

Kerne und Teilchen

Physik VI

Vorlesung # 09 12.5.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Instabile Kerne

- radioaktiver Zerfall: Grundlagen
- Lebensdauer, Zerfallskonstante
- Verzweigung bei Zerfällen
- α-Zerfall: Grundlagen
- Zerfallsketten von primordialen Elementen
- Tunneleffekt: Transmissionswahrscheinlichkeit

Parton-Modell des Nukleons

- inelastische ep-Streuung als inkohärente Überlagerung elastischer Elektron-Wechselwirkungen mit Partonen
- Strukturfunktion F₂(x) beschreibt die ´elektrische´ Streuung an den Ladungen der Partonen (geladene Valenz-/See-Quarks)

$$F_2(x) = x \cdot \sum_f z_f^2 \cdot \left[q_f(x) + \overline{q}_f(x) \right]$$

Callan-Gross Relation: Strouwing on Spin a – 1/ Dorton

Streuung an Spin s = $\frac{1}{2}$ Partonen

$$F_2(x) = 2x \cdot F_1(x)$$

umfangreiche experimentelle
 Untersuchungen von F₂(x) an HERA

Parton-Verteilungen

Partondichteverteilungen zeigen charakteristische Struktur:

- bei großem Bjorken-x manifestieren sich die 3 Valenzquarks (u, d)
- bei kleinem Bjorken-x dominieren die Seequarks (virtuelle Quark-Antiquark-Paare aus der Gluonabstrahlung)
- Strukturfunktionen von eN und vN Streuung sind bis auf einen Ladungsfaktor 18/5 identisch!
- Gluonen tragen einen Anteil von ~50% des Nukleonenimpulses,
 - erster Gluonnachweis bei PETRA in 3-Jet Ereignissen

kleine x: Gluonen, Quarks & Antiquarks große x: Valenzquarks

4. Instabile Kerne

radioaktiver Zerfall - Nuklidkarten

- Karlsruher Nuklidkarte (seit 1958) gibt einen umfassenden Überblick über alle bekannten stabilen und instabilen Kerne & ihre Zerfallsdaten:
 - Isotopenhäufigkeit

4.1 radioaktiver Zerfall

in einem Ensemble (Quelle) mit einer großen Anzahl N instabiler Teilchen bzw. radioaktiver Kernen führen radioaktive Zerfälle in einem Zeitintervall dt zu einer Abnahme dN der Ensemble-/Kern-Anzahl

neg. Vorzeichen, da Teilchenabnahme

Zerfallskonstante λ **ist Teilchen- bzw. Kern-spezifisch**, λ **in [s⁻¹]** Beispiel: α -Zerfall von ²²⁶Ra:

 $\lambda = 1.4 \cdot 10^{\text{-11}} / \text{s}$

= statistische Wahrscheinlichkeit f
ür einen ²²⁶Ra-Kern, im Zeitintervall dt = 1 s zu zerfallen

$$A = \frac{dN}{dt} = -\lambda \cdot N$$

Aktivität A einer Quelle (keine Konstante!) :

- ~ zur Zerfallskonstanten λ ,
- ~ Ensembleanzahl N (nimmt ab, damit auch A)

0.0

exp. Zerfallsgesetz & Halbwertszeit t_{1/2}

exponentielles

Zerfallsgesetz

in einem Ensemble N(t), das zum Zeitpunkt t = 0 aus N(0) Kernen besteht, beobachtet man eine exponentielle Abnahme der Kerne

 $N(t) = N(0) \cdot e^{-\lambda \cdot t}$

 $\int_{N} \frac{a N}{N} = -\lambda \cdot \int_{\Omega} dt$

1. Halbwertszeit t_{1/2}:

nach dem Zeitintervall t = $t_{\frac{1}{2}}$ sind noch die Hälfte der ursprünglichen Kerne vorhanden, d.h. eine Hälfte N(0)/2 des Ensembles ist bereits zerfallen

 $N(t_{1/2}) = 1/2 \cdot N(0) \leftrightarrow 1/2 = e^{(-\lambda \cdot t_{1/2})}$

t = 0 ist beliebig wählbar !

exp. Zerfallsgesetz & mittlere Lebensdauer

2. mittlere Lebensdauer *τ*:

nach einem Zeitintervall t = τ (d.h. der mittleren Lebensdauer) sind noch N(τ) = N(0)/e radioaktive Kerne vorhanden (1/e = 36.788% noch übrig)

mittlere Lebensdauer =

Inverses der Zerfallskonstanten

 $\tau = 10^{-24} \text{ s } (\Delta^{++} \rightarrow p + \pi^{+}) \Rightarrow \dots \tau = 12.3 \text{ a } (\mathsf{T}_2 \text{ } \beta\text{-Zerfall}) \Rightarrow \dots 10^{21} \text{ a } (2\nu \text{B}\text{B}) \dots$

$$t_{1/2} = \tau \cdot \ln 2 = 0.693 \cdot \tau$$

 $t_{1/2} = \ln 2/\lambda = 0.693/\lambda$
 $\tau = 1.443 \cdot t_{1/2}$

Zerfallsbreite Γ:

ein instabiler Zustand (Resonanz) hat eine charakteristische Energie-Breite Γ

 $\Gamma = \frac{\hbar}{\tau} = \hbar \cdot \lambda$

Heisenberg'sche

radioaktive Lebensdauer: SNIa Lichtkurve

- SNIa: bei der thermonuklearen Detonation eines weißen Zwergs werden bei t = 0 große Mengen an ⁵⁶Ni erzeugt, das mit einer mittleren Lebensdauer τ (⁵⁶Ni) = 9 Tage durch Elektroneneinfang zerfällt, erzeugtes ⁵⁶Co zerfällt weiter radioaktives Zerfallsschema ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe

SN-Lichtkurven folgen τ des Zerfalls

Gammaquanten aus radioaktiven Zerfällen heizen die umgebende Materie auf – **\$ optische Luminosität einer SNIa** folgt der Lebensdauer τ von ⁵⁶Ni, ⁵⁶Co

Aktivität einer Quelle: Einheiten

Aktivität A(t) = – dN/dt beschreibt die Zahl dN der Zerfälle pro Zeiteinheit dt

 $A(t) = A(0) \cdot e^{-\lambda \cdot t}$

mit wichtiger (s.o.) Relation $A(t) = \lambda \cdot N(t)$ die Aktivität einer Quelle nimmt exponentiell ab

1 Bq = 1 Zerfall / s 1 Becquerel = 2.70 - 10⁻¹¹ Ci (nach Henri Becquerel)

1 Ci = 3.7 • 10¹⁰ Zerfälle / s alte Einheit Curie, = Aktivität 1 g Radium (²²⁶Ra) (nach Pierre Curie)

- abgeleitete Größen:
 - spezifische Aktivität [Bq/kg], Aktivitätskonzentration [Bq/m³]
 - Beispiele: ³H hat 3.6 · 10¹⁴ Bq/g, ¹⁴C hat 1.7 · 10¹¹ Bq/g ¹³³Xe hat 6.8 · 10¹⁵ Bq/g, ^{nat}U hat 2.5 · 10⁴ Bq/g

Energiedosis einer Quelle, neue Einheit: 1 Gray = absorbierte Energie einer Quelle in einer Materialprobe mit dem Volumen V und der Dichte ρ (m = V · r) alte Einheit: 1 rad = 10⁻² J/kg

1 Gy = 1 J / kg

Aktivität einer Quelle

- Beispiele für Aktivitäten:
 - extrem untergrundarme Materialien für Astroteilchenphysik:
 - ~100 nBq/kg für die Suche nach der dunklen Materie, 0vßß-Zerfall (Neutrino-Physik)

- menschlicher Körper: A ~ 3.7 kBq (40K, 14C)
- Haus: Luft A ~ 1kBq durch Radon (²²²Rn), 100 m² Wände mit ~10⁻⁶ (²³²Th)/g \Rightarrow 10¹⁰ γ s/Jahr
- Laborquellen/Praktikum: A ~ einige mCi
- KATRIN ß-Zerfallsquelle: A ~ 10¹¹ ß-Zerfälle/s (~ 4 Ci)
- Eichquellen für solare Neutrinos: MCi, GCi

Zerfallsarten – Übersicht

ein instabiler Kern (Mutternuklid) kann sich über verschiedene Zerfallsarten in das Tochternuklid umwandeln: α -Zerfall: Änderung der Kernladung $\Delta Z = -2$, $\Delta A = 4$, schwere Kerne β -Zerfall, Elektron-Einfang: Änderung $|\Delta Z| = 1$, $\Delta A = 0$ γ -Zerfall: Änderung $\Delta Z = 0$, $\Delta A = 0$ Spaltung: Änderung $\Delta Z > 1$, $\Delta A >> 1$ Teilchenzerfall: Emission p, n

Zerfälle mit Verzweigung

radioaktive Zerfälle können in verschiedene Kanäle erfolgen
Beispiele: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ oder $\pi^+ \rightarrow e^+ + \nu_e$ (Pionzerfall in Myon/Positron) $^{212}\text{Bi} \rightarrow ^{212}\text{Po} + e^- + \nu_e$ (64%) oder $^{212}\text{Bi} \rightarrow ^{208}\text{TI} + \alpha$ (36%)

zeitliche Abnahme dN/dt des Mutterkerns/Ausgangsteilchens:

$$\frac{dN}{dt} = -\lambda_1 N - \lambda_2 N = N(0) \cdot e^{-(\lambda_1 + \lambda_2)t}$$

$$\lambda = \lambda_1 + \lambda_2$$

$$\lambda: \text{ totale Breite}$$

$$\lambda_i: \text{ Partialbreite}$$

 Definition der Verzweigungsverhältnisse (branching ratios) f₁, f₂:

$$f_1 = \frac{\lambda_1}{\lambda} \quad f_2 = \frac{\lambda_2}{\lambda}$$

 $\begin{array}{l} \textbf{B-Aktivität:} \ A_{\textbf{B}}(t) = N \cdot \lambda \cdot f_{1} = N \cdot \lambda_{1} \\ \textbf{\alpha-Aktivität:} \ A_{\alpha}(t) = N \cdot \lambda \cdot f_{2} = N \cdot \lambda_{2} \end{array}$

4.2 Alpha – Zerfall

schwere Kerne mit A > 150 (Sm) können durch α -Emission zerfallen – falls: $Q_{\alpha} = B(Z - 2, A - 4) - B(Z, A) + B_{\alpha}(28.3 \text{ MeV}) > 0$

der Q-Wert Q_a ist entscheidend für die Halbwertszeit t_{1/2} des Isotops:

- langsamster α -Zerfall: ²³²Th \rightarrow ²²⁸Ra + α t_{1/2} = 1.4 · 10¹⁰ a
- 10-24 - schnellster α -Zerfall: ²¹²Po \rightarrow ²⁰⁸Pb + α t_{1/2} = 3.5 · 10⁻⁷ s

• α -Teilchen sind mono-energetisch (typischer Wert: $E_{kin} \sim einige MeV$)

- Visualisierung in Nebelkammer-Aufnahmen: gleiche Reichweite
- Alpha-Teilchen haben eine hohe Ionisationsrate & geringe Reichweite: Is radiologische Konsequenzen, Verwendung von Radionuklidbatterien

Alpha – Zerfall: kinetische Energien

Energiebetrachtung beim α-Zerfall:

- vor dem α -Zerfall: ruhender Mutterkern E_{kin}(MK) = 0
- nach dem α -Zerfall: kinetische Energie α -Teilchen E_{kin}(α)

Rückstoß-Energie des Tochterkerns E_{kin}(TK)

mit Massenverhältnis

$$\frac{M_{\alpha}}{M_{TK}} \cong \frac{4}{A - 4}$$

ergeben sich folgende kinetische Energien:

$$E_{kin}(TK) \cong \frac{4}{A} \cdot Q_{\alpha}$$
 $E_{kin}(\alpha) \cong \frac{A-4}{A} \cdot Q_{\alpha}$

$$E_{kin}(\alpha) >> E_{kin}(TK)$$

α-Zerfälle können auf angeregte
 Niveaus des Tochterkerns führen

²²⁶Ra Zerfallsschema

verschiedene α -Energien

α -Zerfallsketten

α -Zerfallsketten: radioaktives Gleichgewicht

in einer radioaktiven Zerfallskette werden durch den Zerfall des Ausgangsisotops (²³⁵U) radioaktive Tochterkerne erzeugt, die ihrerseits wieder zerfallen:

$$\frac{dN_1}{dt} = -\lambda_1 \cdot N_1$$

$$\frac{dN_2}{dt} = \lambda_1 \cdot N_1 - \lambda_2 \cdot N_2$$

$$\frac{dN_3}{dt} = \lambda_2 \cdot N_2 - \lambda_3 \cdot N_3$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

Zerfall Mutterkern

Erzeugung Tochterkern & Zerfall Tochterkern

in einem **säkularen Gleichgewicht** ist die Aktivität A_i aller Isotope der Kette identisch & die Häufigkeit N_i der Isotope konstant

$$\frac{dN_1}{dt} = \frac{dN_2}{dt} = \frac{dN_3}{dt} d.h. A_1 = A_2 = A_3$$
$$\lambda_1 \cdot N_1 = \lambda_2 \cdot N_2 = \lambda_3 \cdot N_3$$

der Tunneleffekt beim α -Zerfall

 die Emission eines α-Teilchens aus einem Kern beruht auf dem quantenmechanischen Tunneleffekt (1929: G. Gamov & E. Condon)
 Beschränkung auf 1 dim. Schrödinger-Gleichung (effektive 1-dim. Potenziale)

der Tunneleffekt beim α -Zerfall

Lösungen der 1-dim. Schrödinger-Gleichung: Wellenfunktionen Ψ_1, Ψ_2, Ψ_3 $\Psi_1 = \alpha_1 \cdot e^{ik_1x} + \beta_1 \cdot e^{-ik_1x}, \quad k_1 = \sqrt{2mT_{\alpha}}$ aus-/einlaufende Welle vor Barriere $\Psi_2 = \alpha_2 \cdot e^{-k_2 x} + \beta_2 \cdot e^{k_2 x}, \quad k_2 = \sqrt{2m \cdot (U_0 - T_\alpha)} \quad \text{in Barriere}$ $\Psi_3 = \alpha_3 \cdot e^{ik_3x}$, $k_3 = \sqrt{2mT_{\alpha}}$ auslaufende Welle nach Barriere (für α -Zerfälle mit $\Delta l = 0$) Stetigkeitsbedingungen bei Energie [MeV] X=0: $\Psi_1 = \Psi_2$ $\Psi'_1 = \Psi'_2$ x=d: $\Psi_2 = \Psi_3$ $\Psi'_2 = \Psi'_3$ α_2 Transmissionskoeffizient T α_3 10 $T = \left| \frac{\alpha_3}{\alpha_1} \right|^{-1} = (1 + \frac{U_0^2}{U_0^2 - (2T_n - U_0)^2 \cdot \sinh^2 k_2 d})^{-1}$ Tα B2 10 20 30 0 ß1 Abstand x [fm]

der Tunneleffekt beim α -Zerfall

Lösungen der 3-dim. Schrödinger-Gleichung: Wellenfunktionen Ψ_1, Ψ_2, Ψ_3 Zerlegung der Coulomb-Schwellen V_c(r) mit Breite dr

Transmissionswahrscheinlichkeit

$$G = 2 \cdot \pi \cdot Z \cdot \alpha \cdot \sqrt{\frac{2 \cdot m_{\alpha}}{T_{\alpha}}}$$

Gamov-Faktor für α -Teilchen mit z = 2 Masse m_{α} und kinetischer Energie T_{α}

Berechnung der Zerfallskonstanten
$$\lambda$$
:

λ₀: Wahrscheinlichkeit der Bildung eines α
 v/2R: Anzahl der Tunnelversuche / Zeiteinheit
 T: Transmissionswahrscheinlichkeit

$$\lambda = C(T_{\alpha}, R) \cdot e^{-G}$$

 $\lambda = \lambda_0 \cdot \frac{r}{2R} \cdot T$

Geiger – Nuttall Regel

der Gamov-Faktor G wird mit ansteigender α-Energie T_α rasch kleiner, dadurch reduziert sich die Halbwertszeit t_{1/2} für den Zerfall sehr stark Auftragung der Lebensdauer/Halbwertszeit über Faktor Z / $\sqrt{T_α}$

