

Kerne und Teilchen

Physik VI

Vorlesung # 09 12.5.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Instabile Kerne

- radioaktiver Zerfall: Grundlagen
- Lebensdauer, Zerfallskonstante
- Verzweigung bei Zerfällen
- α-Zerfall: Grundlagen
- Zerfallsketten von primordialen Elementen
- Tunneleffekt: Transmissionswahrscheinlichkeit

Parton-Modell des Nukleons

- inelastische ep-Streuung als inkohärente Überlagerung elastischer Elektron-Wechselwirkungen mit Partonen
- Strukturfunktion F₂(x) beschreibt die 'elektrische' Streuung an den Ladungen der Partonen (geladene Valenz-/See-Quarks)

$$F_2(x) = x \cdot \sum_f z_f^2 \cdot \left[q_f(x) + \overline{q}_f(x) \right]$$

Callan-Gross Relation:
 Streuung an Spin s = ½ Partonen

$$F_2(x) = 2x \cdot F_1(x)$$

umfangreiche experimentelle
 Untersuchungen von F₂(x) an HERA

Parton-Verteilungen

- Partondichteverteilungen zeigen charakteristische Struktur:
 - bei großem Bjorken-x manifestieren sich die 3 Valenzquarks (u, d)
 - bei kleinem Bjorken-x dominieren die Seequarks (virtuelle Quark-Antiquark-Paare aus der Gluonabstrahlung)
- Strukturfunktionen von eN und vN Streuung sind bis auf einen Ladungsfaktor 18/5 identisch!
- Gluonen tragen einen Anteil von ~50% des Nukleonenimpulses,
 - erster Gluonnachweis bei PETRA in 3-Jet Ereignissen

kleine x: Gluonen, Quarks & Antiquarks

große x: Valenzquarks

4. Instabile Kerne

radioaktiver Zerfall - Nuklidkarten

Karlsruher Nuklidkarte (seit 1958) gibt einen umfassenden Überblick über alle bekannten stabilen und instabilen Kerne & ihre Zerfallsdaten:

- Isotopenhäufigkeit
- Zerfalls-art, -parameter
- Spin & Parität
- ...
- online verfügbar unter www.nucleonica.net

4.1 radioaktiver Zerfall

 in einem Ensemble (Quelle) mit einer großen Anzahl N instabiler Teilchen bzw. radioaktiver Kernen führen radioaktive Zerfälle in einem Zeitintervall dt zu einer Abnahme dN der Ensemble-/Kern-Anzahl

$$dN = -\lambda \cdot N \cdot dt$$

$$\mathbf{Zerfallskonstante} \ \lambda$$

neg. Vorzeichen, da Teilchenabnahme

Zerfallskonstante λ ist Teilchen- bzw. Kern-spezifisch, λ in [s⁻¹] Beispiel: α-Zerfall von ²²⁶Ra:

$$\lambda = 1.4 \cdot 10^{-11} / s$$

= statistische Wahrscheinlichkeit für einen ²²⁶Ra-Kern, im Zeitintervall dt = 1 s zu zerfallen

$$A = \frac{dN}{dt} = -\lambda \cdot N$$

Aktivität A einer Quelle (keine Konstante!) :

- \sim zur Zerfallskonstanten λ ,
- ~ Ensembleanzahl N (nimmt ab, damit auch A)

exp. Zerfallsgesetz & Halbwertszeit t_{1/2}

in einem Ensemble N(t), das zum Zeitpunkt t = 0 aus N(0) Kernen besteht, beobachtet man eine exponentielle Abnahme der Kerne

$$\int_{N_0}^{N} \frac{dN}{N} = -\lambda \cdot \int_{0}^{t} dt$$

$$N(t) = N(0) \cdot e^{-\lambda \cdot t}$$

exponentielles Zerfallsgesetz

 bei exponentiellen Zerfällen mit einer Zerfallskonstanten λ lassen sich 2 charakteristische Zeiten definieren:

1. Halbwertszeit t_{1/2}:

nach dem Zeitintervall $t = t_{1/2}$ sind noch die Hälfte der ursprünglichen Kerne vorhanden, d.h. eine Hälfte N(0)/2 des Ensembles ist bereits zerfallen

$$N(t_{1/2}) = 1/2 \cdot N(0) \leftrightarrow 1/2 = e^{(-\lambda \cdot t_{1/2})}$$

t = 0 ist beliebig wählbar!

exp. Zerfallsgesetz & mittlere Lebensdauer

2. mittlere Lebensdauer τ:

nach einem Zeitintervall $t = \tau$ (d.h. der mittleren Lebensdauer) sind noch $N(\tau) = N(0)/e$ radioaktive Kerne vorhanden (1/e = 36.788% noch übrig)

$$\tau = \frac{1}{\lambda}$$

 $\tau = \frac{1}{\lambda}$ mittlere Lebensdauer = Inverses der Zerfallskonstanten

$$\tau = 10^{-24} \text{ s } (\Delta^{++} \rightarrow \text{p} + \pi^{+}) \Rightarrow \dots \tau = 12.3 \text{ a } (\text{T}_{2} \text{ ß-Zerfall}) \Rightarrow \dots 10^{21} \text{ a } (2\nu\text{ß}) \dots$$

$$t_{1/2} = \tau \cdot \ln 2 = 0.693 \cdot \tau$$
 $\tau = 1.443 \cdot t_{1/2}$ $t_{1/2} = \ln 2/\lambda = 0.693/\lambda$

$$\tau = 1.443 \cdot t_{1/2}$$

Zerfallsbreite Γ :

ein instabiler Zustand (Resonanz) hat eine charakteristische Energie-Breite Γ

$$\Gamma = \frac{\hbar}{\tau} = \hbar \cdot \lambda$$

Heisenberg'sche Unschärferelation

radioaktive Lebensdauer: SNIa Lichtkurve

SNIa: bei der thermonuklearen Detonation eines weißen Zwergs werden bei t = 0 große Mengen an ⁵⁶Ni erzeugt, das mit einer mittleren Lebensdauer τ (⁵⁶Ni) = 9 Tage durch Elektroneneinfang zerfällt, erzeugtes ⁵⁶Co zerfällt weiter radioaktives Zerfallsschema ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe

SN-Lichtkurven folgen τ des Zerfalls

Gammaquanten aus radioaktiven Zerfällen heizen die umgebende Materie auf – φ optische Luminosität einer SNIa folgt der Lebensdauer τ von ⁵⁶Ni, ⁵⁶Co

Aktivität einer Quelle: Einheiten

 \blacksquare Aktivität A(t) = - dN/dt beschreibt die Zahl dN der Zerfälle pro Zeiteinheit dt

$$A(t) = A(0) \cdot e^{-\lambda \cdot t}$$
 mit wichtiger

mit wichtiger (s.o.) Relation $A(t) = \lambda \cdot N(t)$ die Aktivität einer Quelle nimmt exponentiell ab

1 Ci = 3.7 • 10¹⁰ Zerfälle / s

alte Einheit Curie, = Aktivität 1 g Radium (²²⁶Ra) (nach Pierre Curie)

- abgeleitete Größen:
 - spezifische Aktivität [Bq/kg], Aktivitätskonzentration [Bq/m³]
 - Beispiele: ³H hat 3.6 · 10¹⁴ Bq/g, ¹⁴C hat 1.7 · 10¹¹ Bq/g ¹³³Xe hat 6.8 · 10¹⁵ Bq/g, ^{nat}U hat 2.5 · 10⁴ Bq/g
- Energiedosis einer Quelle, neue Einheit: 1 Gray = absorbierte Energie einer Quelle in einer Materialprobe mit dem Volumen V und der Dichte ρ (m = V · r) alte Einheit: 1 rad = 10⁻² J/kg

 $1 \, \text{Gy} = 1 \, \text{J/kg}$

10

Aktivität einer Quelle

- Beispiele für Aktivitäten:
 - extrem untergrundarme Materialien für Astroteilchenphysik:
 - ~100 nBq/kg für die Suche nach der dunklen Materie, 0vßβ-Zerfall (Neutrino-Physik)

Gestein: 10⁻⁶ g(Th) / g Stahl: 10⁻⁹ g(Th) / g

- menschlicher Körper: A ~ 3.7 kBq (40K, 14C)
 - Haus: Luft A ~ 1kBq durch Radon (222Rn), 100 m² Wände mit ~10⁻⁶ (²³²Th)/g ⇒ 10¹⁰ γ's/Jahr
 - Laborquellen/Praktikum: A ~ einige mCi
 - KATRIN ß-Zerfallsquelle: A ~ 10¹¹ ß-Zerfälle/s (~ 4 Ci)
 - Eichquellen für solare Neutrinos: MCi, GCi

radioaktiver Untergrund & Anforderungen

Quelle und Abschirmung	Ereignisse/kg/s	Ereignisse/kg/Tag
natürlicher Raumuntergrund	100	10 ⁷
innerhalb einer Bleiabschirmung		10 ²
kosmische Myonen an Erdoberfläche	0.1	10 ⁴
Detektoren der Astroteilchenphysik		10 ⁻²

12 11.5.2010 G. Drexlin – VL09 KIT-IEKP

Zerfallsarten – Übersicht

ein instabiler Kern (Mutternuklid) kann sich über verschiedene Zerfallsarten in das Tochternuklid umwandeln:

 α -Zerfall: Änderung der Kernladung $\Delta Z = -2$, $\Delta A = 4$, schwere Kerne

ß-Zerfall, Elektron-Einfang: Änderung $|\Delta Z| = 1$, $\Delta A = 0$

 γ -Zerfall: Änderung $\Delta Z = 0$, $\Delta A = 0$

Spaltung: Änderung $\Delta Z \gg 1$, $\Delta A \gg 1$

Teilchenzerfall: Emission p, n

Zerfallsarten von Kernen

Zerfälle mit Verzweigung

radioaktive Zerfälle können in verschiedene Kanäle erfolgen

Beispiele:
$$\pi^+ \to \mu^+ + \nu_{\mu}$$
 oder $\pi^+ \to e^+ + \nu_{e}$ (Pionzerfall in Myon/Positron)

$$^{212}\text{Bi} \rightarrow ^{212}\text{Po} + \text{e}^{\text{-}} + \nu_{\text{e}} \ (64\%) \ \text{oder} \ ^{212}\text{Bi} \rightarrow ^{208}\text{TI} + \alpha \ (36\%)$$

zeitliche Abnahme dN/dt des Mutterkerns/Ausgangsteilchens:

$$\frac{dN}{dt} = -\lambda_1 N - \lambda_2 N = N(0) \cdot e^{-(\lambda_1 + \lambda_2)t}$$

$$\lambda = \lambda_1 + \lambda_2$$

$$\lambda : \text{ totale Breite}$$

$$\lambda_i : \text{ Partialbreite}$$

Definition der Verzweigungsverhältnisse (branching ratios) f₁, f₂:

$$f_1 = \frac{\lambda_1}{\lambda} \qquad f_2 = \frac{\lambda_2}{\lambda}$$

ß-Aktivität:
$$A_{\mathfrak{B}}(t) = N \cdot \lambda \cdot f_1 = N \cdot \lambda_1$$

$$\alpha$$
-Aktivität: $A_{\alpha}(t) = N \cdot \lambda \cdot f_2 = N \cdot \lambda_2$

4.2 Alpha – Zerfall

schwere Kerne mit A > 150 (Sm) können durch \alpha-Emission zerfallen – falls:

$$Q_{\alpha} = B(Z - 2, A - 4) - B(Z, A) + B_{\alpha}(28.3 \text{ MeV}) > 0$$

der Q-Wert Q_a ist entscheidend für die Halbwertszeit t_{1/2} des Isotops:

- langsamster α -Zerfall: $^{232}Th \rightarrow ^{228}Ra + \alpha$ $t_{1/2} = 1.4 \cdot 10^{10}$ a
- schnellster α -Zerfall: $^{212}Po \rightarrow ^{208}Pb + \alpha$ $t_{1/2} = 3.5 \cdot 10^{-7} \text{ s}$
- α -Teilchen sind mono-energetisch (typischer Wert: $E_{kin} \sim einige MeV$)
 - Visualisierung in Nebelkammer-Aufnahmen: gleiche Reichweite
 - Alpha-Teilchen haben eine hohe Ionisationsrate & geringe Reichweite: radiologische Konsequenzen, Verwendung von Radionuklidbatterien

15

Alpha – Zerfall: kinetische Energien

- **Energiebetrachtung** beim α -Zerfall:
 - vor dem α -Zerfall: ruhender Mutterkern $E_{kin}(MK) = 0$
 - nach dem α -Zerfall: kinetische Energie α -Teilchen $E_{kin}(\alpha)$ Rückstoß-Energie des Tochterkerns E_{kin}(TK)

mit Massenverhältnis

$$\frac{M_{\alpha}}{M_{TK}} \cong \frac{4}{A - 4}$$

ergeben sich folgende kinetische Energien:

$$E_{kin}(TK) \cong \frac{4}{A} \cdot Q_{\alpha}$$

$$E_{kin}(TK) \cong \frac{4}{A} \cdot Q_{\alpha}$$
 $E_{kin}(\alpha) \cong \frac{A-4}{A} \cdot Q_{\alpha}$

$$E_{kin}(\alpha) >> E_{kin}(TK)$$

α-Zerfälle können auf angeregte Niveaus des Tochterkerns führen

²²⁶Ra Zerfallsschema

verschiedene α-Energien

α-Zerfallsketten

es werden natürliche radioaktive Zerfallsketten (α – & ß- Zerfälle) der langlebigen 'primordialen' Elemente ²³⁵U, ²³⁸U, ²³²Th aus SN-Explosionen beobachtet

Uranserie ^{238}U A = $4 \cdot j + 2$

$$A = 4 \cdot j + 2$$

$$^{238}U \rightarrow ^{206}Pb, t_{1/2} = 4.5 \cdot 10^{9} a$$

Neptuniumserie ²³⁷Np $A = 4 \cdot j + 1$

$$A = 4 \cdot j + 1$$

228 **Ra** 88 **Ra** 228

$$^{237}Np \rightarrow ^{209}Bi, t_{1/2} = 2.1 \cdot 10^{6} a$$

Thoriumserie ²³²Th A = 4 · j

$$A = 4 \cdot j$$

²³²Th
$$\rightarrow$$
 ²⁰⁸Pb, $t_{1/2} = 1.4 \cdot 10^{10}$ a

Aktiniumserie ^{235}U A = $4 \cdot j + 3$

$$A = 4 \cdot j + 3$$

$$^{235}U \rightarrow ^{207}Pb, t_{1/2} = 7.1 \cdot 10^{8} a$$

α-Zerfallsketten: radioaktives Gleichgewicht

in einer radioaktiven Zerfallskette werden durch den Zerfall des Ausgangsisotops (²³⁵U) radioaktive Tochterkerne erzeugt, die ihrerseits wieder zerfallen:

$$\frac{dN_1}{dt} = -\lambda_1 \cdot N_1$$
 Zerfall Mutterkern
$$\frac{dN_2}{dt} = \lambda_1 \cdot N_1 - \lambda_2 \cdot N_2$$
 Erzeugung Tochterkern & Zerfall Tochterkern
$$\frac{dN_3}{dt} = \lambda_2 \cdot N_2 - \lambda_3 \cdot N_3$$

$$\vdots \qquad \vdots \qquad \vdots$$

Zerfall Mutterkern

in einem säkularen Gleichgewicht ist die Aktivität A_i aller Isotope der Kette identisch & die Häufigkeit N_i der Isotope konstant

$$\frac{dN_1}{dt} = \frac{dN_2}{dt} = \frac{dN_3}{dt} d.h. A_1 = A_2 = A_3$$
$$\lambda_1 \cdot N_1 = \lambda_2 \cdot N_2 = \lambda_3 \cdot N_3$$

der Tunneleffekt beim α-Zerfall

- die Emission eines α-Teilchens aus einem Kern beruht auf dem quantenmechanischen Tunneleffekt (1929: G. Gamov & E. Condon)
 - Beschränkung auf 1 dim. Schrödinger-Gleichung (effektive 1-dim. Potenziale)

numerisches Beispiel:

²³²Th
$$\rightarrow$$
 ²²⁸Ra + ⁴He
T_α = 4.05 MeV (kinet. Energie des α)
τ(²³²Th) = 1.39 · 10¹⁰ a
R = 7.4 fm

 $V_0 = 14 \text{ MeV} (Z \sim 90, \text{ Coulombbarriere})$

U₀ = 40 MeV [Tiefe des Kernpotenzials]

 Bestimmung der Transmissions-Wahrscheinlichkeit T durch die Coulombbarriere V_c(r)

der Tunneleffekt beim α-Zerfall

Lösungen der 1-dim. Schrödinger-Gleichung: Wellenfunktionen Ψ_1, Ψ_2, Ψ_3

$$\Psi_1 = \alpha_1 \cdot e^{ik_1x} + \beta_1 \cdot e^{-ik_1x}, \quad k_1 = \sqrt{2mT_\alpha}$$
 aus-/einlaufende Welle vor Barriere

$$\Psi_2 = \alpha_2 \cdot e^{-k_2 x} + \beta_2 \cdot e^{k_2 x}, \quad k_2 = \sqrt{2m \cdot (U_0 - T_\alpha)} \quad \text{in Barriere}$$

$$\Psi_3 = \alpha_3 \cdot e^{ik_3x}$$
, $k_3 = \sqrt{2mT_\alpha}$ auslaufende Welle nach Barriere

Stetigkeitsbedingungen bei

$$X = 0$$
: $\Psi_1 = \Psi_2$ $\Psi'_1 = \Psi'_2$

$$x = d : \Psi_2 = \Psi_3 \quad \Psi'_2 = \Psi'_3$$

(für α -Zerfälle mit $\Delta \ell = 0$)

Transmissionskoeffizient T

$$T = \left| \frac{\alpha_3}{\alpha_1} \right|^2 = (1 + \frac{U_0^2}{U_0^2 - (2T_\alpha - U_0)^2 \cdot \sinh^2 k_2 d})^{-1}$$

der Tunneleffekt beim α-Zerfall

Lösungen der 3-dim. Schrödinger-Gleichung: Wellenfunktionen Ψ_1, Ψ_2, Ψ_3 Zerlegung der Coulomb-Schwellen $V_c(r)$ mit Breite dr

$$T \propto e^{-G}$$

mit

Transmissionswahrscheinlichkeit

$$G = 2 \cdot \pi \cdot Z \cdot \alpha \cdot \sqrt{\frac{2 \cdot m_{\alpha}}{T_{\alpha}}}$$

Gamov-Faktor für α -Teilchen mit z=2 Masse m_{α} und kinetischer Energie T_{α}

Berechnung der Zerfallskonstanten λ:

$$\lambda = \lambda_0 \cdot \frac{v}{2R} \cdot T$$

 λ_0 : Wahrscheinlichkeit der Bildung eines α

v/2R: Anzahl der Tunnelversuche / Zeiteinheit

T: Transmissionswahrscheinlichkeit

$$\lambda = C(T_{\alpha}, R) \cdot e^{-G}$$

Geiger – Nuttall Regel

der Gamov-Faktor G wird mit ansteigender α -Energie T_{α} rasch kleiner, dadurch reduziert sich die Halbwertszeit t_{1/2} für den Zerfall sehr stark Auftragung der Lebensdauer/Halbwertszeit über Faktor Z / √T,

$$\ln(\tau/\tau_0) = -C' + a \cdot \frac{Z}{\sqrt{T_\alpha}} \quad \begin{array}{c} \text{Geiger-Nuttall} \\ \text{Regel} \end{array}$$

bereits 1911 von Geiger & Nuttall empirisch gefundene Regel zwischen der Reichweite von α -Teilchen (T_{α}) & der gemessenen Halbwertszeit t₁, des Zerfalls

Kern	t _½	T_{lpha}
²¹² P0	0.3 µs	8.78 MeV
²²⁴ Ra	3.6 Tage	5.7 MeV
²³² Th	1.39·10 ¹⁰ a	4.05 MeV