

Kerne und Teilchen

Physik VI

Vorlesung # 04 22.4.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Eigenschaften stabiler Kerne

- Schalenmodell
- Struktur der Kernkräfte
- LS-Kopplung
- Nukleon-Nukleon Potenzial
- Austauschkräfte:
 Pionen und Mesonen

www.kit.edu

Fermigasmodell

- Nukleonen bilden im Kerngrundzustand bei T = 0 K ein 'Fermigas' von wechselwirkungsfreien Teilchen, da alle Fermion-Zustände bis zur Fermi-Energie E_F besetzt sind
- Bestimmung der Fermi-Energie E_F bzw. des Fermi-Impulses p_F aus der Quantenstatistik eines Fermigases: für Kerne mit Z = N = A/2

$$p_F = \left(\frac{9\pi}{8}\right)^{1/3} \frac{\hbar}{R_0} \approx 250 \, \text{MeV/c}$$

Potenzial V₀ ~ 40 MeV, unabhängig von Massenzahl A (vgl. freies Elektronengas) kinetische Energie der Nukleonen ist in der gleichen Größenordnung wie das Kernpotenzial: E_F ~ V₀

Tröpfchenmodell

Tröpfchenmodell von C.F. v. Weizsäcker: semiempirische Massenformel Standungsenergie pro Nukleon

 $B(Z,A) = a_{V} \cdot A - a_{S} \cdot A^{2/3} - a_{C} \cdot Z^{2} \cdot A^{1/3} - a_{A} \cdot (N - Z)^{2} / A + \delta(Z,A)$

- Volumenterm: Kondensation
- Oberflächenterm: weniger Partner
- Coulombterm: Protonenladung
- Asymmetrie-Term: Ferminiveaus
- Paarungs-Term: antiparalleler Spin
- bei bestimmten magischen
 Protonenzahlen Z & Neutronenzahlen N verbleiben Abweichungen zwischen
 dem Experiment & der Massen-Formel
 des Tröpfchenmodells:
 Resultat der Schalenstruktur der Kerne

Schalenmodell

Kerne mit den magischen Protonen- oder Neutronen-Zahlen

Z oder N = 2, 8, 20, 28, 50, 82, 126

verfügen über spezielle Eigenschaften:

- hohe Bindungsenergien / Separationsenergien
- viele Isotope (Isotone) bei gleichem Z (N)
- relative Häufigkeit der Kerne
- hohe Anregungsenergie des ersten angeregten Zustands
- kleine n-Einfangquerschnitte
- ß-Zerfall

Schalenmodell – experimentelle Befunde

Energie [MeV]

Energie [keV]

doppelt magische Kerne: ⁴He, ¹⁶O, ⁴⁰Ca, ⁷²Ge,...

Abweichungen von der Bethe-Weizsäcker Massenformel: hohe Bindungsenergie bei magischen Zahlen

Energie des ersten angeregten Kernniveaus mit $J^{P} = 2^{+}$: hohe Anregungsenergie bei magischen Zahlen

Kernpotenziale

- Analogie zu magischen Zahlen der Atomphysik (Z = 2, 10, 18, 36, 54, 80, 86) dort wird ein Potenzial erzeugt durch langreichweitiges Coulombfeld –Z e²/r Ansatz in der Kernphysik: Aufstellung eines mittleren Kernpotenzials V(r), in dem sich die einzelnen Nukleonen (wechselwirkungsfrei) bewegen Methode: Lösung der Schrödinger-Gleichung für Modellpotenzial V(r)
- u(r) folgt aus radialem Anteil der Schrödinger-Gleichung

$$\frac{1}{2M_N}\Delta u + \left(E - V(r) - \frac{\ell \cdot (\ell+1)}{2M_N \cdot r^2}\right)u = 0$$

Zentrifugalterm

Hauptquantenzahl n, Drehimpuls *l* = 0,1,2,3,... (s,p,d,f...) magnet. Quantenzahl m

 Vergleich der Energieniveaus (Schalenabschlüsse) mit den beobachteten magischen Zahlen, Schnpassung des Modellpotenzials
 Kastenpotenzial, harmonischer Oszillator, Woods-Saxon-Potenzial

Modell 1: harmonischer Oszillator

Nukleonen befinden sich in einem Potenzial V(r) eines harmonischen Oszillators mit Tiefe V₀ ~ 40 MeV

Modell 1: harmonischer Oszillator

Nukleonen befinden sich in einem Potenzial V(r) eines harmonischen Oszillators mit Tiefe V₀ ~ 40 MeV

harmonischer Oszillator Oszillatorpotenzial $V(r) = \frac{1}{2} M_N \omega^2 r^2 - V_0$ $\hbar \omega - Schale: 2 \cdot (n-1) + \ell$

$$E_{n\ell} = -V_0 + (2n + \ell + \frac{1}{2})\hbar\omega$$

Σ **2(2ℓ+1**) **Zustand** Ł ħω n **1**s 2 $\mathbf{0}$ 1 $\mathbf{0}$ 8 1 1p 1 1 2 2 2s0 2 1 1d 20 3 2 2p 1 3 1f 40 1

quasiklassiche Bewegung eines Nukleons im Oszillatorpotenzial

Modell 2: Kastenpotenzial

Nukleonen befinden sich in einem Kasten-Potenzial V(r) mit einer endlichen Tiefe V₀ ~ 40 MeV (Tiefe gegeben durch Fermigas-Modell)

Modell 2: Kastenpotenzial

Nukleonen befinden sich in einem Kasten-Potenzial V(r) mit einer endlichen Tiefe V₀ ~ 40 MeV (Tiefe gegeben durch Fermigas-Modell)

Kastenpotenzial

- Energieniveaus E_i aus den Nullstellen der sphärischen Bessel-Funktion j_e
- Schalenabschlüsse stimmen für schwere Kerne nicht mehr mit den beobachteten magischen Zahlen überein (..., 50, 82, 126,...)

 $\Sigma 2(2\ell+1) =$ Summe der Nukleonen bis zu einzelnen Schalen

Schalenmodell: Woods – Saxon Potenzial

Ansatz: benutze Saxon-Woods Dichteverteilung ρ(r) [s. Kernformfaktoren],
 Woods-Saxon Potenzial: Verlauf folgt der Verteilung der Nukleonen im Kern,
 V(r)_{Woods-Saxon} liegt zwischen harmonischem Oszillator & Kastenpotenzial

a: Kernradius (a ~ $A^{1/3}$) d: Skindicke (~ 0.5 fm)

- Energie-Eigenwerte des Woods-Saxon
 Potenzials liegen zwischen denen des Kastenpotenzials & des harmonischen
 Oszillators
- 'magische Zahlen' f
 ür schwere Kerne Kerne stimmen nicht mit gemessenen Zahlen
 überein
- weitere phys. Effekte: was ist die genaue Struktur der Kernkräfte?

Schalenmodell: Woods – Saxon Potenzial

 Woods-Saxon Potenzial ist Ausgangspunkt zur Beschreibung der Kernkräfte, aber weitere Terme! wichtige Erkenntnis (vgl. Atomphysik): auch bei Kernkräften Kopplung von Bahndrehimpuls & und Spin s

Deuteron = einfachstes gebundenes System aus zwei Nukleonen (Di-Proton & Di-Neutron sind ungebunden, $B(^{2}He) = +82 \text{ keV}$)

Eigenschaften des Deute	rons (Grundzustand)
Bindungsenergie	B = - 2.225 MeV
Spin & Parität	$J^{P} = 1^{+}$
Isospin	I = 0
magnetisches Moment	$\mu = 0.857 \ \mu_{Nukleon} \neq \mu_{P} + \mu_{n}$
elektr. Quadrupolmoment	$Q = 0.282 \text{ e fm}^2$

up: $I_3 = +\frac{1}{2}$, down: $I_3 = -\frac{1}{2}$

nicht kugelsymmetr.

Eigenschaften der Kernkräfte:

Spin: J = 1 ∜ Spins von Proton & Neutron sind parallel, Triplettzustand ① ① vorwiegend in Zustand mit L = 0 (96%), d.h. ³S₁ [^{2S+1}L_J] nur kleine D-Beimischung (4%), d.h. ³D₁ durch Tensorkraft (keine P-Beimischung, da das Deuteron-Parität P = +1)

Kernkräfte haben einen kleinen nicht-zentralen, tensoriellen Anteil

- Struktur der Kernkraft ist deutlich komplexer als die Struktur z.B. der Coulombkraft/Newton´schen Gravitation (Zentralpotenziale)
 - ergibt sich aus ihrer Struktur als Restwechselwirkung von farbneutralen Nukleonen (Analogie: elektromagnetische van der Waals – Kräfte zwischen neutralen Atomen)

Quantenchromodynamik

Restwechselwirkung

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

- Struktur der Kernkraft ist deutlich komplexer als die Struktur z.B. der Coulombkraft/Newton´schen Gravitation (Zentralpotenziale)
 - ergibt sich aus ihrer Struktur als Restwechselwirkung von farbneutralen Nukleonen (Analogie: elektromagnetische van der Waals – Kräfte zwischen neutralen Atomen)

Zentralkraft V₀(r)

folgt aus den Eigenschaften des Deuterons (96% ³S₁-Zustand)

spinabhängige Zentralkraft (Spin-Spin-Wechselwirkung)

folgt aus den Neutron-Proton Streuung ($\sigma_{\text{Singulett}} > \sigma_{\text{Triplett}}$)

nichtzentrale Tensorkraft

folgt aus den Eigenschaften des Deuterons (4% ³D₁-Zustand)

Spin-Bahn (l·s) - Kopplungsterm

folgt aus den Streuung an polarisierten Protonen (Links/Rechts Asymmetrie)

Struktur der Kernkräfte: Potenzial

Tröpfchenmodell & Kernkräfte: auch bei schweren Kernen ist B/A ~ const., d.h. es wirken immer nur **Kräfte zwischen zwei Nukleonen** Wechselwirkung zwischen Nukleonen abhängig von dynamischen Größen: relativer Abstand \vec{x} , relativer Impuls \vec{p} , Gesamtbahndrehimpuls \vec{L} und relative Ausrichtung der Spins $\vec{s_1}$, $\vec{s_2}$:

V(r)	$= V_0(r)$
	$+V_{ss}(r)\cdot\vec{s}_{1}\cdot\vec{s}_{2}/\hbar^{2}$
	$+V_T(r)\cdot\frac{3}{\hbar^2}\frac{\left(\vec{s}_1\cdot\vec{x}\right)\left(\vec{s}_2\cdot\vec{x}\right)}{r^2}-\vec{s}_1\cdot\vec{s}_2$
	$+ V_{\ell S}(r) \cdot \left(\vec{s}_1 + \vec{s}_2\right) \cdot \vec{\ell} \cdot \frac{1}{\hbar^2}$
	$+ V_{\ell s}(r) \cdot \left(\vec{s}_1 \cdot \vec{\ell}\right) \cdot \left(\vec{s}_2 \cdot \vec{\ell}\right) \cdot \frac{1}{\hbar^4}$
	$+ V_{ps}(r) \cdot \left(\vec{s}_1 \cdot \vec{p}\right) \cdot \left(\vec{s}_2 \cdot \vec{p}\right) \cdot \frac{1}{\hbar^2 m^2 c^2}$

Zentralpotenzial Spin-Spin Wechselwirkung nicht-zentrale Tensorkraft Spin-Bahn Wechselwirkung aus formalen Gründen, vernachlässigbar klein

Kernkräfte: Tensor-Kraft

 Tensorkraft ist spinabhängig und z.B. verantwortlich f
ür die kleine Deformation des Deuterons (³D₁-Zustand)

Proton und Neutron: Spin S = $\frac{1}{2}$, $\frac{1}{2}$, daher maximal Dipolmomente möglich

$$\sim V_T(r) \cdot \frac{3}{\hbar^2} \frac{(\vec{s}_1 \cdot \vec{x})(\vec{s}_2 \cdot \vec{x})}{r^2} - \vec{s}_1 \cdot \vec{s}_2$$

entspricht in der formal der Wechselwirkung von 2 magnetischen Dipolen

- keine Tensorkraft für Singulett-Zustände
- Tensorkraft wird vermittelt durch Pionaustausch, beeinflusst Schalen & magische Zahlen

Tensorkraft

17 22.4.2010 G. Drexlin – VL04

18 22.4.2010 G. Drexlin – VL04

Kernkräfte: Spin-Spin-Kraft & LS Kopplung

Spin-Spin Kraft

unabhängig vom Koordinaten-System, d.h. muß eine skalare Größe sein

 $\sim V_{ss}(r) \cdot \vec{s}_1 \cdot \vec{s}_2 / \hbar^2$

unterschiedliche Eigenwerte für Triplett- und Singulett-Zustände

l·s Kopplung

 $\sim V_{\ell s}(r) \cdot (\vec{\ell} \cdot \vec{s})$

in Analogie zur Feinstrukturaufspaltung der Atomhülle (M. Goeppert-Mayer): Kopplung zwischen dem Bahndrehimpuls & und Spin s des Nukleons

Experimenteller Beleg für $l \cdot s$ – Kopplung: Streuung von Protonen an polarisierten Protonen zeigt eine Asymmetrie der Streuraten zwischen

Spin-Bahn Kopplung

der starken Wechselwirkung

- Linksstreuung: $\vec{l} \cdot \vec{s} > 0$
- Rechtsstreuung: $\vec{l} \cdot \vec{s} < 0$

LS-Kopplung von Nukleonen im Kern

Spin-Bahn Kopplung LS von Nukleonen im Kern

Probenukleon wechselwirke z.B. mit innerem Nukleon #1 (#2 analog):

 $\vec{L} = \vec{\ell} + \vec{\ell}_1 \qquad \vec{S} = \vec{s} + \vec{s}_1$

falls S = 0 : kein Beitrag zum LS Potenzial falls S = 1 : Anstieg bzw. Verringerung des Potenzials $\vec{s} \uparrow \uparrow \vec{\ell} : Beitrag + \vec{L} \cdot \vec{S}$ $\vec{s} \uparrow \downarrow \vec{\ell} : Beitrag - \vec{L} \cdot \vec{S}$

Spin-Bahn Kopplung LS von Nukleonen im Kern reduziert sich auf Abhängigkeit & s des einzelnen Nukleons (d.h. auf den Einteilchenzustand)!!

- in der Kernmitte kein Netto-Beitrag zum Potenzial,

- an der Kernoberfläche mehr innere Nukleonen, daher Radialabhängigkeit: $V_{\ell s}(r) \propto \frac{1}{r} \cdot \frac{d\rho}{dr}$

ls-Kopplung des Nukleons im Kern

Berechnung der Energieverschiebung der Nukleonen-Niveaus:

$$\vec{j} = \vec{\ell} + \vec{s} \quad \vec{j}^2 = \vec{\ell}^2 + 2 \cdot \vec{\ell} \cdot \vec{s} + \vec{s}^2$$

$$\langle \vec{\ell} \cdot \vec{s} \rangle = \frac{1}{2} \begin{bmatrix} j \cdot (j+1) - \ell \cdot (\ell+1) - \frac{3}{4} \end{bmatrix} \rightleftharpoons j = \ell + \frac{1}{2}; \qquad \langle \vec{\ell} \cdot \vec{s} \rangle = \frac{1}{2} \cdot \ell$$

$$j = \ell - \frac{1}{2}; \qquad \langle \vec{\ell} \cdot \vec{s} \rangle = -\frac{1}{2} \cdot (\ell+1)$$

für j =
$$\ell + \frac{1}{2}$$
: V(r) + $\frac{1}{2}$ V _{ℓs} (r) · ℓ
für j = $\ell - \frac{1}{2}$: V(r) - $\frac{1}{2}$ V _{ℓs} (r) · (ℓ + 1)

Vorzeichen von V_{es} ergibt für j = ℓ - $\frac{1}{2}$ höhere Energien (geringeres Potenzial)

 $\Delta E \sim 2\ell + 1$ mit wachsendem ℓ Zunahme der Aufspaltung

Atomhülle: kleine Feinstrukturaufspaltung
 Kernschalen: große Aufspaltung
 Aufspaltung > Niveauabstand
 Vorzeichen umgekehrt wie bei Atomen

1p_{1/2}

1p_{3/2}

Auspaltung durch Spin-Bahn Kopplung

- Kernzustände mit $j = l + \frac{1}{2}$ liegen tiefer als $j = l - \frac{1}{2}$
- in jedem Niveau j :
 (2 j + 1) Protonen
 (2 j + 1) Neutronen
- Einfluss des V_{es} Terms der Spin-Bahn Kopplung auf das Saxon-Woods-Potenzial: maximale Beiträge von Peripherie

Leuchtnukleonen & angeregte Zustände

gg-Kerne: Spins der Nukleonen heben sich paarweise auf, Spin J = 0

- nichtabgeschlossene Schalen: Leuchtnukleon definiert Spin & Parität
 - 1 Nukleon in äußerster Schale: Gesamtspin J = j

- Parität P = $(-1)^{\ell}$ - **Spiegelkerne** ¹⁷O / ¹⁷F : 1p/1n in 1d_{5/2}
- gg-Kern mit abgeschlossener Schale + 4 Neutronen + 2 Protonen: J = 0

angeregte Kernzustände

- gg-Kern: 1. angeregter Zustand liegt bei hoher Energie
- uu-Kern: viele angeregte Zustände bei niedrigen Energien

Kurzreichweitigkeit der Kernkräfte (~ 1-2 fm)

folgt z.B. direkt aus der schwachen Bindungsenergie des Deuterons Lösung der Schrödinger-Gleichung für Deuteron mit Zentralpotenzial V₀(r): Ansatz eines kastenförmigen Potenzials mit R₀ = 4.3 fm & B = -2.2 MeV riefe des Potenzialtopfes: V₀ \approx - 40 MeV , d.h. für das Deuteron: |B| < |V₀| dies erklärt sich aus der kurzen Reichweite der Kernkraft (< 2 fm) d.h. mittlere kinetische Energie der Nukleonen \approx mittlere Potenzialtiefe

Abstoßung bei kleinen Abständen (< 0.8 fm)</p>

Nukleon-Nukleon Streuexperimente bei niedrigen Energien zeigen:

- anziehender Charakter der Kernkraft bis d ~ 2 fm
- abstoßender Charakter der Kernkraft für d < 0.8 fm: Abstoßung basiert *nicht* auf dem Pauli-Prinzip,
 12 Quarks in h³: 3 Farbladungen (rbg), 2 Spinzustände (↑↓), 2 Isospins (u,d) resultiert aus der starken Spin-Spin Wechselwirkung der Quarks wenn 2 Nukleonen "überlappen": 2 der Quarks im p-Zustand ⇔ Abstoßung

Kernkräfte als Austauschkräfte

anziehende Kernkräfte : Quarkaustausch

analog zur kovalenten Bindung der Atome Modell: Nukleon-Konfiguration aufgebaut aus Diquark und einzelnem Quark Diquark: (u,d) energetisch günstig falls Spin S = 0 & Isospin I = 0 Quarkaustausch nur subdominater Beitrag!

anziehende Kernkräfte : Mesonenaustausch im Nukleon sind virtuelle Quark-Antiquark Paare vorhanden, ∜ Austausch von farbneutralen Quark-Antiquark-Paaren (Mesonen = qq Paare) dominanter Beitrag zur NN-Kraft

1-Pion-Austausch aber auch 2-Pionen –Austausch sowie Austausch von leichten Vektormesonen ρ , ω

Nukleon-Nukleon Potenzial: Pionaustausch

- durch die endliche Masse m_π des ausgetauschten Bosons wird die Reichweite der starken Wechselwirkung begrenzt auf R ~ 1.4 fm
- der Einpionen-Austausch kann nicht alle Eigenschaften des Kernpotenzials erklären: Austausch weiterer Mesonen σ, ω, ρ, η, δ
 \$ spezielle Form des Wechselwirkungspotenzials (attraktive/ repulsive Bereiche) vgl. zu Restwechselwirkung bei Atomen

Meson	Masse	Reichweite	Typ der Ww.	Stärke
π	138 MeV	1-2 fm	langreichweitig	14.6
σ	550 MeV	0.5-1 fm	Bindung	8
ω	782 MeV	0.7 fm	Repulsion	20
ρ	769 MeV	0.7 fm	LS-Kraft	0.95

1 GeV

es Pion

Meson