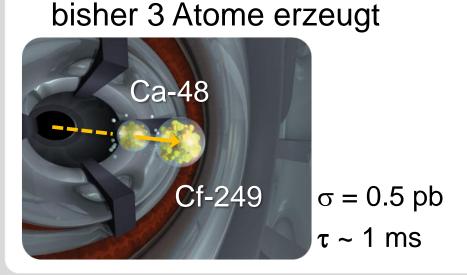
$$Z = \frac{A}{1.98 + 0.015A^{2/3}}$$

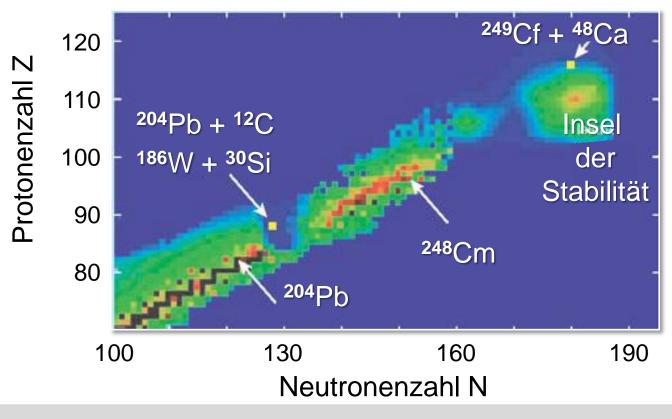
Coulombabstossung der Protonen erzeugt bei schweren Kernen einen deutlichen Neutronenüberschuss

Kerne, die nicht im Stabilitätstal liegen, zerfallen über Teilchenemission (β-Zerfall, 'Driplines' für Protonen/Neutronen, α-Zerfall) s. Kap. 4.2, 4.3, 4.5

Stabilitätstal – superschwere Insel?

- der beobachtete Verlauf der magischen Zahlen im Schalenmodell lässt eine Insel der Stabilität bei superschweren Kernen (N = 184, Z = 114) erwarten
- experimentelle Methode: mittelschwere Ionen (48Ca) werden auf sehr hohe Energie beschleunigt und auf ein schweres Target (z.B. ²⁴⁹Cf) gelenkt, dabei wird Synthese superschwerer Kerne erwartet (Ziel: geringe innere Anregung) superschwere Kerne zerfallen über Alpha-Zerfall und spontane Spaltung
- schwerstes Element bisher: Z = 118 (Uuo-294) $^{249}Cf + ^{48}Ca \rightarrow ^{294}Uuo + 3 n$



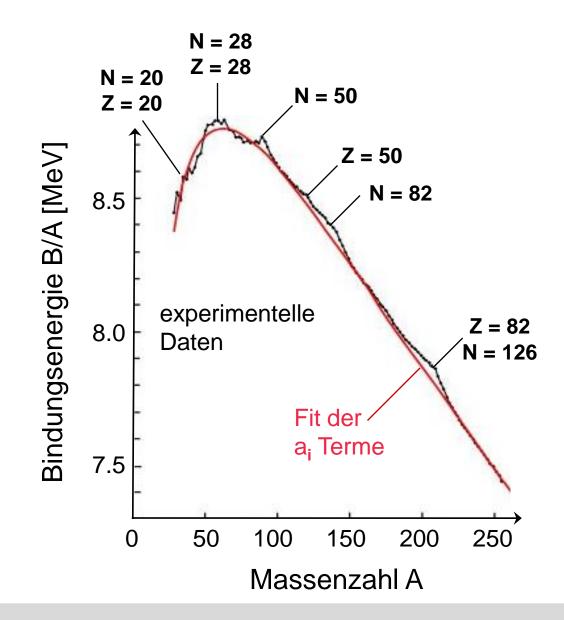


20.4.2010

- Tröpfchenmodell kann zur Vorhersage von Bindungsenergien von Kernen und bei der Modellierung von Kernspaltungsprozessen (Kap. 4.5) benutzt werden, heute weitere Terme z.B. für deformierte Kerne
- verbleibende Abweichungen zwischen dem Experiment & der Massen-Formel resultieren aus der Schalenstruktur der Kerne (vgl. Schalenmodell der Kerne)

magische Zahlen

Z oder N = 20, 28, 50, 82, 126



Fermigasmodell

Kernmodell auf der Basis von 2 unabhängigen Systemen von Nukleonen (Protonen und Neutronen), die sich im Kernvolumen unter Beachtung des Pauli-Prinzips (für Fermionen mit s = ½) wechselwirkungsfrei bewegen (alle Zustände sind besetzt ∜ keine Änderung der Quantenzahlen) jedes Nukleon 'fühlt' ein mittleres Kernpotenzial (= Überlagerung der einzelnen kurzreichweitigen Nukleon-Nukleon Wechselwirkungen)
Neutronen: Kastenpotenzial, Protonen: Kastenpotenzial + Coulombkraft

Protonen-Potenzial für Protonen B/A $E_F(p) \qquad \qquad E_F(n)$

Neutronenpotenzial

Quantenstatistik eines Fermigases

Grundzustand des Kerns:

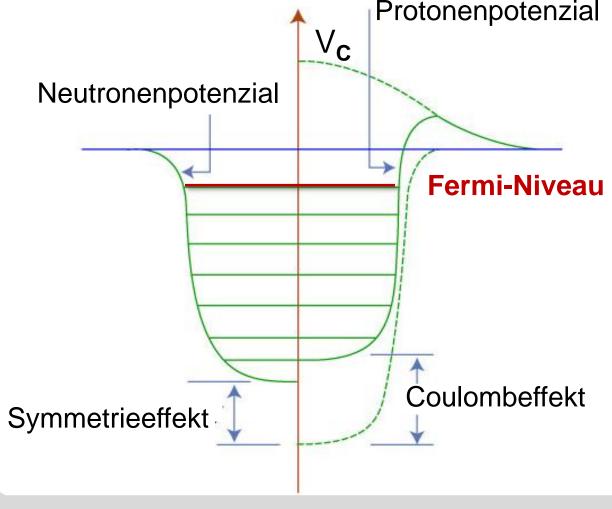
- alle Zustände vom Potenzialboden V_0 bis zum höchsten Niveau, der Fermienergie $\mathbf{E_F}$ sind aufgefüllt
- nach dem Pauliprinzip kann jeder Protonenbzw. Neutronen-Zustand mit 2 Teilchen (Spin up/Spin down) besetzt werden

G. Drexlin – VL03

20.4.2010

Fermigasmodell

Nukleonen bilden im Kern bei T = 0 K (Grundzustand) ein 'Fermigas' von wechselwirkungsfreien Teilchen, angeregte Kernzustände ⇒ T > 0 K, für Protonen: die abstoßende Coulombkraft verringert ihre Potenzialtiefe



- die Fermi-Niveaus von Neutronen und Protonen in schweren Kernen sind identisch, sonst könnten z.B. Neutronen in 'freie' Protonenniveaus zerfallen
- alle Nukleonen bewegen sich im Kern mit einem nicht vernachlässigbaren Fermi-Impuls p_F

20.4.2010 G. Drexlin – VL03 KIT-IEKP

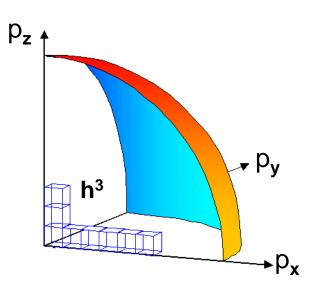
Bestimmung der Fermi-Energie E_F

- Nukleonen haben im Phasenraum durch die Unschärferelation dx · dp_x > ħ/2 ein minimales Phasenraum-Volumen V_{min} = (2 π ħ)³ = h³
 Phasenraum: 6 dim. Orts-Impuls-Raum: dx · dy · dz · dp_x · dp_y · dp_z
- Zustandsdichte dn/dp der nicht-relativistischen Nukleonen für ein Kastenpotenzial mit V₀ = ∞ und Volumen V (Lösung der 3-dim. Schrödingergleichung ergibt quantisierte, stehende Wellen mit Wellenzahlen k_i = p_i/ħ)

$$dn = \frac{4\pi}{(2\pi\hbar)^3} \cdot V \cdot p^2 dp = \frac{1}{2\pi^2\hbar^3} \cdot V \cdot p^2 dp$$

dn = Zahl der Teilchen-Zustände im Impulsintervall [p, p+dp]

in diesem Intervall bilden Nukleonen im Impulsraum eine Kugelschale mit der Oberfläche 4 π p² und der Dicke dp



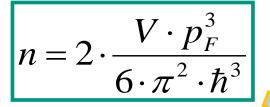
Phasenraumzustände: ~ V • 4π p² dp / h³

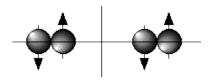
Gesamtzahl der Nukleonen-Zustände

die Gesamtanzahl n der Zustände bis zur Fermi – Energie E_F bzw. zum Fermi-Impuls $p_F = (E_F \cdot 2 M_N)^{1/2}$ ist mit einem Nukleon-Spinfaktor 2 (für $s = \frac{1}{2}$ Fermionen) gegeben durch:

$$n = 2 \int_{0}^{p_{F}} dn = \frac{2}{2\pi^{2}\hbar^{3}} \cdot V \cdot \int_{0}^{p_{F}} p^{2} dp$$

$$n = 2 \cdot \frac{V \cdot p_{F}^{3}}{6 \cdot \pi^{2} \cdot \hbar^{3}}$$

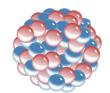




$$N = \frac{V}{3\pi^2 \, \hbar^3} \cdot (p_F^n)^3$$

Anzahl Z der Protonen:

$$Z = \frac{V}{3\pi^2 \, \hbar^3} \cdot (p_F^p)^3$$



$$R = R_0 \cdot A^{1/3}$$

 $R_0 = 1.21 \text{ fm}$

mit Kernvolumen V:

$$V = \frac{4}{3}\pi \cdot R^3 = \frac{4}{3}\pi \cdot R_0^3 \cdot A$$

für Kerne mit

$$p_F = \left(\frac{9\pi}{8}\right)^{1/3} \frac{\hbar}{R_0} \approx 250 \, \text{MeV/c}$$

Fermi-Impuls und Fermi-Energie

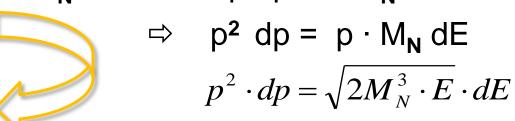
- Fermigas-Modell:
 - alle Nukleonen bewegen sich wechselwirkungsfrei mit einem Impuls per
 - Fermi-Impuls p_F aller Nukleonen ist ~ konstant (250 MeV/c)

Nukleonen bewegen sich im endlichen Kernvolumen mit einem signifikanten Fermi-Impuls! (\$\to\$ Heisenberg´sche Unschärferelation)

Zustandsdichte dn/dE als Funktion der Nukleonen-Energie E

$$dn = \frac{1}{2\pi^2 \hbar^3} \cdot V \cdot p^2 \ dp$$

mit
$$p^2 = 2 M_N \cdot E \Rightarrow 2 p dp = 2 M_N dE$$



$$dn = \frac{1}{\sqrt{2} \cdot \pi^2 \hbar^3} \cdot M_N^{3/2} \cdot V \cdot \sqrt{E} \cdot dE$$

$$n = 2 \int_{0}^{E_{F}} dn = \frac{1}{3 \cdot \pi^{2} \hbar^{3}} \cdot \sqrt{8} \cdot M_{N}^{3/2} \cdot V \cdot E_{F}^{3/2}$$

$$E_F = Fermi-Energie$$

Fermi-Energie E_F & Kernpotenzial V

- mit Nukleonenzahl n = A und Volumen V = 4/3 π (R₀)³ A ergibt sich alleine aus Kenntnis R₀ ~ 1.2 fm ein Wert E_F ~ 33 MeV
- Fermi-Energie E_F (Energie des höchsten besetzten Zustands):

$$E_F \approx \frac{p_F^2}{2M} = 33MeV$$

$$V_0 \approx E_F + \langle B/A \rangle = 33MeV + 7MeV = 40MeV$$

V₀: Tiefe des Kern-Potenzials

V₀ ist unabhängig von der Massenzahl A ähnlich wie bei freiem Elektronengaskinetische Energie der Nukleonen ist in der gleichen Größenordnung wie das Kernpotenzial

vgl. Elektronengas im Festkörper, z.B. Cu:

Fermi-Energie: E_F ~ 7 eV

Austrittsarbeit: W ~ 4 eV

Potenzialtiefe: V ~ 11 eV

