

Kerne und Teilchen

Physik VI

Vorlesung # 04 22.4.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Eigenschaften stabiler Kerne

- Schalenmodell
- Struktur der Kernkräfte
- LS-Kopplung
- Nukleon-Nukleon Potenzial
- Austauschkräfte:
 Pionen und Mesonen

Fermigasmodell

- Nukleonen bilden im Kerngrundzustand bei T = 0 K ein 'Fermigas' von wechselwirkungsfreien Teilchen, da alle Fermion-Zustände bis zur Fermi-Energie E_F besetzt sind
- Bestimmung der Fermi-Energie E_F bzw. des Fermi-Impulses p_F aus der Quantenstatistik eines Fermigases: für Kerne mit Z = N = A/2

$$p_F = \left(\frac{9\pi}{8}\right)^{1/3} \frac{\hbar}{R_0} \approx 250 \, \text{MeV/c}$$

Potenzial V₀ ~ 40 MeV, unabhängig von Massenzahl A (vgl. freies Elektronengas) kinetische Energie der Nukleonen ist in der gleichen Größenordnung wie das Kernpotenzial: E_F ~ V₀

Tröpfchenmodell

Tröpfchenmodell von C.F. v. Weizsäcker:
 semiempirische Massenformel Bindungsenergie pro Nukleon

$$B(Z,A) = a_{V} \cdot A - a_{S} \cdot A^{2/3} - a_{C} \cdot Z^{2} \cdot A^{1/3} - a_{A} \cdot (N - Z)^{2} / A + \delta(Z,A)$$

- Volumenterm: Kondensation
- Oberflächenterm: weniger Partner
- Coulombterm: Protonenladung
- Asymmetrie-Term: Ferminiveaus
- Paarungs-Term: antiparalleler Spin
- bei bestimmten magischen Protonenzahlen Z & Neutronenzahlen N verbleiben Abweichungen zwischen dem Experiment & der Massen-Formel des Tröpfchenmodells: Resultat der Schalenstruktur der Kerne

Schalenmodell

Kerne mit den magischen Protonen- oder Neutronen-Zahlen

Schalenmodell – experimentelle Befunde

doppelt magische Kerne:

⁴He, ¹⁶O, ⁴⁰Ca, ⁷²Ge,...

Abweichungen von der Bethe-Weizsäcker Massenformel:

hohe Bindungsenergie

bei magischen Zahlen

Energie des ersten angeregten Kernniveaus mit $J^P = 2^+$:

hohe Anregungsenergie

bei magischen Zahlen

Kernpotenziale

- Analogie zu magischen Zahlen der Atomphysik (Z = 2, 10, 18, 36, 54, 80, 86) dort wird ein Potenzial erzeugt durch langreichweitiges Coulombfeld –Z e²/r Ansatz in der Kernphysik: Aufstellung eines mittleren Kernpotenzials V(r), in dem sich die einzelnen Nukleonen (wechselwirkungsfrei) bewegen Methode: Lösung der Schrödinger-Gleichung für Modellpotenzial V(r)
- u(r) folgt aus radialem Anteil der Schrödinger-Gleichung

$$\frac{1}{2M_N} \Delta u + \left(E - V(r) - \frac{\ell \cdot (\ell+1)}{2M_N \cdot r^2} \right) u = 0$$

Zentrifugalterm

Hauptquantenzahl n, Drehimpuls $\ell = 0,1,2,3,...$ (s,p,d,f...) magnet. Quantenzahl m

- Vergleich der Energieniveaus (Schalenabschlüsse) mit den beobachteten magischen Zahlen, ♥ Anpassung des Modellpotenzials
 - Kastenpotenzial, harmonischer Oszillator, Woods-Saxon-Potenzial

Modell 1: harmonischer Oszillator

Nukleonen befinden sich in einem Potenzial V(r) eines harmonischen
 Oszillators mit Tiefe V₀ ~ 40 MeV

Modell 1: harmonischer Oszillator

Nukleonen befinden sich in einem Potenzial V(r) eines harmonischen Oszillators mit Tiefe V₀ ~ 40 MeV

harmonischer Oszillator

Oszillatorpotenzial

$$V(r) = \frac{1}{2} M_N \omega^2 r^2 - V_0$$

$$\hbar\omega$$
 – Schale: $2\cdot(n-1)+\ell$

$$E_{n\ell} = -V_0 + (2n + \ell + \frac{1}{2})\hbar\omega$$

ħω	n	e	Zustand	Σ 2(2ℓ+1)
0	1	0	1s	2
1	1	1	1p	8
2	2	0	2s	
	1	2	1d	20
3	2	1	2 p	
	1	3	1f	40

quasiklassiche
Bewegung eines
Nukleons im
Oszillatorpotenzial

Modell 2: Kastenpotenzial

 Nukleonen befinden sich in einem Kasten-Potenzial V(r) mit einer endlichen Tiefe V₀ ~ 40 MeV (Tiefe gegeben durch Fermigas-Modell)

Modell 2: Kastenpotenzial

KIT-IEKP

 Nukleonen befinden sich in einem Kasten-Potenzial V(r) mit einer endlichen Tiefe V₀ ~ 40 MeV (Tiefe gegeben durch Fermigas-Modell)

Kastenpotenzial

- Energieniveaus E_i aus den Nullstellen der sphärischen Bessel-Funktion j_ℓ
- Schalenabschlüsse stimmen für schwere Kerne nicht mehr mit den beobachteten magischen Zahlen überein (.., 50, 82, 126,...)

 $\Sigma 2(2\ell+1)$ = Summe der Nukleonen bis zu einzelnen Schalen

10 22.4.2010 G. Drexlin – VL04

Schalenmodell: Woods - Saxon Potenzial

Ansatz: benutze Saxon-Woods Dichteverteilung ρ(r) [s. Kernformfaktoren],
 Woods-Saxon Potenzial: Verlauf folgt der Verteilung der Nukleonen im Kern,
 V(r)_{Woods-Saxon} liegt zwischen harmonischem Oszillator & Kastenpotenzial

$$V(r) = \frac{V_0}{1 + e^{(r-a)/d}}$$

a: Kernradius (a $\sim A^{1/3}$)

d: Skindicke (~ 0.5 fm)

- Energie-Eigenwerte des Woods-Saxon Potenzials liegen zwischen denen des Kastenpotenzials & des harmonischen Oszillators
- 'magische Zahlen' für schwere Kerne Kerne stimmen nicht mit gemessenen Zahlen überein
- weitere phys. Effekte: was ist die genaue Struktur der Kernkräfte?

Schalenmodell: Woods - Saxon Potenzial

Woods-Saxon Potenzial ist Ausgangspunkt zur Beschreibung der Kernkräfte, aber weitere Terme! wichtige Erkenntnis (vgl. Atomphysik): auch bei Kernkräften Kopplung von Bahndrehimpuls ℓ und Spin s

Deuteron = einfachstes gebundenes System aus zwei Nukleonen (Di-Proton & Di-Neutron sind ungebunden, $B(^2He) = +82 \text{ keV}$)

Eigenschaften des Deuterons (Grundzustand)					
Bindungsenergie	B = - 2.225 MeV				
Spin & Parität	$J^P = 1^+$				
Isospin	I = 0				
magnetisches Moment	$\mu = 0.857 \ \mu_{\text{Nukleon}} \neq \mu_{\text{P}} + \mu_{\text{n}}$				
elektr. Quadrupolmoment	$Q = 0.282 e fm^2$				

nicht kugelsymmetr.

Eigenschaften der Kernkräfte:

Spin: J = 1 ♥ Spins von Proton & Neutron sind parallel, Triplettzustand 仓仓 vorwiegend in Zustand mit L = 0 (96%), d.h. ${}^{3}S_{1}$ [${}^{2S+1}L_{1}$] nur kleine D-Beimischung (4%), d.h. ³D₁ durch Tensorkraft (keine P-Beimischung, da das Deuteron-Parität P = +1)

Kernkräfte haben einen kleinen nicht-zentralen, tensoriellen Anteil

Struktur der Kernkraft ist deutlich komplexer als die Struktur z.B. der Coulombkraft/Newton'schen Gravitation (Zentralpotenziale)

- ergibt sich aus ihrer Struktur als Restwechselwirkung von farbneutralen Nukleonen (Analogie: elektromagnetische van der Waals – Kräfte zwischen

neutralen Atomen)

Quantenchromodynamik

THINK YOU SHOULD BE MORE

- Struktur der Kernkraft ist deutlich komplexer als die Struktur z.B. der Coulombkraft/Newton'schen Gravitation (Zentralpotenziale)
 - ergibt sich aus ihrer Struktur als Restwechselwirkung von farbneutralen Nukleonen (Analogie: elektromagnetische van der Waals – Kräfte zwischen neutralen Atomen)

Zentralkraft $V_0(r)$

folgt aus den Eigenschaften des Deuterons (96% ³S₁-Zustand)

spinabhängige Zentralkraft (Spin-Spin-Wechselwirkung)

folgt aus den Neutron-Proton Streuung ($\sigma_{Singulett} > \sigma_{Triplett}$)

nichtzentrale Tensorkraft

folgt aus den Eigenschaften des Deuterons (4% ³D₁-Zustand)

Spin-Bahn (l·s) - Kopplungsterm

folgt aus den Streuung an polarisierten Protonen (Links/Rechts Asymmetrie)

15 22.4.2010 G. Drexlin – VL04 KIT-IEKP

Struktur der Kernkräfte: Potenzial

Tröpfchenmodell & Kernkräfte: auch bei schweren Kernen ist B/A ~ const., d.h. es wirken immer nur **Kräfte zwischen zwei Nukleonen** Wechselwirkung zwischen Nukleonen abhängig von dynamischen Größen: relativer Abstand \vec{x} , relativer Impuls \vec{p} , Gesamtbahndrehimpuls \vec{L} und relative Ausrichtung der Spins \vec{s}_1 , \vec{s}_2 :

$$\begin{split} V(r) &= V_0(r) \\ &+ V_{ss}(r) \cdot \vec{s}_1 \cdot \vec{s}_2 / \hbar^2 \\ &+ V_T(r) \cdot \frac{3}{\hbar^2} \frac{\left(\vec{s}_1 \cdot \vec{x}\right) \left(\vec{s}_2 \cdot \vec{x}\right)}{r^2} - \vec{s}_1 \cdot \vec{s}_2 \\ &+ V_{\ell S}(r) \cdot \left(\vec{s}_1 + \vec{s}_2\right) \cdot \vec{\ell} \cdot \frac{1}{\hbar^2} \\ &+ V_{\ell S}(r) \cdot \left(\vec{s}_1 \cdot \vec{\ell}\right) \cdot \left(\vec{s}_2 \cdot \vec{\ell}\right) \cdot \frac{1}{\hbar^4} \\ &+ V_{ps}(r) \cdot \left(\vec{s}_1 \cdot \vec{p}\right) \cdot \left(\vec{s}_2 \cdot \vec{p}\right) \cdot \frac{1}{\hbar^2 m^2 c^2} \end{split}$$

Zentralpotenzial ☑ Spin-Spin Wechselwirkung

nicht-zentrale Tensorkraft

Spin-Bahn Wechselwirkung

aus formalen Gründen, vernachlässigbar klein

Kernkräfte: Tensor-Kraft

■ Tensorkraft ist spinabhängig und z.B. verantwortlich für die kleine Deformation des Deuterons (${}^{3}D_{1}$ -Zustand) Proton und Neutron: Spin S = $\frac{1}{2}$, $\frac{1}{2}$ daher maximal Dipolmomente möglich

$$\sim V_T(r) \cdot \frac{3}{\hbar^2} \frac{(\vec{s}_1 \cdot \vec{x})(\vec{s}_2 \cdot \vec{x})}{r^2} - \vec{s}_1 \cdot \vec{s}_2$$

entspricht in der formal der Wechselwirkung von 2 magnetischen Dipolen

Tensorkraft

anziehend

abstoßend

- keine Tensorkraft für Singulett-Zustände
- Tensorkraft wird vermittelt durch
 Pionaustausch, beeinflusst Schalen & magische Zahlen

Kernkräfte: Spin-Spin-Kraft & LS Kopplung

Spin-Spin Kraft

unabhängig vom Koordinaten-System, d.h. muß eine skalare Größe sein

$$\sim V_{ss}(r) \cdot \vec{s}_1 \cdot \vec{s}_2 / \hbar^2$$

unterschiedliche Eigenwerte für Triplett- und Singulett-Zustände

■ ℓ·s Kopplung

in Analogie zur Feinstrukturaufspaltung der Atomhülle (M. Goeppert-Mayer):

Kopplung zwischen dem Bahndrehimpuls ℓ und Spin s des Nukleons

$$\sim V_{\ell s}(r) \cdot (\vec{\ell} \cdot \vec{s})$$

Spin-Bahn Kopplung der starken Wechselwirkung

- Experimenteller Beleg für l·s Kopplung:
 Streuung von Protonen an polarisierten Protonen zeigt eine Asymmetrie der Streuraten zwischen
 - Linksstreuung: $\overrightarrow{\ell} \cdot \overrightarrow{s} > 0$
 - Rechtsstreuung: $\overrightarrow{\ell} \cdot \overrightarrow{s} < 0$

LS-Kopplung von Nukleonen im Kern

Spin-Bahn Kopplung LS von Nukleonen im Kern

Probenukleon wechselwirke z.B. mit innerem Nukleon #1 (#2 analog):

$$\vec{L} = \vec{\ell} + \vec{\ell}_1$$
 $\vec{S} = \vec{s} + \vec{s}_1$

falls S = 0 : kein Beitrag zum LS Potenzial

falls S = 1 : Anstieg bzw. Verringerung des Potenzials

$$\vec{s} \uparrow \uparrow \vec{\ell} : Beitrag + \vec{L} \cdot \vec{S}$$

$$\vec{s} \uparrow \downarrow \vec{\ell} : Beitrag - \vec{L} \cdot \vec{S}$$

- Spin-Bahn Kopplung LS von Nukleonen im Kern reduziert sich auf Abhängigkeit ℓ·s des einzelnen Nukleons (d.h. auf den Einteilchenzustand)!!
 - in der Kernmitte kein Netto-Beitrag zum Potenzial,
 - an der Kernoberfläche mehr innere Nukleonen, daher Radialabhängigkeit: $1 d\rho$

$$V_{\ell s}(r) \propto \frac{1}{r} \cdot \frac{d\rho}{dr}$$

ls-Kopplung des Nukleons im Kern

Berechnung der Energieverschiebung der Nukleonen-Niveaus:

$$\vec{j} = \vec{\ell} + \vec{s} \qquad \vec{j}^2 = \vec{\ell}^2 + 2 \cdot \vec{\ell} \cdot \vec{s} + \vec{s}^2$$

$$\langle \vec{\ell} \cdot \vec{s} \rangle = \frac{1}{2} \begin{bmatrix} j \cdot (j+1) - \ell \cdot (\ell+1) - \frac{3}{4} \end{bmatrix} \qquad j = \ell + \frac{1}{2} : \qquad \langle \vec{\ell} \cdot \vec{s} \rangle = \frac{1}{2} \cdot \ell$$

$$j = \ell - \frac{1}{2} : \qquad \langle \vec{\ell} \cdot \vec{s} \rangle = -\frac{1}{2} \cdot (\ell+1)$$

für j =
$$\ell + \frac{1}{2}$$
: $V(r) + \frac{1}{2} V_{\ell s}(r) \cdot \ell$
für j = $\ell - \frac{1}{2}$: $V(r) - \frac{1}{2} V_{\ell s}(r) \cdot (\ell + 1)$

Vorzeichen von $V_{\ell s}$ ergibt für j = ℓ - ½ höhere Energien (geringeres Potenzial)

ΔE ~ 2ℓ+1 mit wachsendem ℓ Zunahme der Aufspaltung

Atomhülle: kleine Feinstrukturaufspaltung Kernschalen: große Aufspaltung Aufspaltung > Niveauabstand Vorzeichen umgekehrt wie bei Atomen

Auspaltung durch Spin-Bahn Kopplung

- Kernzustände mit $j = \ell + \frac{1}{2}$ liegen tiefer als $j = \ell - \frac{1}{2}$
- in jedem Niveau j :(2 j + 1) Protonen(2 j + 1) Neutronen
- Einfluss des V_{es} Terms der Spin-Bahn Kopplung auf das Saxon-Woods-Potenzial: maximale Beiträge von Peripherie

Leuchtnukleonen & angeregte Zustände

■ gg-Kerne: Spins der Nukleonen heben sich paarweise auf, Spin J = 0

- nichtabgeschlossene Schalen: Leuchtnukleon definiert Spin & Parität

1 Nukleon in äußerster Schale: Gesamtspin J = j

Parität $P = (-1)^{\ell}$

- Spiegelkerne ¹⁷O / ¹⁷F : 1p/1n in 1d_{5/2}

gg-Kern mit abgeschlossener Schale + 4 Neutronen + 2 Protonen: J = 0

angeregte Kernzustände

gg-Kern: 1. angeregter Zustand

liegt bei hoher Energie

uu-Kern: viele angeregte Zustände

bei niedrigen Energien

23

Kurzreichweitigkeit der Kernkräfte (~ 1-2 fm)

folgt z.B. direkt aus der schwachen Bindungsenergie des Deuterons Lösung der Schrödinger-Gleichung für Deuteron mit Zentralpotenzial $V_0(r)$: Ansatz eines kastenförmigen Potenzials mit $R_0 = 4.3$ fm & B = -2.2 MeV \raiset Tiefe des Potenzialtopfes: $V_0 \approx$ - 40 MeV , d.h. für das Deuteron: $|B| < |V_0|$ dies erklärt sich aus der kurzen Reichweite der Kernkraft (< 2 fm) d.h. mittlere kinetische Energie der Nukleonen \approx mittlere Potenzialtiefe

Abstoßung bei kleinen Abständen (< 0.8 fm)</p>

Nukleon-Nukleon Streuexperimente bei niedrigen Energien zeigen:

- anziehender Charakter der Kernkraft bis d ~ 2 fm
- abstoßender Charakter der Kernkraft für d < 0.8 fm:
 <p>Abstoßung basiert *nicht* auf dem Pauli-Prinzip,
 12 Quarks in h³: 3 Farbladungen (rbg), 2 Spinzustände (↑↓), 2 Isospins (u,d) resultiert aus der starken Spin-Spin Wechselwirkung der Quarks wenn 2 Nukleonen "überlappen": 2 der Quarks im p-Zustand ⇒ Abstoßung

22.4.2010 G. Drexlin – VL04 KIT-IEKP

Kernkräfte als Austauschkräfte

- anziehende Kernkräfte: Quarkaustausch analog zur kovalenten Bindung der Atome Modell: Nukleon-Konfiguration aufgebaut aus Diquark und einzelnem Quark Diquark: (u,d) energetisch günstig falls Spin S = 0 & Isospin I = 0 Quarkaustausch nur subdominater Beitrag!

24

Zeit t

KIT-IEKP

22.4.2010 G. Drexlin – VL04

Nukleon-Nukleon Potenzial: Pionaustausch

- durch die endliche Masse m_{π} des ausgetauschten Bosons wird die Reichweite der starken Wechselwirkung begrenzt auf R ~ 1.4 fm
- der Einpionen-Austausch kann nicht alle Eigenschaften des Kernpotenzials erklären: Austausch weiterer Mesonen σ, ω, ρ, η, δ
 spezielle Form des Wechselwirkungspotenzials (attraktive/repulsive Bereiche) vgl. zu Restwechselwirkung bei Atomen

Meson	Masse	Reichweite	Typ der Ww.	Stärke
π	138 MeV	1-2 fm	langreichweitig	14.6
σ	550 MeV	0.5-1 fm	Bindung	8
ω	782 MeV	0.7 fm	Repulsion	20
ρ	769 MeV	0.7 fm	LS-Kraft	0.95

